Next Article in Journal
Potential Impact of PI3K-AKT Signaling Pathway Genes, KLF-14, MDM4, miRNAs 27a, miRNA-196a Genetic Alterations in the Predisposition and Progression of Breast Cancer Patients
Previous Article in Journal
Micro-Ultrasound: Current Role in Prostate Cancer Diagnosis and Future Possibilities
Previous Article in Special Issue
CK2-Mediated Phosphorylation Upregulates the Stability of USP13 and Promotes Ovarian Cancer Cell Proliferation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes

Section of Benign Hematology, Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
*
Author to whom correspondence should be addressed.
Cancers 2023, 15(4), 1282; https://doi.org/10.3390/cancers15041282
Submission received: 13 January 2023 / Revised: 7 February 2023 / Accepted: 13 February 2023 / Published: 17 February 2023
(This article belongs to the Special Issue Cell Stress, Metabolism, Tumor Microenvironment in Ovarian Cancer)

Abstract

:

Simple Summary

Despite initially responding to treatment, many ovarian cancers recur because of tumor cell heterogeneity, chemoresistance, and the cancer-promoting and immunosuppressive tumor microenvironment. Recurrent tumors account for the reduced overall and progression-free survival of patients with ovarian cancer. Ovarian cancer is commonly accompanied by thrombocytosis and thrombotic events, which implies that platelets may participate in cancer progression via their association with cancer cells and the tumor microenvironment. This review focuses on platelets’ interactions with cellular and acellular components of the tumor microenvironment, including endothelial cells, mesenchymal stem cells, adipocytes, pericytes, immune cells, and extracellular matrix elements, and discusses how these interactions support the proliferation and metastasis of ovarian cancer cells. It also provides an overview of potential therapeutic strategies that obstruct platelets’ protumor effects by reprogramming the tumor microenvironment.

Abstract

Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.

1. Introduction

Ovarian cancer is the fifth most common cause of death among women and the most lethal gynecological malignancy in the United States [1]. Epithelial ovarian cancer, which accounts for 90% of ovarian cancers, is further categorized into serous, endometrioid, mucinous, and clear cell types, in addition to other rare or non-specified subgroups [2]. The most prevalent type of epithelial ovarian cancer, high-grade serous ovarian cancer (HGSOC), originates in the fallopian tubes or ovarian surface epithelium and disseminates to the ovaries and peritoneum [3]. HGSOC, which carries a poor prognosis, is often aggressive, diagnosed in its late stages, and has a high capacity for metastasis and ascites formation [2]. Non-epithelial ovarian cancers (e.g., germ cell and sex cord–stromal) constitute approximately 10% of all ovarian cancers and are generally less aggressive than epithelial ovarian cancer [4]. Risk factors for ovarian cancer include genetic alterations, including germline mutations of breast cancer genes 1 and 2 (BRCA1 and BRCA2) [5] and alternative mutations of DNA damage repair-associated genes such as BRIP1, RAD51, and ATM/ATR [6,7]; Lynch syndrome [8]; and various environmental factors such as hormone replacement therapy [9], not giving birth and/or not breastfeeding [10], being overweight [11], and frequent tobacco smoking [12]. The conventional therapy for ovarian cancer is surgical excision of the tumor along with neoadjuvant or adjuvant platinum- or taxane-based chemotherapy [13]. Additional treatments include using agents that target proangiogenic factors, poly (ADP-ribose) polymerase (PARP), and immune system components [3].
Despite marked improvements in the efficacy of treatments, ovarian cancer is associated with high mortality because of late diagnosis due to its anatomical location and mostly indistinguishable symptoms, high recurrence rate [2], primary or acquired resistance to chemotherapy [3,4], and tumor heterogeneity [5]. Thus, more specific and effective approaches are in demand to inhibit tumor growth and prolong patient progression-free survival and overall survival. Because the tumor microenvironment (TME) is a principal contributor to cancer progression and poor therapeutic response [6,7], targeting TME components holds excellent potential for more effective cancer management.
The TME comprises cancer cells; cancer stem cells (CSCs); stromal cells such as fibroblasts; endothelial cells; immune cells; and proteins of the extracellular matrix (ECM) such as collagen and fibronectin [8]. Crosstalk among these components constitutes a complex signaling network that promotes malignancy and metastasis [9]. Accumulating evidence indicates that TME has a role in the development and progression of ovarian cancer [10,11], and many studies manipulate TME in the treatment of ovarian cancer [12,13].
One of the components of TME in ovarian cancer is extravasated platelets [14,15]. Membrane proteins on activated platelets, including P-selectin [16], GPIbα [17], GPIIb/IIIa [18], and C-type lectin-like receptor 2 (CLEC-2) [19], mediate the binding of platelets to various elements in the TME. The released contents of granules from activated platelets, such as growth hormones [20], cytokines [21], and chemokines [22], also affect the TME. Additionally, platelet microparticles [23], mitochondria [24], and nucleic acids [25,26] can reshape the TME response in cancer. The major molecules on platelets or in their granules are listed in Table 1. We also summarize the protumorigenic and antitumorigenic influences of various platelet-associated molecules in the TME in Table 2. The interactions between platelets and the TME components of ovarian cancer are illustrated in Figure 1.
Healthy individuals have platelet counts of between 150,000 and 450,000 per microliter of blood. In contrast, roughly one-third of newly diagnosed ovarian cancer patients have platelet counts exceeding 450,000 per microliter [27]. In patients with ovarian cancer, thrombocytosis is an adverse prognostic factor associated with elevated serum carcinoma antigen 125 (CA-125) levels, advanced disease stage, and poor clinical outcomes [27,28], as well as the diminished efficacy of secondary cytoreductive surgery [29] and chemotherapy [30]. Aside from contributing to the formation of venous thromboembolisms, platelets contribute to cancer progression via distinct mechanisms, including increasing proliferation [31], epithelial–mesenchymal transition (EMT) [32], and anoikis resistance in cancer cells [33]; promoting the formation of the premetastatic niche and metastasis [33]; enhancing angiogenesis [27] and the integrity of tumor vasculature [34]; inducing immune tolerance [35]; and reducing the impact of chemotherapy [30].
Table 1. The major components reside on activated platelets or are released from platelet granules.
Table 1. The major components reside on activated platelets or are released from platelet granules.
LocationGeneral FunctionExamplesReferences
Surface
molecules
Integrinsα2β1 (GPIa/IIa), α5β1, α6β1, αLβ2 (ICAM-2), αIIbβ3 (GPIIb/IIIa), αVβ3[36]
SelectinsP-selectin (CD62P), CLEC-2[37,38]
Leucine-rich repeat
receptors
GPIb-IX-V, TLR1, TLR2, TLR4, TLR6, MMPs[36,39,40]
ADP receptorsP2Y1, P2Y12[41]
Thrombin receptorsPAR1, PAR4, GPIbα[42,43]
TetraspaninsCD63, CD9, CD53[36]
Prostaglandin receptorsPGD2 and PGE2 receptors[44]
Prostacyclin receptorsPGI2 receptors[44]
Thromboxane receptorsTxA2 receptors[45]
Lipid receptorsPAF and LPA receptors[46,47]
Ig receptorsGPVI, FcγRIIA (CD32), FcεRI (CD23)[48,49]
JAMsJAM-1, JAM-2, JAM-3, PECAM-1 (CD31)[50,51]
Tyrosine kinase receptorsThrombopoietin, leptin, insulin, PDGF receptors[36]
Immune checkpointsPD-L1, GITRL, OX40L[52,53,54]
Other receptorsSerotonin receptors, GPIV (CD36), IAP (CD47)
complement receptors, CD40, CD40L (CD154)
[55,56,57,58,59]
α-granulesAdhesion moleculesvWF, αIIbβ3 (GPIIb/IIIa), αVβ3, P-selectin (CD62P), fibrinogen, fibronectin, thrombospondin[36,60,61]
Proangiogenic factorsVEGF, angiopoietin-1, SDF-1 (CXCL12), S1P, TGF-β, IL-6, PF4 (CXCL4)[61]
Angiostatic factorsEndostatin, angiostatin, thrombospondin-1[56,61]
Growth factorsVEGF, PDGF, EGF, FGF, HGF, IGF-1, CTGF, TGF-β[61,62,63,64]
Coagulation-associated componentsProthrombin, fibrinogen, factor V, factor VIII,
factor XI, protein S
[61,65,66]
Fibrinolytic factorsα2-macroglobulin, uPA, PAI-1[61]
MMPsMMP-1, MMP-2, MMP-3, MMP-9[67,68]
MetalloproteinasesADAM-10, ADAM-17, ADAMTS-13[69]
TIMPsTIMP-1, TIMP-2, TIMP-4[69]
Inflammamodulatory moleculesCXCL1, PF4 (CXCL4), CXCL5, CXCL7 (NAP-2), IL-1β, IL-6, IL-8 (CXCL8), SDF-1 (CXCL12), CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CCL7, PAF, LPA, TGF-β,
TNF-α, GM-CSF
[61,70,71,72,73,74,75]
Immunologic moleculesComplement factors, IgG, IgA, IgM, thymosin-β4[61,76,77,78]
Other componentsAlbumin, α1-antitrypsin,
HMWK
[61]
δ-granulesNucleotidesADP, ATP, GDP, GTP[79]
Bioactive aminesSerotonin, histamine, epinephrine[60]
IonsCalcium, magnesium, phosphate, pyrophosphate[61]
PolyphosphatesPolyphosphate (polyP)[60]
LysosomesProteasesCathepsin D/E, carboxypeptidase A/B, glycohydrolases, collagenase, elastase[79,80]
PhosphatasesAcid phosphatase[79]
PhospholipasesPhospholipase A[61]
ADAM: a disintegrin and metalloproteinase; CCL: chemokine (C-C motif) ligand; CD40L: CD40 ligand; CLEC-2: C-type lectin-like receptor 2; CTGF: connective tissue growth factor; CXCL: chemokine (C-X-C motif) ligand; EGF: epidermal growth factor; FGF: fibroblast growth factor; GITRL: glucocorticoid-induced tumor necrosis factor receptor-related protein ligand; GM-CSF: granulocyte-monocyte colony-stimulating factor; GP: glycoprotein; HGF: hepatocyte growth factor; HMWK: high-molecular-weight kininogen; IAP: integrin-associated protein; ICAM-2: intercellular adhesion molecule 2; Ig: immunoglobulin; IGF-1: insulin-like growth factor 1; IL: interleukin; JAM: junctional adhesion molecule; LPA: lysophosphatidic acid; MCP-1: monocyte chemoattractant protein 1; MIP: migration inhibitory protein; MMP: matrix metalloproteinase; NAP-2: neutrophil-activating peptide 2; PAF: platelet-activating factor; PAI-1: plasminogen activator inhibitor 1; PAR: protease-activated receptor; PD-L1: programmed death ligand 1; PDGF: platelet-derived growth factor; PECAM-1: platelet endothelial cell adhesion molecule 1; PF4: platelet factor 4; PGD2: prostaglandin D2; PGE2: prostaglandin E2; PGI2: prostaglandin I2; polyP: polyphosphate; RANTES: regulated upon activation and normal T cell expressed and secreted; S1P: sphingosine 1-phosphate; SDF-1: stromal-derived factor 1; TGF-β: transforming growth factor-beta; TIMP: tissue inhibitor of metalloproteinases; TLR: Toll-like receptor; TNF-α: tumor necrosis factor-alpha; TxA2: thromboxane A2; uPA: urokinase-type plasminogen; VEGF: vascular endothelial growth factor; vWF: von Willebrand factor.
This review focuses on the interactions between platelets and TME components, the contribution of these interactions to the progression of ovarian cancer, and the plausible approaches to interrupting this interwork to improve the prognosis of patients with ovarian cancer.

