Image-Based Modeling of Drug Delivery during Intraperitoneal Chemotherapy in a Heterogeneous Tumor Nodule
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Governing Equations
- (i)
- Interstitial fluid flow
- (ii)
- Drug Transport
2.2. Numerical Modeling
2.2.1. Boundary Conditions
2.2.2. Solution Strategy
2.2.3. Model Geometry
2.2.4. Image Processing Method
2.2.5. Grid Generation
3. Results and Discussion
4. Model Validation
4.1. Validation of Fluid Flow Simulations
4.2. Validation of Mass Transport Simulations
5. Limitations and Future Work
6. Conclusions
- The tumor’s vascular network, characterized by its heterogeneous distribution of vessels, contributes to heterogeneous distributions of interstitial fluid pressure (IFP) and interstitial fluid velocity (IFV) within tumor.
- Drug penetration within the tumor exhibits diverse patterns along different axes in the tumor as a consequence of the heterogeneous distribution of vessels and fluid flow in the tumor, thus increasing the complexity of drug delivery.
- The geometric attributes and unique vascular network of tumors are crucial considerations before treatment planning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatt, A. Management of Peritoneal Metastases-Cytoreductive Surgery, HIPEC and Beyond; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9811070539. [Google Scholar]
- Mei, S.; Chen, X.; Wang, K.; Chen, Y. Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int. 2023, 23, 1–13. [Google Scholar]
- Kose, S. Role of Computed Tomography in the Evaluation of Peritoneal Carcinomatosis. J. Belgian Soc. Radiol. 2023, 107, 27. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.J.; Iqbal, A.; Starr, J.S.; Nair, R.M.; George, T.J., Jr. Management of malignant bowel obstruction associated with GI cancers. J. Oncol. Pract. 2017, 13, 426–434. [Google Scholar] [CrossRef]
- Huang, Y.; Alzahrani, N.A.; Chua, T.C.; Liauw, W.; Morris, D.L. Impacts of low peritoneal cancer index on the survival outcomes of patient with peritoneal carcinomatosis of colorectal origin. Int. J. Surg. 2015, 23, 181–185. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, Z.; Du, L.; Zhu, S.; Xiang, H.; Wang, Z.; Liu, F.; Song, Y. Interferon-γ secreted by recruited Th1 cells in peritoneal cavity inhibits the formation of malignant ascites. Cell Death Discov. 2023, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Löke, D.R.; Kok, H.P.; Helderman, R.F.C.P.A.; Bokan, B.; Franken, N.A.P.; Oei, A.L.; Tuynman, J.B.; Tanis, P.J.; Crezee, J. Application of HIPEC simulations for optimizing treatment delivery strategies. Int. J. Hyperth. 2023, 40, 2218627. [Google Scholar] [CrossRef] [PubMed]
- Helm, J.H.; Miura, J.T.; Glenn, J.A.; Marcus, R.K.; Larrieux, G.; Jayakrishnan, T.T.; Donahue, A.E.; Gamblin, T.C.; Turaga, K.K.; Johnston, F.M. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: A systematic review and meta-analysis. Ann. Surg. Oncol. 2015, 22, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Blackham, A.U.; Shen, P.; Stewart, J.H.; Russell, G.B.; Levine, E.A. Cytoreductive surgery with intraperitoneal hyperthermic chemotherapy for malignant peritoneal mesothelioma: Mitomycin versus cisplatin. Ann. Surg. Oncol. 2010, 17, 2720–2727. [Google Scholar] [CrossRef]
- Blackham, A.U.; Levine, E.A. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma. Eur. J. Clin. Med. Oncol. 2012, 4, 25. [Google Scholar]
- Votanopoulos, K.I.; Sugarbaker, P.; Deraco, M.; Morris, D.; Glehen, O.; Elias, D.; De Simone, M.; Robella, M.; Heyd, B.; Kusamura, S. Is cytoreductive surgery with hyperthermic intraperitoneal chemotherapy justified for biphasic variants of peritoneal mesothelioma? Outcomes from the peritoneal surface oncology group international registry. Ann. Surg. Oncol. 2018, 25, 667–673. [Google Scholar]
