A Mouse-Specific Model to Detect Genes under Selection in Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source and Target Domains
2.2. Estimating Parameters of Long-Term Species Evolution for Mouse Genes
2.3. Estimating Parameters of Short-Term Somatic Evolution in Mouse Tumors
2.4. Extracting Features Describing Mutation Distribution
2.5. Refining the Random Forest Classifier
2.6. Evaluation of GUST-Mouse Performance
3. Results
3.1. Human Genes and Mouse Genes Showed Similar Distributions of Evolutionary Parameters
3.2. Unsupervised Euclidean Distance Was a Good Proxy of Supervised Splitting Index
3.3. Adapted Random Forest Classifier Predicted Driver Genes in Mouse Tumors
3.4. Comparison between Cancer Types Revealed Common and Unique Drivers
3.5. Human–Mouse Comparisons
3.6. Comparison with the 20/20 Rule
3.7. Classifying Driver Genes in Tumors with Low Mutation Rates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frese, K.K.; Tuveson, D.A. Maximizing mouse cancer models. Nat. Rev. Cancer 2007, 7, 654–658. [Google Scholar] [CrossRef]
- Sneddon, S.; Patch, A.-M.; Dick, I.M.; Kazakoff, S.; Pearson, J.V.; Waddell, N.; Allcock, R.J.N.; Holt, R.A.; Robinson, B.W.S.; Creaney, J. Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma. BMC Cancer 2017, 17, 396. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Murphy, B.L.; Wu, G.; Parker, M.; Easton, J.; Gilbertson, R.J.; Zhang, J.; Roussel, M.F. Exome sequencing analysis of murine medulloblastoma models identifies WDR11 as a potential tumor suppressor in Group 3 tumors. Oncotarget 2017, 8, 64685–64697. [Google Scholar] [CrossRef]
- Dow, M.; Pyke, R.M.; Tsui, B.Y.; Alexandrov, L.B.; Nakagawa, H.; Taniguchi, K.; Seki, E.; Harismendy, O.; Shalapour, S.; Karin, M.; et al. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 2018, 115, E9879–E9888. [Google Scholar] [CrossRef]
- Lee, C.L.; Brock, K.D.; Hasapis, S.; Zhang, D.; Sibley, A.B.; Qin, X.; Gresham, J.S.; Caraballo, I.; Luo, L.; Daniel, A.R.; et al. Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. Cancer Res. 2021, 81, 3777–3790. [Google Scholar] [CrossRef]
- Lyu, J.; Li, J.J.; Su, J.; Peng, F.; Chen, Y.E.; Ge, X.; Li, W. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features. Sci. Adv. 2020, 6, eaba6784. [Google Scholar] [CrossRef]
- Chandrashekar, P.; Ahmadinejad, N.; Wang, J.; Sekulic, A.; Egan, J.B.; Asmann, Y.W.; Kumar, S.; Maley, C.; Liu, L. Somatic selection distinguishes oncogenes and tumor suppressor genes. Bioinformatics 2019, 36, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Ahmadinejad, N.; Troftgruben, S.; Wang, J.; Chandrashekar, P.B.; Dinu, V.; Maley, C.; Liu, L. Accurate Identification of Subclones in Tumor Genomes. Mol. Biol. Evol. 2022, 39, msac136. [Google Scholar] [CrossRef] [PubMed]
- Buisson, R.; Langenbucher, A.; Bowen, D.; Kwan, E.E.; Benes, C.H.; Zou, L.; Lawrence, M.S. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 2019, 364, eaaw2872. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.M.; Bernards, A.; Kim, J.; Miller, M.; Taylor-Weiner, A.; Haradhvala, N.J.; Lawrence, M.S.; Getz, G. Passenger Hotspot Mutations in Cancer. Cancer Cell 2019, 36, 288–301.e14. [Google Scholar] [CrossRef]