2. Interactions of Platelets with TME Compartments: Endothelial Cells, Pericytes, and Cancer-Associated Fibroblasts

2.1. Interactions with Endothelial Cells

2.1.1. In Angiogenesis

Tumor angiogenesis involves degradation of the vascular endothelial matrix, the proliferation and migration of endothelial cells, the branching of endothelial cells to generate vascular rings, and the establishment of new basement membranes [81]. Tumor blood vessels, which tend to be erratic, branched, and leaky, are dissimilar to normal blood vessels in terms of shape, integrity, and permeability. Moreover, perivascular cells are reduced in number and are less likely to be associated with endothelial cells [82,83]. Blood flow in tumor-associated vessels is inconsistent and may lead to maladjusted circulation [82,84]. Consequently, tumors cannot receive adequate oxygen and nutrients, and discharge excess carbon dioxide and other metabolites generated by the glycolytic pathway. The TME becomes more hypoxic, acidic, and ischemic [85]. In addition, the hyperpermeability of the tumor vasculature enhances extravascular clotting, fibrin gel clot formation, and endothelial and stromal cell expansion [86]. Angiogenesis is a poor prognostic factor in ovarian cancer [87], and antiangiogenic therapeutics demonstrate a moderate effect on overall and progression-free survival [88,89].
Platelets preferentially attach to tumor-associated vessels rather than normal vasculature, amplifying the delivery of tumorigenic mediators to the TME [90]. Tumor cell-induced platelet activation (TCIPA) leads to the translocation of P-selectin (also known as CD62P), a cell adhesion molecule stored in the α-granules [37], to the platelet surface. The binding of P-selectin to the P-selectin glycoprotein ligand (PSGL-1) on leukocytes governs leukocyte rolling in activated endothelial cells [91] and the generation of platelet—cancer cell complexes [92]. Adhesion molecules, including integrins, von Willebrand factor (vWF), fibrinogen, fibronectin, and coagulation factors, and several members of the a disintegrin and metalloproteinase (ADAM) protein family accommodate the activation, tethering, rolling, and firm adhesion of platelets to endothelial cells [93]. Activated platelets degranulate and release various factors that affect angiogenesis. More than 30 components associated with platelets that influence angiogenesis have been described [94]. Platelets generate angiostatic factors such as endostatin, angiostatin, and thrombospondin-1 (TSP-1), and angiogenic factors including vascular endothelial growth factor (VEGF), angiopoietin-1, stromal-derived factor 1 (SDF-1, also known as the chemokine (C-X-C motif) ligand [CXCL]12), sphingosine 1-phosphate (S1P), transforming growth factor-beta (TGF-β), interleukin (IL)-6, and platelet factor 4 (PF4; also known as CXCL4) [61]. Platelet-derived growth factor (PDGF) supports the function of cancer-associated fibroblasts (CAFs), vascular pericytes, and smooth muscle cells in angiogenesis [95]. Platelets also support the recruitment of endothelial progenitor cells (EPCs) [96]. Platelet integrin GPIIb/IIIa promotes endothelial cell proliferation and function [97]. The activation of platelets and the release of their granular content, such as angiopoietin-1 and serotonin, prevent intratumoral bleeding [98]. ATP released from the δ-granules of platelets activates endothelial P2Y2 receptors, causing the retraction of endothelial cells and promoting the transendothelial migration of cancer cells (intravasation and extravasation) and metastasis [99]. Platelet microparticles increase the expression of matrix metalloproteinases (MMPs) on endothelial cells [100], assisting in the generation of new vessels [61].
The co-localization of GPIIb (CD41), platelet endothelial cell adhesion molecule-1 (PECAM-1; also known as CD31), and VEGF in ovarian cancer tissues suggests the involvement of platelets in angiogenesis and tumor growth [101]. An increased level of VEGF can be considered a biomarker of ovarian cancer [102] and an indicator of advanced disease, ascites formation, metastasis, and reduced survival [103,104]. Moreover, the levels of PDGF-BB and VEGF were found to be positively correlated in the TME and ascites, and the pharmacological inhibition of their receptors increased the efficacy of chemotherapy in patients with ovarian cancer [105]. The co-localization of regulator of G-protein signaling 5 (RGS5), a signal transduction molecule upregulated in endothelial cells in the TME, with PECAM-1 and PDGF receptor (PDGFR)-β, has been reported in various types of cancer, including ovarian cancer [106]. The participation of activated platelets in angiogenesis is displayed in Figure 2.
Platelet GPIb-IX receptor complex, a receptor for vWF, and GPIIb/IIIa, the receptor for fibrinogen, promote platelet aggregation [107] and adhesion to endothelial cells. Additionally, platelet P-selectin and GPIIb assist in the adhesion of platelets to cancer cells. Hence, platelets assist in the clinging of cancer cells to the endothelium and metastasis [108,109]. Targeting platelet surface proteins might show therapeutic benefits in cancer. Antiplatelet agent-directed platelet inhibition diminishes the proliferative capability of ovarian cancer cells [31]. In addition, focal adhesion kinase (FAK) promotes platelet infiltration into the TME, and targeting FAK suppresses ovarian tumor growth. Dual therapy using antiplatelet agents and antiangiogenic drugs prevents rebound tumor growth after discontinuing antiangiogenic agents [20].