- Ansaloni, L.; Coccolini, F.; Morosi, L.; Ballerini, A.; Ceresoli, M.; Grosso, G.; Bertoli, P.; Busci, L.M.; Lotti, M.; Cambria, F. Pharmacokinetics of concomitant cisplatin and paclitaxel administered by hyperthermic intraperitoneal chemotherapy to patients with peritoneal carcinomatosis from epithelial ovarian cancer. Br. J. Cancer 2015, 112, 306. [Google Scholar] [CrossRef]
- Netti, P.A.; Berk, D.A.; Swartz, M.A.; Grodzinsky, A.J.; Jain, R.K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000, 60, 2497–2503. [Google Scholar] [PubMed]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Martin, J.D.; Cabral, H.; Stylianopoulos, T.; Jain, R.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 2020, 17, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V.P.; Jiang, W.; Popović, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W. Mathematical Modelling of Drug Delivery to Solid Tumour. Ph.D. Thesis, Imperial College London, London, UK, 2014. [Google Scholar]
- Hadjicharalambous, M.; Ioannou, E.; Aristokleous, N.; Gazeli, K.; Anastassiou, C.; Vavourakis, V. Combined anti-angiogenic and cytotoxic treatment of a solid tumour: In silico investigation of a xenograft animal model’s digital twin. J. Theor. Biol. 2022, 553, 111246. [Google Scholar] [CrossRef] [PubMed]
- Kalli, M.; Poskus, M.D.; Stylianopoulos, T.; Zervantonakis, I.K. Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer 2023, 9, 937–954. [Google Scholar] [CrossRef]
- Heldin, C.-H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Jain, R.K.; Langer, R. Engineering and physical sciences in oncology: Challenges and opportunities. Nat. Rev. Cancer 2017, 17, 659–675. [Google Scholar] [CrossRef]
- Steuperaert, M.; Debbaut, C.; Segers, P.; Ceelen, W. Modelling drug transport during intraperitoneal chemotherapy. Pleura Peritoneum 2017, 2, 73–83. [Google Scholar] [PubMed]
- Au, J.-S.; Jang, S.H.; Zheng, J.; Chen, C.-T.; Song, S.; Hu, L.; Wientjes, M.G. Determinants of drug delivery and transport to solid tumors. J. Control. Release 2001, 74, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Stylianopoulos, T.; Economides, E.-A.; Baish, J.W.; Fukumura, D.; Jain, R.K. Towards optimal design of cancer nanomedicines: Multi-stage nanoparticles for the treatment of solid tumors. Ann. Biomed. Eng. 2015, 43, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Souri, M.; Soltani, M.; Moradi Kashkooli, F. Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Sci. Rep. 2021, 11, 19539. [Google Scholar] [CrossRef] [PubMed]
- Moradi Kashkooli, F.; Soltani, M. Evaluation of solid tumor response to sequential treatment cycles via a new computational hybrid approach. Sci. Rep. 2021, 11, 1–15. [Google Scholar]
- Boucher, Y.; Baxter, L.T.; Jain, R.K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy. Cancer Res. 1990, 50, 4478–4484. [Google Scholar]
- Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors: III. Role of binding and metabolism. Microvasc. Res. 1991, 41, 5–23. [Google Scholar] [CrossRef]
- Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 1989, 37, 77–104. [Google Scholar] [CrossRef]
- Wang, C.-H.; Li, J. Three-dimensional simulation of IgG delivery to tumors. Chem. Eng. Sci. 1998, 53, 3579–3600. [Google Scholar] [CrossRef]
- Kashkooli, F.M.; Soltani, M.; Rezaeian, M.; Taatizadeh, E.; Hamedi, M.-H. Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor—Computational approach. Microvasc. Res. 2019, 123, 111–124. [Google Scholar] [CrossRef]