- Trevino, V. HotSpotAnnotations-a database for hotspot mutations and annotations in cancer. Database 2020, 2020, baaa025. [Google Scholar] [CrossRef] [PubMed]
- Khalighi, S.; Singh, S.; Varadan, V. Untangling a complex web: Computational analyses of tumor molecular profiles to decode driver mechanisms. J. Genet. Genom. 2020, 47, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Futreal, P.A.; Coin, L.; Marshall, M.; Down, T.; Hubbard, T.; Wooster, R.; Rahman, N.; Stratton, M.R. A census of human cancer genes. Nat. Rev. Cancer 2004, 4, 177–183. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Arnold, A.; Nallapati, R.; Cohen, W.W. A comparative study of methods for transductive transfer learning. In Proceedings of the Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), Omaha, NE, USA, 28–31 October 2007. [Google Scholar]
- Kho, A.T.; Zhao, Q.; Cai, Z.; Butte, A.J.; Kim, J.Y.; Pomeroy, S.L.; Rowitch, D.H.; Kohane, I.S. Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. J. Bone Jt. Surg. 2004, 18, 629–640. [Google Scholar] [CrossRef]
- Guan, X.; Runger, G.; Liu, L. Dynamic incorporation of prior knowledge from multiple domains in biomarker discovery. BMC Bioinform. 2020, 21 (Suppl. S2), 77. [Google Scholar] [CrossRef]
- Kumar, S.; Sanderford, M.; E Gray, V.; Ye, J.; Liu, L. Evolutionary diagnosis method for variants in personal exomes. Nat. Methods 2012, 9, 855–856. [Google Scholar] [CrossRef]
- Martincorena, I.; Raine, K.M.; Gerstung, M.; Dawson, K.J.; Haase, K.; Van Loo, P.; Davies, H.; Stratton, M.R.; Campbell, P.J. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 2017, 171, 1029–1041.e21. [Google Scholar] [CrossRef]
- Greenman, C.; Wooster, R.; Futreal, P.A.; Stratton, M.R.; Easton, D.F. Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 2006, 173, 2187–2198. [Google Scholar] [CrossRef]
- Segev, N.; Harel, M.; Mannor, S.; Crammer, K.; El-Yaniv, R. Learn on source, refine on target: A model transfer learning framework with random forests. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1811–1824. [Google Scholar] [CrossRef]
- Liu, X.; Song, M.; Tao, D.; Liu, Z.; Zhang, L.; Chen, C.; Bu, J. Semi-supervised node splitting for random forest construction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Kuhn, R.M.; Haussler, D.; Kent, W.J. The UCSC genome browser and associated tools. Briefings Bioinform. 2012, 14, 144–161. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Ross, C.; Szczepanek, K.; Lee, M.; Yang, H.; Qiu, T.; Sanford, J.D.; Hunter, K. The genomic landscape of metastasis in treatment-naive breast cancer models. PLOS Genet. 2020, 16, e1008743. [Google Scholar] [CrossRef]
- Liu, L.; Kumar, S. Evolutionary balancing is critical for correctly forecasting disease-associated amino acid variants. Mol. Biol. Evol. 2013, 30, 1252–1257. [Google Scholar] [CrossRef]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef]