2.1.2. In Lymphangiogenesis

Lymphangiogenesis is the formation of new lymphatic vessels and occurs during embryonic development and in pathological conditions involving inflammation and tumor metastasis [110]. Platelets are essential for the proper partitioning of blood and lymphatic vessels during development, mainly by coordinating endothelial cells’ expansion, relocation, and tube formation. This phenomenon occurs following the engagement of platelet CLEC-2 with its ligand podoplanin on lymphatic endothelial cells [111]. Although platelets do not necessarily contribute to the maintenance of the separation of the two circulatory systems post-development in normal conditions, in certain situations, including wound healing or tumor growth, platelets again participate in lymphangiogenesis [112]. Platelets stimulate lymphangiogenesis by secreting proangiogenic factors such as VEGF, angiopoietin-1, PDGF, and insulin-like growth factor 1 (IGF-1) [61,113], and through the interaction of CLEC-2 and podoplanin [111].
In patients with ovarian cancer, the upregulation of lymphangiogenic markers is associated with more aggressive disease and shorter overall survival [114]. Podoplanin overexpression in the malignant stroma of ovarian cancer patients predicts lymphatic spread and poor clinical outcomes [115]. Blocking podoplanin—CLEC-2 contact between ovarian cancer cells and platelets forestalls lymph vessel proliferation [116]. Likewise, VEGF and PDGF released by platelets promote lymph vessel generation in epithelial ovarian cancer [117]. Treatment with antiangiogenic agents might attenuate lymphangiogenesis in ovarian cancer [118]. Notably, inhibiting the TGF-β signaling cascade prevents lymphangiogenesis and subsequent VEGF-mediated ascites generation in ovarian cancer patients [119].

2.2. Interactions with Pericytes

Pericytes are perivascular cells embedded in the basement membrane surrounding the microvasculature [120]. Pericytes might prevent the intravasation of cancer cells and metastasis [121]; however, they might also facilitate micrometastasis by supporting the formation of tumor vasculature [122]. Tumor vessels have atypical coverage of pericytes, whose contact with endothelial cells is disrupted [122]. The tumor vasculature has an excess of pericytes that loosely interact with endothelial cells, deteriorating the integrity of the vessels and resulting in hemorrhage [123]. In ovarian cancer, abnormal pericyte numbers and expression signatures are associated with tumor growth, aggressive metastasis, and poor clinical outcomes [124].
Podoplanin, which is highly expressed on pericytes, mediates platelet binding to pericytes via CLEC-2 [125]. Furthermore, platelet-derived TGF-β, angiopoietin, and PDGF also stimulate pericyte differentiation, colonization, and their interaction with endothelial cells [64]. TGF-β strongly influences the proliferation of pericytes [126] and their association with endothelial cells through the TGF-β—matrix protein axis [127]. The activation of the TGF-β signaling cascade impacts the density and lumen size of tumor microvessels [127]. Angiopoietin overexpression is linked with pericyte impairment and tumor vessel instability [128]. Blocking TGF-β or angiopoietin signaling inhibits tumor growth and neovascularization [127,129]. PDGF released from platelets and other cells [130] is essential for pericytes recruitment and function during tumor neoangiogenesis. Preventing PDGF isoforms from binding to their receptors and hindering angiogenesis with antiangiogenic agents such as bevacizumab may interfere with the incorporation of pericytes into new blood vessels [131].
TSP-1 is a matricellular glycoprotein with antiangiogenic properties that counters the proliferative effects of growth factors on endothelial cells [132,133]. TSP-1 is released from the granules of activated platelets, prompting platelet aggregation and tethering [56]. In ovarian cancer, binding of the TSP-1 three type 1 repeats (3TSR) domain of TSP-1 to GPIV (CD36) normalizes the tumor vasculature and exhibits antitumor function [134]. Treating patients with 3TSR in combination with chemotherapeutics [135] or oncolytic viruses [136] can improve the efficacy of anticancer therapies. 3TSR alone, or fused with the Fc region of human IgG1 for improved stability, increases the number of pericyte-covered blood vessels, reduces the proliferative capacity of endothelial cells, and contributes to vascular normalization [134].
Platelets release IL-6 [73] and also trigger IL-6 secretion from tumor cells by releasing several factors, such as lysophosphatidic acid (LPA) [137]. The protumorigenic cytokine IL-6 is significantly elevated in ovarian cancer patients with confirmed thrombocytosis [27]. High IL-6 levels promote neoangiogenesis with abnormal pericyte coating. Anti-VEGF and anti-IL-6 agents reduce vessel sprouting and leakiness of the vasculature by reinstating the pericyte lining [138]. Combining chemotherapeutic agents and pazopanib, a multitargeted tyrosine kinase inhibitor, can help restore pericyte coverage and restrict tumor microvessel density [139] in patients with ovarian cancer. The antiplatelet action of pazopanib [140] might further inhibit tumor growth and angiogenesis [20].