- Rezaeian, M.; Soltani, M.; Moradi Kashkooli, F. On the Modeling of Drug Delivery to Solid Tumors; Computational Viewpoint. In Proceedings of the International Conference on Applied Mathematics, Modeling and Computational Science, Waterloo, ON, Canada, 18–23 August 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 601–610. [Google Scholar]
- Au, J.L.-S.; Guo, P.; Gao, Y.; Lu, Z.; Wientjes, M.G.; Tsai, M.; Wientjes, M.G. Multiscale tumor spatiokinetic model for intraperitoneal therapy. AAPS J. 2014, 16, 424–439. [Google Scholar] [CrossRef] [PubMed]
- Baxter, L.T.; Jain, R.K. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 1990, 40, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Steuperaert, M.; Falvo D’Urso Labate, G.; Debbaut, C.; De Wever, O.; Vanhove, C.; Ceelen, W.; Segers, P. Mathematical modeling of intraperitoneal drug delivery: Simulation of drug distribution in a single tumor nodule. Drug Deliv. 2017, 24, 491–501. [Google Scholar] [CrossRef]
- Steuperaert, M.; Debbaut, C.; Carlier, C.; De Wever, O.; Descamps, B.; Vanhove, C.; Ceelen, W.; Segers, P. A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy. Drug Deliv. 2019, 26, 404–415. [Google Scholar] [CrossRef]
- Shamsi, M.; Sedaghatkish, A.; Dejam, M.; Saghafian, M.; Mohammadi, M.; Sanati-Nezhad, A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv. 2018, 25, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, M.; Sedaghatkish, A.; Soltani, M. Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Deliv. 2019, 26, 898–917. [Google Scholar] [CrossRef]
- Thurber, G.M.; Yang, K.S.; Reiner, T.; Kohler, R.H.; Sorger, P.; Mitchison, T.; Weissleder, R. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 2013, 4, 1504. [Google Scholar] [CrossRef]
- Jain, R.K. Transport of molecules in the tumor interstitium: A review. Cancer Res. 1987, 47, 3039–3051. [Google Scholar]
- Rezaeian, M.; Soltani, M.; Naseri Karimvand, A.; Raahemifar, K. Mathematical modeling of targeted drug delivery using magnetic nanoparticles during intraperitoneal chemotherapy. Pharmaceutics 2022, 14, 324. [Google Scholar] [CrossRef]
- Less, J.R.; Skalak, T.C.; Sevick, E.M.; Jain, R.K. Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions. Cancer Res. 1991, 51, 265–273. [Google Scholar]
- Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res. 1995, 55, 3752–3756. [Google Scholar] [PubMed]
- Curry, F.-R.E. Mechanics and thermodynamics of transcapillary exchante. Handb. Physiol. 1984, 2, 309–374. [Google Scholar]
- Jain, R.K. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 1997, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mpekris, F.; Baish, J.W.; Stylianopoulos, T.; Jain, R.K. Role of vascular normalization in benefit from metronomic chemotherapy. Proc. Natl. Acad. Sci. USA 2017, 114, 1994–1999. [Google Scholar] [CrossRef]
- Kerr, D.J.; Kerr, A.M.; Freshney, R.I.; Kaye, S.B. Delivery of molecular and cellular medicine to solid tumors. Biochem. Pharmacol. 1986, 35, 12817–12823. [Google Scholar]
- Chou, C.-Y.; Chang, W.-I.; Horng, T.-L.; Lin, W.-L. Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature. PLoS ONE 2017, 12, e0189802. [Google Scholar] [CrossRef]
- Jain, R.K.; Baxter, L.T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Res. 1988, 48, 7022–7032. [Google Scholar]
- Zhan, W.; Gedroyc, W.; Xu, X.Y. Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour. J. Phys. D Appl. Phys. 2014, 47, 475401. [Google Scholar] [CrossRef]
- Stylianopoulos, T.; Jain, R.K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637. [Google Scholar] [CrossRef]
- Zhan, W.; Xu, X.Y. A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J. Drug Deliv. 2013, 2013, 172529. [Google Scholar] [CrossRef]