- Guy, C.T.; Cardiff, R.D.; Muller, W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell. Biol. 1992, 12, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.J.; Arteaga, C.L.; Muthuswamy, S.K.; Siegel, P.M.; Webster, M.A.; Cardiff, R.D.; Meise, K.S.; Li, F.; Halter, S.A.; Coffey, R.J. Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell. Biol. 1996, 16, 5726–5736. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; Slape, C.; Zhang, Z.; Aplan, P.D. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 2005, 106, 287–295. [Google Scholar] [CrossRef]
- Cai, W.; Chen, Z.X.; Rane, G.; Singh, S.S.; Choo, Z.; Wang, C.; Yuan, Y.; Tan, T.Z.; Arfuso, F.; Yap, C.T.; et al. Wanted DEAD/H or Alive: Helicases Winding Up in Cancers. JNCI J. Natl. Cancer Inst. 2017, 109, djw278. [Google Scholar] [CrossRef] [PubMed]
- Salati, S.; Zini, R.; Nuzzo, S.; Guglielmelli, P.; Pennucci, V.; Prudente, Z.; Ruberti, S.; Rontauroli, S.; Norfo, R.; Bianchi, E.; et al. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis. Int. J. Cancer 2015, 138, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.A.; Corchete, L.A.; Mateos, M.V.; García-Sanz, R.; Misiewicz-Krzeminska, I.; Gutiérrez, N.C. Transcriptome analysis reveals significant differences between primary plasma cell leukemia and multiple myeloma even when sharing a similar genetic background. Blood Cancer J. 2019, 9, 90. [Google Scholar] [CrossRef]
- Ye, H.; Duan, M. FOXN2 is downregulated in breast cancer and regulates migration, invasion, and epithelial- mesenchymal transition through regulation of SLUG. Cancer Manag. Res. 2019, 11, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Taneja, P.; Frazier, D.P.; Kendig, R.D.; Maglic, D.; Sugiyama, T.; Kai, F.; Taneja, N.K.; Inoue, K. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev. Mol. Diagn. 2009, 9, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Gaibar, M.; Beltran, L.; Romero-Lorca, A.; Fernandez-Santander, A.; Novillo, A. Somatic Mutations in HER2 and Implications for Current Treatment Paradigms in HER2-Positive Breast Cancer. J. Oncol. 2020, 2020, 375956. [Google Scholar] [CrossRef]
- Li, X.; Hu, Y. Attribution of NF-kappaB Activity to CHUK/IKKalpha-Involved Carcinogenesis. Cancers 2021, 13, 1411. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hwang, Y.K.; Choi, Y.J.; Yoo, K.E.; Kim, J.H.; Nam, S.J.; Yang, J.H.; Lee, S.J.; Yoo, K.H.; Sung, K.W.; et al. Neuronal apoptosis inhibitory protein is overexpressed in patients with unfavorable prognostic factors in breast cancer. J. Korean Med. Sci. 2007, 22, S17–S23. [Google Scholar] [CrossRef]
- Raspin, K.; Marthick, J.R.; Donovan, S.; Blizzard, L.; Malley, R.C.; Jung, C.; Banks, A.; Redwig, F.; Skala, M.; Dickinson, J.L.; et al. Identification of a novel recurrent EEF2 gene amplification in familial prostate tumors. Genes Chromosom. Cancer 2022, 62, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Oji, Y.; Tatsumi, N.; Fukuda, M.; Nakatsuka, S.-I.; Aoyagi, S.; Hirata, E.; Nanchi, I.; Fujiki, F.; Nakajima, H.; Yamamoto, Y.; et al. The translation elongation factor eEF2 is a novel tumor-associated antigen overexpressed in various types of cancers. Int. J. Oncol. 2014, 44, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Wu, X.; Simon, N.; Svensson, C.I.; Yuan, J.; Hart, D.A.; Ahmed, A.S.; Ackermann, P.W. eEF2 improves dense connective tissue repair and healing outcome by regulating cellular death, autophagy, apoptosis, proliferation and migration. Cell. Mol. Life Sci. 2023, 80, 128. [Google Scholar] [CrossRef]