2.3. Interactions with Cancer-Associated Fibroblasts

Fibroblasts are a heterogeneous population of connective tissue cells with a presumably mesenchymal origin [141]. Fibroblasts can differentiate into particular mesenchymal cell types, including osteoblasts, adipocytes, and chondrocytes [142]. In the TME, CAFs promote disease progression by releasing various molecules; rearranging the ECM to facilitate cancer cell motility, invasion, and EMT; and stimulating angiogenesis, tumor growth, and metastasis. CAFs modulate the function of immune cells and the metabolism of cancer cells to promote tumor survival [143]. CAFs also release extracellular vesicles that support cancer progression [144] and chemoresistance [145]. Although fibroblasts play a role in tumorigenesis, they may also restrict tumor development by activating the tumoricidal immune response or consolidating the ECM to prevent tumor dissemination [146].
Extravasated platelets promote EMT by releasing mediators such as TGF-β, SDF-1, and PDGF. The same mediators also induce the differentiation, migration, and proliferation of CAFs [147,148]. PDGF and TGF-β induce mesenchymal stem cell (MSC) differentiation into CAFs [149]. Integrin α11 is a CAF marker, and its expression is related to myofibroblast differentiation and ECM alteration. CAFs expressing integrin α11 and PDGFR-β are associated with poor clinical outcomes in ovarian cancers and other malignancies [150]. Platelet-originated CLEC-2 induces the migration and proliferation of CAFs in the TME [15]. The binding of platelet-derived CLEC-2 to podoplanin on CAFs and cancer cells promote tumor growth and venous thrombosis in patients with ovarian cancer [125,151]. LPA derived from ovarian cancer cells promotes the differentiation of fibroblasts into CAFs through a hypoxia-inducible factor 1 alpha (HIF-1α)-dependent mechanism [152]. LPA activates platelets [153], which, in turn, release LPA [137]. Moreover, LPA promotes the secretion of VEGF and SDF-1 from MSCs, further supporting ovarian cancer progression [154]. Under oxidative stress, platelets release their mitochondria, which are picked up by MSCs [24]. Mitochondria originating in platelets and engulfed by MSCs promote fatty acid synthesis and ATP production and stimulate the release of angiogenic components, such as VEGF and hepatocyte growth factor (HGF), from MSCs [24].
CAFs originating from MSCs release platelet-activating factor (PAF), promoting platelet activation and aggregation [155], which further supports ovarian cancer progression and induces ovarian cancer development through the PAF/PAF receptor signaling pathway [34]. Exosomes from ovarian cancer cells induce the generation of CAFs from MSCs in the tumor stroma [156]. CAF-released IL-6 causes EMT in ovarian cancer cells, tumor growth, and ECM reorganization, mainly by mediating STAT3 phosphorylation [157]. The increased concentrations of IL-6 in the stroma or ascites can activate platelet function and aggregation and lead to thrombosis [158].
Most patients with metastatic ovarian cancer have peritoneal dissemination, which indicates a poor prognosis. It starts with the emigration of cancer cells into the peritoneal fluid, forming floating masses that attach to peritoneal mesothelial cells throughout the peritoneal cavity [159]. Alternatively, the cancer cells can initiate an inflammatory reaction in the peritoneal stroma, promoting the generation of a fibrin mesh that can be used for adhesion to the peritoneal surface. Fibrin mesh can also potentiate the colonization of fibroblasts and endothelial cells. Fibroblasts that differentiate into CAFs promote ovarian cancer invasion through the upregulation of several markers such as alpha-smooth muscle actin (α-MA), PDGFR, and podoplanin [151]. A subset of CAFs originating from mesothelial cells through mesothelial-to-mesenchymal transition (MMT) contribute to peritoneal metastasis [160]. Ovarian cancer cells that have been relocated to the peritoneal cavity promote ascites, and the ascitic fluid contains various cytokines and growth factors [161]. TGF-β derived from ascites and activated platelets is one of the main stimulating factors for MMT [160,162]. In addition, tissue factor (TF), present in high amounts in ascites, cancer cell masses, and cancer cell-derived microparticles, induces thrombin generation, which activates platelets and produces fibrin [163]. Activated platelets further increase the expression of TF, prompting ovarian cancer migration [164]. The activation of mesothelial cells by TGF-β released from platelets is partially responsible for ECM remodeling during metastasis [165].
Like fibroblasts, mesothelial cells and adipocytes in the omentum and peritoneum can be prompted by cancer cells to differentiate into CAFs [166]. Periostin is a secretory protein that is overexpressed by stromal fibroblasts in multiple cancers, including ovarian cancer, and its overexpression is associated with poor clinical outcomes in patients with epithelial ovarian cancer. TGF-β modulates periostin expression and promotes ovarian cancer growth and chemotherapy resistance [167]. Similarly, the aberrant expression and release of connective tissue growth factor (CTGF), a stromal factor, induces the colonization and peritoneal adhesion of ovarian cancer cells [168]. Platelets store a large quantity of CTGF [63], suggesting that platelet activation and the release of CTGF may participate in ovarian cancer seeding in the peritoneum.
Inhibitors of the TGF-β signaling pathway can diminish CAFs’ function in ovarian cancer [169]. Anti-VEGF therapy can inhibit ovarian cancer progression, metastasis, and malignant ascites formation promoted by the release of VEGF from CAFs, along with various other cell types [170]; however, synchronous anti-PDGF treatment might be necessary to target CAFs resistant to VEGF-neutralizing agents [171]. It has been reported that aspirin therapy suppresses chemotherapy-induced CAF formation in colorectal cancer [172] and the impact of CAFs on ovarian cancer.