- Roudnicky, F.; Yoon, S.Y.; Poghosyan, S.; Schwager, S.; Poyet, C.; Vella, G.; Bachmann, S.B.; Karaman, S.; Shin, J.W.; Otto, V.I. Alternative transcription of a shorter, non-anti-angiogenic thrombospondin-2 variant in cancer-associated blood vessels. Oncogene 2018, 37, 2573–2585. [Google Scholar] [CrossRef] [PubMed]
- Winner, K.R.K.; Steinkamp, M.P.; Lee, R.J.; Swat, M.; Muller, C.Y.; Moses, M.E.; Jiang, Y.; Wilson, B.S. Spatial modeling of drug delivery routes for treatment of disseminated ovarian cancer. Cancer Res. 2016, 76, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Sefidgar, M.; Soltani, M.; Raahemifar, K.; Sadeghi, M.; Bazmara, H.; Bazargan, M.; Naeenian, M.M. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc. Res. 2015, 99, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xu, S.; Wu, J.; Long, Q. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol. 2011, 279, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Huber, P.E.; Bischof, M.; Jenne, J.; Heiland, S.; Peschke, P.; Saffrich, R.; Gröne, H.-J.; Debus, J.; Lipson, K.E.; Abdollahi, A. Trimodal cancer treatment: Beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res. 2005, 65, 3643–3655. [Google Scholar] [CrossRef]
- Rezaeian, M.; Soltani, M. Computational modeling of intraperitoneal drug delivery for the treatment of peritoneal carcinomatosis. Amirkabir J. Mech. Eng. 2022, 54, 11. [Google Scholar]
- Butler, T.P.; Grantham, F.H.; Gullino, P.M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 1975, 35, 3084–3088. [Google Scholar]
Parameter | Definition | Unit | Value | Reference |
---|---|---|---|---|
S/V | The surface area of blood vessels per unit of tissue volume | m−1 | 2 × 104 | [49] |
Hydraulic conductivity of the interstitium | m2·Pa−1·s−1 | 3 × 10−14 | [50] | |
LP | Hydraulic conductivity of the micro-vascular wall | m·Pa−1·s−1 | 2.10 × 10−11 | [50] |
PB | Vascular fluid pressure | Pa | 2.1 × 103 | [50] |
πB | The osmotic pressure of the plasma | Pa | 2.7 × 103 | [50] |
πi | The osmotic pressure of the interstitial fluid | Pa | 2 × 103 | [50] |
σs | Average osmotic reflection coefficient for plasma proteins | - | 0.9 | [50] |
Deff | Effective diffusion coefficient | cm2·s−1 | 3.40 × 10−6 | [49,51] |
P | Microvessel permeability coefficient | cm·s−1 | 3.00 × 10−4 | [49,51] |
KON | Constant of binding rate | M−1·s−1 | 1.5 × 102 | [25,52] |
KOFF | Constant of unbinding rate | s−1 | 8 × 10−3 | [25,52] |
KINT | Constant of cell uptake rate | s−1 | 5 × 10−5 | [25,52] |
φ | Tumor volume fraction accessible to drugs | - | 0.3 | [53] |
Crec | Concentration of cell surface receptors | M | 10−5 | [25] |
ω | Cancer cell survival constant | m3·mol−1 | 0.6603 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaeian, M.; Heidari, H.; Raahemifar, K.; Soltani, M. Image-Based Modeling of Drug Delivery during Intraperitoneal Chemotherapy in a Heterogeneous Tumor Nodule. Cancers 2023, 15, 5069. https://doi.org/10.3390/cancers15205069
Rezaeian M, Heidari H, Raahemifar K, Soltani M. Image-Based Modeling of Drug Delivery during Intraperitoneal Chemotherapy in a Heterogeneous Tumor Nodule. Cancers. 2023; 15(20):5069. https://doi.org/10.3390/cancers15205069
Chicago/Turabian StyleRezaeian, Mohsen, Hamidreza Heidari, Kaamran Raahemifar, and Madjid Soltani. 2023. "Image-Based Modeling of Drug Delivery during Intraperitoneal Chemotherapy in a Heterogeneous Tumor Nodule" Cancers 15, no. 20: 5069. https://doi.org/10.3390/cancers15205069
APA StyleRezaeian, M., Heidari, H., Raahemifar, K., & Soltani, M. (2023). Image-Based Modeling of Drug Delivery during Intraperitoneal Chemotherapy in a Heterogeneous Tumor Nodule. Cancers, 15(20), 5069. https://doi.org/10.3390/cancers15205069