- Shi, N.; Chen, X.; Liu, R.; Wang, D.; Su, M.; Wang, Q.; He, A.; Gu, H. Eukaryotic elongation factors 2 promotes tumor cell proliferation and correlates with poor prognosis in ovarian cancer. Tissue Cell 2018, 53, 53–60. [Google Scholar] [CrossRef]
- Smolag, K.I.; Mueni, C.M.; Leandersson, K.; Jirström, K.; Hagerling, C.; Mörgelin, M.; Barlow, P.N.; Martin, M.; Blom, A.M. Complement inhibitor factor H expressed by breast cancer cells differentiates CD14(+) human monocytes into immunosuppressive macrophages. OncoImmunology 2020, 9, 1731135. [Google Scholar] [CrossRef]
- Yang, B.; Lin, S.-J.; Ren, J.-Y.; Liu, T.; Wang, Y.-M.; Li, C.-M.; Xu, W.-W.; He, Y.-W.; Zheng, W.-H.; Zhao, J.; et al. Molecular Docking and Molecular Dynamics (MD) Simulation of Human Anti-Complement Factor H (CFH) Antibody Ab42 and CFH Polypeptide. Int. J. Mol. Sci. 2019, 20, 2568. [Google Scholar] [CrossRef]
- Yousefi, H.; Vatanmakanian, M.; Mahdiannasser, M.; Mashouri, L.; Alahari, N.V.; Monjezi, M.R.; Ilbeigi, S.; Alahari, S.K. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021, 40, 1043–1063. [Google Scholar] [CrossRef] [PubMed]
- Wafai, R.; Williams, E.D.; de Souza, E.; Simpson, P.T.; Reed, A.E.M.; Kutasovic, J.R.; Waltham, M.; Snell, C.E.; Blick, T.; Thompson, E.W.; et al. Integrin alpha-2 and beta-1 expression increases through multiple generations of the EDW01 patient-derived xenograft model of breast cancer-insight into their role in epithelial mesenchymal transition in vivo gained from an in vitro model system. Breast Cancer Res. 2020, 22, 136. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.E.; Anatskaya, O.V. Gene Golden Age paradox and its partial solution. Genomics 2019, 111, 115–126. [Google Scholar] [CrossRef]
- Chavdoula, E.; Habiel, D.M.; Roupakia, E.; Markopoulos, G.S.; Vasilaki, E.; Kokkalis, A.; Polyzos, A.P.; Boleti, H.; Thanos, D.; Klinakis, A.; et al. CHUK/IKK-alpha loss in lung epithelial cells enhances NSCLC growth associated with HIF up-regulation. Life Sci. Alliance 2019, 2, e201900460. [Google Scholar] [CrossRef] [PubMed]
- Prunier, C.; Chavrier, P.; Boissan, M. Mechanisms of action of NME metastasis suppressors-a family affair. Cancer Metastasis Rev. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.; Ge, Y.; Ye, M.; Jin, X. Siah1 in cancer and nervous system diseases (Review). Oncol. Rep. 2021, 47, 35. [Google Scholar] [CrossRef]
- McFadden, D.G.; Politi, K.; Bhutkar, A.; Chen, F.K.; Song, X.; Pirun, M.; Santiago, P.M.; Kim-Kiselak, C.; Platt, J.T.; Lee, E.; et al. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma. Proc. Natl. Acad. Sci. USA 2016, 113, E6409–E6417. [Google Scholar] [CrossRef]
- Casas-Selves, M.; Degregori, J. How cancer shapes evolution, and how evolution shapes cancer. Evol. Educ. Outreach 2011, 4, 624–634. [Google Scholar] [CrossRef]