3. Interplay of Platelets with the Tumor Immune Microenvironment

3.1. Interplay with Tumor-Associated Neutrophils

Most inflammatory cells in solid tumors are tumor-associated neutrophils (TANs) that promote or inhibit tumor growth and angiogenesis, depending on various circumstances. In the initial stages of tumor growth, TANs tend to exert tumoricidal functions (N1 neutrophils), whereas in later stages of tumor growth, they become protumorigenic (N2 neutrophils). Permissive N2 neutrophils enhance the proliferation and metastasis of malignant cells by releasing growth factors (e.g., TGF-β and VEGF), MMPs, and reactive oxygen species (ROS) [173]. In addition, they can suppress antitumor immune responses [174]. Neutrophils assist cancer cells in escaping the antitumor immune response through the overexpression of immune checkpoint molecules, including programmed death ligand 1 (PD-L1) [175], glucocorticoid-induced tumor necrosis factor receptor-related protein-ligand (GITRL) [176], and V-domain Ig suppressor of T cell activation (VISTA) [177]. In patients with ovarian cancer, elevated neutrophil counts, neutrophil-lymphocyte ratios (NLRs), and platelet counts indicate a poor prognosis and shorter overall survival [178,179].
Adhesion molecules on the surface of neutrophils include L-selectin (CD62L), PSGL-1, macrophage-1 antigen (Mac-1; also known as CD11b/CD18), and leukocyte function-associated antigen 1 (LFA-1; also known as CD11a/CD18), which are essential for the rolling of neutrophils on the endothelium, as well as their firm adhesion and transendothelial migration [180]. Inflammation promotes the expression of surface adhesion molecules on platelets and endothelial cells. Platelets help recruit neutrophils to the tissues via direct or indirect interaction. Neutrophils and platelets interact mainly through the binding of P-selectin to PSGL-1 [181]. The binding of GPIb on platelets to Mac-1 [182] on neutrophils, and that of the intercellular adhesion molecule 2 (ICAM-2) on endothelial cells to LFA-1 [183] on neutrophils, provide additional adhesive interactions under flow conditions. At baseline, Mac-1 has low expression on neutrophils in the peripheral blood; however, it is significantly upregulated in inflammation [184]. Neutrophils in the peripheral blood of ovarian cancer patients have higher levels of Mac-1.
In ovarian cancer patients, neutrophils overexpress Mac-1, which improves the adhesion of neutrophils to endothelial cells and modifies the endothelium for improved cancer cell migration [185]. Of note, the PSGL-1–L-selectin interaction is also important for neutrophil adherence to endothelium [186]. The interaction between cancer cells and neutrophils through Mac-1 and L-selectin can promote cancer cell migration through blood vessels [184,187]. Other interactions, including those between CD40–CD40 ligands (CD40L, also known as CD154) [188] and between platelet PSGL-1 and neutrophil L-selectin [189], might also support neutrophil interactions in the TME.
Platelets and neutrophils communicate indirectly through intermediary molecules. For instance, platelet GPIIb/IIIa and neutrophil Mac-1 both bind to fibrinogen [190]. In addition, platelets’ secretion of chemokines and cytokines, such as PF4 [70], CXCL7 (also known as neutrophil-activating peptide 2 (NAP-2)) [71], and TGF-β [191], following their interaction with cancer cells reinforces neutrophils’ attachment to the endothelium and their transendothelial migration. In ovarian cancer, IL-8 (CXCL8) recruits neutrophils to the TME [192]. IL-8 released from the activated platelets [193] or platelet-activated cancer cells [194] can help increase the number of neutrophils in the TME. IL-8 receptor CXCR2 is upregulated in the neutrophils of patients with ovarian cancer compared to healthy individuals [195]. Moreover, the elevated concentration of IL-8 in peritoneal lavage in ovarian cancer is associated with shorter overall survival [196]. Cytokines and chemokines, such as granulocyte colony-stimulating factor (G-CSF), granulocyte-monocyte colony-stimulating factor (GM-CSF), CXCL1, CXCL2 (also known as migration inhibitory protein 2 alpha (MIP-2α)), CXCL5, and CCL3 (chemokine (C-C motif) ligand 3) (MIP-1α) recruit neutrophils to the TME [197]. TGF-β and G-CSF are important for neutrophil differentiation into the N2 phenotype [173]; thus, platelet-derived TGF-β [198] and GM-CSF [75] create an immunotolerant environment for ovarian cancer.
Neutrophil extracellular trap (NET) formation (NETosis) is a defense mechanism against inflammation [199]. The activated neutrophils secrete antimicrobial proteases and release chromatins and cytosolic and granular proteins, such as myeloperoxidase and neutrophil elastase, to trap and kill pathogens [200]. The presence of lipopolysaccharide (LPS) activates platelets in endotoxemia, and hyperactive platelets bind to adherent neutrophils via Toll-like receptor (TLR) 4, causing neutrophil activation and NETosis. LPS is not adept at directly stimulating NET formation [40]. In return, NETs trigger thrombosis because histone proteins and DNA released from neutrophils, in addition to NET-linked cathepsin G, activate platelets [201]. NETs bind to factor XII or P-selectin to initiate blood coagulation [202]. Neutrophil and the NET-dependent release of neutrophil elastase cleaves E-cadherin and enhances EMT in ovarian cancer cells [203]. Cathepsin G and neutrophil elastase activate platelets via GPIIb/IIIa and induce platelet aggregation in the presence of exogenous fibrinogen [204].
Mitochondrial DNA (mtDNA) and formylated peptides are among the mitochondrial damage-associated molecular patterns discharged from various cells. These molecules stimulate neutrophil function via the adhesion of TLR9 and formylated peptide receptors and promote NETosis [205]. NETs support cancer-related thrombosis through factors such as extracellular chromatin and tissue factor [206]. NETs also play a role in ovarian cancer cell invasion and premetastatic niche formation in the omentum [207]. The amount of platelet-derived mtDNA and the number of microparticles in ascites correlate with poor clinical outcomes in ovarian cancer patients [208]. The fibrin deposits in the TME further assist in ovarian cancer invasion by providing an adhesion surface for platelets, promoting their aggregation, and stimulating monocyte differentiation into tumor-associated macrophage (TAM)-like cells [209]. The pharmacological suppression of NETosis-related genes, including the protein arginine deiminase 4 (PAD4) gene, which encodes a histone protein-citrullinating enzyme, can delay ovarian cancer cell invasion of the peritoneal cavity [207].

3.2. Interplay with Tumor-Associated Macrophages

Mononuclear cells extravasate into tumor tissues and differentiate into macrophages. Macrophages polarize into two distinct subtypes that have pro- or anti-inflammatory characteristics. Classically activated macrophages, also termed M1 macrophages, are stimulated by molecules such as LPS, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and GM-CSF, as well as by target pathogens and tumor cells. In contrast, alternatively activated macrophages (M2 macrophages) are induced by molecules such as TGF-β, IL-10, and macrophage colony-stimulating factor (M-CSF), and display protumorigenic and immunomodulatory features [210].
In the ovarian cancer TME, a population of TAMs from both the M1 and M2 phenotypes is observed [211]. As cancer progresses, TAMs polarize into M2 macrophages via the upregulation of multiple markers, including CD163, CD206, PD-L1, and arginase 1 (ARG1) [210]. epithelial ovarian cancers support M2 polarization by releasing mediators such as M-CSF [212]. The number of TAMs escalates as the tumor spreads, so much so that half of the cells in the peritoneal TME and ascites can be TAMs with tolerogenic functions [213,214]. M2 macrophages in ascites induce the transcoelomic metastasis of ovarian cancer cells. M2 macrophages secrete multiple mediators that induce ovarian cancer spheroid formation, encourage attachment to the metastasis site, and escape from the cytolytic immune response [215,216]. An elevated M2/M1 macrophage ratio correlates with reduced overall survival in ovarian cancer patients [217].
Platelet—monocyte aggregates are more potent markers for platelet activation than the expression of P-selectin [218]. The activated macrophages release cytokines such as TNF-α, IL-1β, IL-6, and IL-8 [219]. The interaction between monocytes and platelets enhances the procoagulant effect of macrophages and ROS generation. Activated platelets adhere to monocytes via P-selectin and promote monocyte function and ROS release [220]. A high concentration of ROS differentiates TAMs to the M2 phenotype, and this effect is annihilated when macrophages are polarized to the M1-like phenotype, rather than M2 [221].
The upregulation of platelet-derived TGF-β, the subsequent overexpression of cyclooxygenase 2 (COX-2), and the generation of prostaglandin E2 (PGE2) in monocytes modulate CD16 levels. The activation of CD16 on monocytes induces M2 polarization [222]. COX-2-positive TAMs increase cancer cell proliferation and metastasis because the PGE2 generated by COX-2 activates the protein kinase C/A and TGF-β signaling pathways [223]. COX-2 expression is elevated in macrophages that infiltrate epithelial ovarian cancer tumors [224], and the resulting increased levels of PGE2 support tolerogenic M2 polarization and ovarian cancer cell chemoresistance [225].
The platelet-directed differentiation of monocytes into the immunogenic phenotype via IL-1β and IL-8 potentiates NF-κB signaling and supports thrombosis [226]. Macrophages with high levels of podoplanin expression migrate toward vascular endothelial cells, bind to CLEC-2 on the surface of platelets, activate platelets [38,227], and promote thrombosis [38,227]. Additionally, podoplanin is upregulated in ovarian cancer cells, and extracellular vesicles released from these cells increase the likelihood of thrombosis [125].
Platelet microparticles regulate the function of macrophages recruited to the inflammation site by chemotactic components such as PF4, TGF-β, and PDGF-β [23]. These microparticles can drive macrophages toward the protumorigenic phenotype by suppressing TNF-α, CCL4, and M-CSF production and increasing their phagocytic efficacy [228]. Conversely, platelet microparticles may direct macrophage activation, which can inhibit tumor growth through cytokines such as TNF-related apoptosis-inducing ligand (TRAIL), CCL2 (also known as monocyte chemoattractant protein 1 (MCP-1)) and IL-8 [229].
Cancer cells and activated monocytes can release extracellular vesicles containing TF that contribute to venous thromboembolism [163,230]. Moreover, the coincubation of platelets with extracellular vesicles upregulates the TF activity of monocytes [231]. Cancer cell-derived extracellular vesicles also trigger platelet activation and cause the release of procoagulant platelet microparticles [232]. The extracellular vesicles of platelets with phosphatidylserine attach to monocytes and monocyte extracellular vesicles and promote their procoagulant effects [233,234]. TAMs express the coagulation factors II, V, VII, and X, stimulating thrombin formation and platelet activation [235]. The TF-dependent thrombin formation promotes several cellular interactions in the TME [236]. For instance, the TF-related activation of protease-activated receptor (PAR)-2 and integrin ligation enhance tumor growth and angiogenesis [237]. Moreover, TF supports the intravasation and intravascular survival of cancer cells, and the formation of metastatic niches, to provide an environment for the interaction of monocytes and macrophages with tumor-associated microthrombi [238]. The thrombin receptors PAR1, PAR4, and GPIbα on the surface of platelets can facilitate metastasis [42,43]. By disrupting the TF-accompanying pathways, PAR inhibitors might diminish the proliferation and metastasis of ovarian cancer cells [237].
The network between platelets, cancer cells, endothelial cells, and smooth muscle cells attracts monocytes into the early metastatic niches through chemokines such as CCL2 and CCL5 (known as regulated on activation, normal T cell expressed and secreted (RANTES)) [238]. The CCL5-induced attraction of monocytes to metastatic cancer cells indicates that CCL5 is indirectly critical to the organization of metastasis rather than directly acting on cancer cells [239]. Similarly, platelets’ secretion of SDF-1 is decisive in the recruitment of macrophages to tumors and in the migration of CXCR4+ cancer cells [240]. In addition, SDF-1 mediates the migration of TAMs into the hypoxic TME and the polarization of monocytes toward the tolerogenic phenotype [241]. The blockade of the SDF-1—CXCR4 interaction, combined with anti-programmed death 1 (PD-1)-based immunotherapy, results in a higher M1/M2 ratio, which is associated with better clinical outcomes in patients with ovarian cancer [242].
PAFR activation stimulates macrophages to differentiate toward the M2 phenotype, whereas the absence of PAFR drives tumor-infiltrating macrophages to demonstrate antitumor properties [243]. PAFR ligands support tumor development by reprogramming the TAM phenotype and increasing the frequency of M2 macrophages rather than M1 macrophages. This specific polarization of macrophages through apoptotic cells results in a tolerogenic environment that supports tumor growth [243]. Thus, PAFR antagonists may be a therapeutic option for patients with ovarian cancer [244].
Ovarian cancer cell-derived M-CSF stimulates the polarization of macrophages to the M2 subtype, which supports EMT and the peritoneal metastasis of ovarian cancer cells [216]. M-CSF can also trigger platelet aggregation [245] and provoke thrombosis in cancer patients. M2 macrophages release high concentrations of epidermal growth factor (EGF) and induce angiogenesis and the invasion and metastasis of cancer cells through the activation of an EGF receptor (EGFR) [246]. EGF stimulation facilitates the activation of platelets and the release of IL-1β [72]. Moreover, EGF-triggered ovarian cancer cells secrete PAF and contribute to the hyper-responsiveness of platelets. The blockade of EGFR might abolish EGF’s promotion of ovarian cancer progression [247].
In the ovarian cancer TME, LPA is produced from phospholipids by TAM- and platelet-derived phospholipase A2 (PLA2) and autotaxin [248,249]. LPA promotes ovarian cancer growth and metastasis through diverse networks [250,251]. It also induces platelet activation [252]; thus, the pharmacological inhibition of LPA and the application of antiplatelet agents might interfere with ovarian cancer development [249,253].

3.3. Interplay with T Cells

3.3.1. CD4+ Helper T Cells

CD4+ helper T (Th) cells are major contributors to adaptive immunity. Their antitumor effect can be exerted directly by targeting tumor cells or indirectly by triggering the expansion of cytotoxic CD8+ T cells [254]. An increased percentage of tumor-infiltrating lymphocytes (TILs) is associated with prolonged survival in patients with ovarian cancer [255,256].
Platelets may affect CD4+ T cells directly through physical interaction [257] or indirectly through the secretion of soluble mediators [258], extracellular vesicles, and mitochondria [259,260]. Activated platelets form complexes with CD4+ T cells and mediate the adhesion of lymphocytes to the endothelium under flow conditions, and to the ECM [261]. T cells cannot bind to fibronectin efficiently without the participation of platelets [262]. CD40–CD40L, P-selectin–PSGL-1, and ICAM-2–LFA-1 interactions are partly responsible for the construction of platelet–CD4+ T cell complexes and the rolling and firm adhesion of T cells under flow [262]. CD4+ T cells’ CD40L binds to platelets’ CD40 [58] and stimulates CCL5 secretion [263]. The soluble CD40L (sCD40L) binds to CD40 on CD4+ T cells, causing CD4+ T cells to undergo apoptosis following the suppressed expression of IL-2, Bcl-2, and Bcl-xL [264]. Platelets, rather than T cells, are the predominant source of sCD40L in cancer [59]. Antiplatelet reagents might restore the antitumor immune response by reducing sCD40L levels and preventing CD4+ T cell apoptosis [59].
The interaction between platelet P-selectin and T cell PSGL-1 recruits T cells to the activated endothelium at the site of inflammation or injury. Memory CD4+ T cells form complexes with platelets, which may exacerbate thrombo-inflammation [265]. In conjunction with its role in mediating cell adhesion [266], the upregulation of PSGL-1 on effector T cells may alter their function. PSGL-1 engagement can induce T cell exhaustion by inhibiting ERK/Akt signaling and IL-2 secretion, and increasing PD-1 expression. In this context, PSGL-1 ligation can reduce the antitumor effect of CD4+ and CD8+ T cells [267].
Platelets and CD4+ T cells form complexes that can trigger immune-related adverse events in cancer patients treated with chemotherapeutic agents or immune checkpoint inhibitors. The elevated levels of PD-L1 in platelets can inhibit CD4+ and CD8+ T cells [52]. Moreover, platelet PD-L1 may increase the overall expression of PD-L1 in tumors after platelet adhesion to cancer cells [268], suggesting that adding an antiplatelet agent can improve the efficacy of anti-PD-L1 immunotherapy [269]. On the other hand, other studies show that platelets induce the expression of PD-L1 in cancer cells [14,270], and reducing platelet counts via an antiplatelet agent treatment can minimize the effectiveness of immunotherapy [14]. In addition, platelet-derived TGF-β reduces the efficacy of T cell recruitment via bispecific antibody (BsAb)-based immunotherapy [271] in ovarian cancer [272]. Immune checkpoint inhibitors administered with VEGF inhibitors have been shown to improve the efficacy of BsAbs in ovarian cancer [273].