- Kumar, S.; Dudley, J.T.; Filipski, A.; Liu, L. Phylomedicine: An evolutionary telescope to explore and diagnose the universe of disease mutations. Trends Genet. 2011, 27, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Seung, B.J.; Kim, D.; Park, H.M.; Lee, S.; Song, D.W.; Lee, G.; Cheong, J.H.; Nam, H.; Sur, J.H.; et al. Whole-exome and whole-transcriptome sequencing of canine mammary gland tumors. Sci. Data 2019, 6, 147. [Google Scholar] [CrossRef] [PubMed]
Symbol | log(ω) | log(φ) | Class | Prob. | Symbol | log(ω) | log(φ) | Class | Prob. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
mmLKM | Ddx42 | 5 | −5 | OG | 0.995 | mmBRCA(PyMT) | Macroh2a2 | 5 | −5 | OG | 0.992 |
Zcchc4 | 5 | −5 | OG | 0.995 | Ybx1 | 5 | −5 | OG | 0.985 | ||
Riox2 | 5 | −4.99 | OG | 0.99 | Fbxo5 | 5 | −5 | OG | 0.98 | ||
Trav7-6 | 5 | −4.99 | OG | 0.98 | Nudt15 | 5 | −4.61 | OG | 0.975 | ||
Ubqln5 | 5 | −4.6 | OG | 0.98 | Fam205c | 5 | −5 | OG | 0.97 | ||
Cyp2u1 | 5 | −5 | OG | 0.965 | Cfhr4 | 5 | −5 | OG | 0.97 | ||
Pram1 | 5 | −5 | OG | 0.952 | Sbpl | 5 | −5 | OG | 0.97 | ||
Tbc1d2b | 5 | −5 | OG | 0.952 | Marchf5 | 5 | −5 | OG | 0.967 | ||
Dpagt1 | 5 | −5 | OG | 0.937 | Itgad | 5 | −5 | OG | 0.965 | ||
Eef2 | 5 | −5 | OG | 0.847 | Glul | 5 | −5 | OG | 0.957 | ||
Ankrd13a | 5 | −5 | OG | 0.839 | Kng2 | 5 | −5 | OG | 0.942 | ||
Gcgr | 5 | −5 | OG | 0.819 | Zfp970 | 5 | −5 | OG | 0.879 | ||
Sult2a6 | 5 | −5 | OG | 0.819 | Psg21 | 5 | −5 | OG | 0.847 | ||
Zfp987 | 5 | −5 | OG | 0.819 | Trim43b | 5 | −5 | OG | 0.847 | ||
Prl2c1 | −5 | 5 | TSG | 0.862 | Sh2d1b1 | 5 | −4.99 | OG | 0.847 | ||
mmBRCA(Her2) | H2-K1 | 5 | −4.98 | OG | 0.98 | Rbbp5 | 5 | −5 | OG | 0.809 | |
Pcdhb18 | 5 | −4.98 | OG | 0.97 | Ivl | 5 | −5 | OG | 0.809 | ||
Sap30bp | 5 | −5 | OG | 0.967 | Nup93 | 5 | −5 | OG | 0.809 | ||
Ube2q2 | 5 | −5 | OG | 0.965 | Plscr1 | 5 | −5 | OG | 0.809 | ||
Olfr213 | 5 | −4.99 | OG | 0.942 | Olfr380 | 5 | −5 | OG | 0.802 | ||
Trav14-1 | 5 | −5 | OG | 0.942 | Ugt1a10 | 5 | −5 | OG | 0.802 | ||
Naip2 | 5 | −5 | OG | 0.937 | Arcn1 | 2.76 | 5 | TSG | 0.932 | ||
AY358078 | 5 | −5 | OG | 0.852 | Vmn2r28 | 2.92 | 5 | TSG | 0.917 | ||
Gm14443 | 5 | −5 | OG | 0.852 | Calr | −5 | 5 | TSG | 0.91 | ||
Pdcd10 | 5 | −5 | OG | 0.847 | Cd244a | −2.1 | 5 | TSG | 0.91 | ||
Ss18 | 5 | −5 | OG | 0.834 | Ptpdc1 | 5 | 3.54 | TSG | 0.892 | ||
Bud31 | 5 | −5 | OG | 0.822 | Foxn2 | −5 | 3.54 | TSG | 0.892 | ||
Klra9 | 5 | −5 | OG | 0.809 | Ugcg | −2.1 | 5 | TSG | 0.877 | ||
Cdk8 | 5 | 3.55 | TSG | 0.859 | Coq2 | 0.79 | 3.41 | TSG | 0.842 | ||
Chuk | 2.67 | 5 | TSG | 0.859 | Gcsh | −5 | 5 | TSG | 0.842 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Shu, J.; Maley, C.C.; Liu, L. A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers 2023, 15, 5156. https://doi.org/10.3390/cancers15215156
Chen H, Shu J, Maley CC, Liu L. A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers. 2023; 15(21):5156. https://doi.org/10.3390/cancers15215156
Chicago/Turabian StyleChen, Hai, Jingmin Shu, Carlo C. Maley, and Li Liu. 2023. "A Mouse-Specific Model to Detect Genes under Selection in Tumors" Cancers 15, no. 21: 5156. https://doi.org/10.3390/cancers15215156
APA StyleChen, H., Shu, J., Maley, C. C., & Liu, L. (2023). A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers, 15(21), 5156. https://doi.org/10.3390/cancers15215156