3.3.2. Regulatory T Cells

Regulatory T cells (Tregs), which constitute 5% to 7% of CD4+ T cells, induce immune tolerance by cytokines such as TGF-β and IL-10, and receptors such as cytotoxic T lymphocyte antigen 4 (CTLA-4), CD39, and CD73 [274]. Consequently, Tregs exert protumor effects by providing a permissive environment for tumor growth. In the early stages of ovarian cancer, the Th17-related immune response is more dominant, whereas a persistent shift toward Tregs is witnessed in the later stages [275]. Tregs are recruited and activated by the hypoxic conditions in ovarian cancer TME [276] and are abundant in ascites. Their presence has been linked to unfavorable clinical outcomes [277,278]. Meanwhile, high CD8+ T cell/Treg and CD4+ T cell/Treg ratios are indicators of a better prognosis [279]. Interestingly, a positive correlation between increased numbers of CD8+ T cells and Tregs in the TME has been observed in multiple patients with ovarian cancer, but this immune profile has not influenced patients’ overall survival [280].
Treg-derived PSGL-1 is pivotal in regulating the immune response, since this glycoprotein plays a part in hampering T cell–DC conjugation and subsequent T cell expansion and activation [281]. In contrast, P-selectin is upregulated in CD4+ non-Tregs and is critical for Treg differentiation and activity because it functions in signaling cascades involving Syk kinases and CCL5 [263,282,283]. P-selectin–PSGL-1 binding might potentiate the influence of costimulatory components such as CD40L [284]. The engagement of CD40 with CD40L is important for the development and survival of Tregs [285], and CD40–CD40L activates Tregs and platelets in a positive feedback loop [263]. CD40 or CD40L deficiency reduces the number of Tregs without affecting the total number of T cells [286].
Moreover, P-selectin plays an important role in recruiting Tregs to tumors and repressing effector CD8+ T cells [16]. IL-4 stimulates endothelial cells’ expression of P-selectin and the recruitment of activated platelets expressing P-selectins to the TME, which causes positive feedback in immunosuppression [287].
Platelet releasate stimulates Treg activity, which, in the short-term, increases and subsequently inhibits Th1/Th17 responses. The mediators secreted by platelets (e.g., PF4 and TGF-β) and by platelet-activated Tregs downregulate Th1 polarization [288]. Platelet deficiency leads to reduced Treg activation through several pathways related to TLR4 and TNF-α. The adherence of platelet-derived TNF-α to TNFR2 on Tregs activates these cells [74]. In the tumor-associated ascites of patients with ovarian cancer, IL-6 stimulates Tregs’ expression of TNFR2 [289]. IL-6 generated by platelets [73] supports the function of Tregs in ascites, creating an immunosuppressive environment. TNFR antagonists might restrict Treg expansion in the TME and hinder ovarian cancer cell proliferation [290].
TGF-β is required to generate Tregs, and platelets, as an important source of TGF-β, are known to promote Treg activity. Platelet TGF-β modulates the expression of granzyme B, IFN-γ, and IL-2 to promote Treg development [291]. Thus, platelet hyperactivity in malignancies may create a favorable environment for Treg expansion [292]. Moreover, platelet-derived growth factors, including IGF-1 [62] and PDGF [293], also foster Treg proliferation. The inhibition of the TGF-β-directed network can mitigate an increased number of Tregs and support cytotoxic T cell expansion while reducing tumor and ascites volumes in patients with ovarian cancer [294]. Similarly, the blockade of IGF [295] and PDGF [296] receptors might restore immunosurveillance for malignant ovarian cells.
PF4 suppresses the overall expansion of CD4+ T cells and Th1 polarization while promoting the proliferation of Tregs. The binding of PF4 to its receptor, CXCR3, escalates mitochondrial transcription factor A (TFAM) expression, mitochondrial biogenesis, and ATP and ROS generation. The increased concentrations of ATP and ROS increase T-bet and Foxp3 expression, whichmodulates Th1 and Treg differentiation, respectively [297]. Moreover, thromboxane A2 (TxA2) secreted from platelets inhibits the activity of CD4+ T cells [298]. PF4 also heterodimerizes with other platelet-derived chemokines, including CCL2, CCL5, CXCL7, SDF-1, and TxA2. The chemokine pairing aggravates chronic inflammation in cancer; as a result, preventing chemokine pairing might provide a therapeutic advantage [299,300].
CXCR4 and SDF-1 are upregulated in ovarian cancer cells [301]. Platelets express CXCR4 and SDF-1, and activated platelets generate SDF-1 [302,303]. Hypoxia increases the expression of CXCR4 on Tregs and supports immunosuppression [304]. Blocking the binding of SDF-1 to its receptor, CXCR4, increases the CD8+ T cell/Treg ratio and reduces the intraperitoneal metastasis of ovarian cancer cells [305]. Tregs with high immune checkpoint expression support the immunoregulatory function of these cells in ovarian cancer [306]. The Treghi phenotype is distinguished by elevated expression levels of forkhead box P3 (Foxp3), PD-1, 4-1BB, inducible T cell co-stimulator (ICOS), and CD25. The infiltration of these Tregs into tumors is associated with intercepted antitumor immune response [306]. Ovarian tumors display the Treghi phenotype [278,306], which may explain ovarian cancer patients’ unsatisfactory responses to immune checkpoint inhibitors. In many cancers, PD-L1-containing platelet microparticles adhere to PD-1 on Tregs and induce immune tolerance [307]. The simultaneous inhibition of the CXCR4—SDF-1 and PD-1—PD-L1 pathways and the depletion of effector Tregs may enhance the antitumor immune response and reduce mortality in ovarian cancer patients [242,308].
Platelet microparticles prevent Treg differentiation to proinflammatory T cells that generate IL-17 and IFN-γ [309]. This mechanism occurs when the P-selectin on microparticles adheres to PSGL-1 on CCR6+HLA-DR+ memory-like Tregs, which are the progenitors of Th17-like cells and stabilizers of the inflammatory state [309,310]. The reduction in IFN-γ release after PF4–CXCR3 engagement [311] and in communication among Tregs upon the binding of platelet microparticles [312] support this mechanism.

3.3.3. CD8+ T Cells

CD8+ T cells, also termed cytotoxic or cytolytic T lymphocytes (CTLs), play a cardinal role in protecting the host from infections. Unlike acute infections, chronic inflammation and cancer may involve CD8+ T cells. CD8+ T cells can become exhausted and develop reduced functionality. Exhausted CD8+ T cells are distinguished by their persistent overexpression of immune checkpoints [313]. Functional cytotoxic TILs improve survival in ovarian cancer patients [314], and the recruitment of CD8+ T cells into the peritoneal cavity is associated with better prognostic scores in these patients [315].
Platelets interact with CD8+ T cells and decrease their cytolytic impact on cancer cells. The abundance and size of platelet—T cell aggregates in cancer patients are increased compared to healthy individuals. High levels of these aggregates are regarded as cancer biomarkers [316]. Platelets in platelet—T cell aggregates express high levels of P-selectin, and platelets may be more prone to adhering to PSGL-1 on CD8+ T cells than on the surface of CD4+ T cells [316]. PSGL-1 is involved in the migration of T cells to the inflammation site and secondary lymphoid tissues [317]. However, in chronic inflammation, PSGL-1 signaling limits T cell survival and promotes CD8+ T cell exhaustion because of the upregulation of immune checkpoint molecules such as PD-1, B- and T-lymphocyte attenuator (BTLA), T cell immunoglobulin mucin 3 (TIM-3), and lymphocyte activation gene 3 (LAG-3), and the inhibition of immunostimulatory cytokines such as IL-2. The suppression of PSGL-1 may prevent the exhaustion of cytotoxic T cells and reduce tumor growth [267]. However, this effect may occur not through P-selectin—PSGL-1 ligation but through TCR signaling [267] or the binding to other ligands [318].
TGF-β suppresses CD8+ T cells and can promote cancer cell proliferation [319] and metastasis [320]. The activation of latent TGF-β through the TGF-β/glycoprotein A repetitions predominant (GARP) axis in the TME via platelets may inhibit the antitumor effect of T cells [321]. The activation of platelets encourages tumor growth, at least partly, by supporting the immunosuppressive TME and minimizing the adaptive immune response. Therefore, the inhibition of platelets may increase the effects of immune checkpoint inhibitors [322]. In addition, bioengineered PD-1-expressing or antineoplastic agent-carrying platelets may accumulate in tumors and block PD-L1 on cancer cells to help exhausted CD8+ T cells recover their functionality [323]. CD8+ T Tregs, which are known to reduce the expansion of CD4+ T cells and follicular helper T cells, are enriched in ovarian tumors [324]. Indeed, CD8+CD25+Foxp3+CTLA-4+ T cells have been detected in patients with ovarian cancer and have increased in number as the tumor stage increases [324,325]. The increased levels of TGF-β expand CD8+Tregs in the ovarian cancer TME, mainly through p38 MAPK. The inhibition of TGF-β and the p38 signaling cascade can impede ovarian cancer progression [326]. In addition, various other mediators, including IFN-γ and IL-2, support the regulatory functions of CD8+ T cells [324]. In contrast, TGF-β upregulates CD103 (also known as integrin αEβ7 (ITGAE)) on CD8+ T cells infiltrating the tumor and malignant ascites, and by supporting the habitation of these cytotoxic T cells in the TME, they may represent a prognostic advantage in patients with ovarian cancer [327].
Thrombin exerts its protumorigenic properties through platelet activation and the subsequent release of various mediators involving VEGF and TGF-β [198,328]. These mediators can further modify the immune response toward a tolerogenic state [198,329]. Specific drugs, such as dabigatran etexilate, when given concurrently with potentially thrombogenic antineoplastic agents, repress thrombin and thus benefit patients with ovarian cancer. This treatment regimen may reduce the number of immunoregulatory myeloid cells and incite CD8+ cytotoxic T cell function in ascites [330].
Similarly, platelet-derived PF4 stimulates the differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which suppresses the activity of CD8+ T cells. This shift can result in advanced metastatic disease and poor overall survival [21]. An antiplatelet agent-based therapy regimen can promote the expansion of CD8+ T cells, and the administration of antiplatelet agents with an anti-VEGF or anti-PD-1 antibody can resensitize tumors to immune cells [331,332].

3.4. Interplay with B Cells

B cells are immune cells that produce antibodies during initial exposure to antigens and memory cells and that mediate a subsequent antibody response after re-exposure to the same antigens. Mature naïve B lymphocytes in the peripheral lymphoid structure are exposed to antigens, selectively expand, hypermutate to generate antibodies that better fit specific antigens, and differentiate into plasma cells or transform into memory B cells [333]. Antibodies produced by B cells may recognize antigens on malignant cells or other components of the TME, tag cancer cells for destruction, and lead to immune cell- and antibody-mediated cytotoxicity [334]. On the other hand, cancer cells or their extracellular vesicles modify the immune system, promote the generation of regulatory B cells (Bregs) [335], and evade the antineoplastic impact of B cells [336]. Moreover, circulating antigen–antibody complexes activate the complement system and platelets, supporting angiogenesis and metastasis [337,338,339]. B cells may have prognostic significance in ovarian cancer patients and have been shown to correlate with worse [340] or better [341] clinical outcomes. High numbers of IL-10-positive Bregs have been detected in ascites of ovarian cancer patients, and their numbers are correlated with the percentage of Tregs. The recruitment of Bregs and Tregs is associated with advanced-stage and aggressive ovarian cancer [335].
The binding of CD40L to CD40 on resting B cells stimulates their differentiation to plasma cells and memory B cells. Platelets and platelet microparticles express CD40L and can trigger B cells’ production of antibodies, although not at the same level as the T cell-dependent isotype-switched antibodies [342]. Through CD40L, platelets enable B cell isotype conversion and enhance germinal center formation [342]. B cells stimulated through CD40 and TLR9 restrict the differentiation of monocytes into mature dendritic cells (DCs) and diminish DC-dependent T cell proliferation and function [343]. CD40–CD40L contact is linked to the activation of Bregs and tumor growth via the suppression of IL-10 and TGF-β1 release [344]. In contrast, CD40L released from B cells binds platelet CD40 and activates platelets, causing the expression of P-selectin, the secretion of α- and γ-granules, the transformation of platelet morphology, and the upregulation of GPIIb/IIIa [58].
In addition to platelets and Tregs, peripheral B cells also express GARP, which releases TGF-β and can induce immune tolerance [345]. TGF-β signaling stimulates the apoptosis of B cells [345], suppresses immunoglobulin release, and impedes surface immunoglobulin expression on activated B lymphocytes [346]. In addition, TGF-β promotes the class switch to IgA during the differentiation of B cells into plasma cells [347]. Although IgA is primarily associated with defense against pathogens on mucosal surfaces, IgG is involved in adaptive and memory immune responses. Accordingly, the trend toward IgA instead of IgG leads to a curtailed cytotoxic immune response in tissue [348]. Bregs’ production of excess TGF-β can further propel the tolerogenic immune response by hastening the differentiation of cytotoxic T cells into Tregs [349]. Thus, platelet-derived TGF-β may contribute to immunosuppressive conditions in tumor progression.
PAF, an inflammatory phospholipid produced mainly by platelets, immune cells, and endothelial cells [350], plays a role in B cell activation, expansion, and Ig production. PAF receptor is upregulated on B cells by several cytokines, including IL-4 and TGF-β. The binding of PAF to its receptors on B cells activates these cells [351].
The adhesion molecules on platelets that support the interaction between platelets and immune cells are summarized in Figure 3.
Table 2. The influence of various platelet-associated molecules on TME in cancer.
Table 2. The influence of various platelet-associated molecules on TME in cancer.
HallmarkPlatelet ConstituentsPrognostic RoleReferences
Pro-
tumorigenic
Endostatin, angiostatin, TSP-1, angiopoietin-1, VEGF, PDFG, HGF, FGF, SDF-1, S1P, TGF-β, IL-6Stimulation of angiogenesis[61,90]
TGF-β, angiopoietin, PDGF, CLEC-2, IL-6Proliferation, differentiation, and irregularity of pericytes[64,125,126,128,138]
Platelet microparticlesOverexpression of MMPs on
endothelial cells
[100]
P-selectin, GPIIbTransendothelial migration of
cancer cells
[108,109]
VEGF, angiopoietin-1, PDGF, IGF-1, CLEC-2Stimulation of lymphangiogenesis[61,111,113]
TGF-β, SDF-1, PDGF, CLEC-2Stimulation and differentiation, proliferation, and migration of CAFs[15,147,148,149]
TGF-β, G-CSFDifferentiation of neutrophils into
N2-like phenotype
[173]
IL-8, G-CSF, GM-CSF, CXCL1, CXCL2,
CXCL5, MIP-1α
Recruitment of neutrophils into TME[192,197]
factor XII, P-selectin, GPIIb/IIIaPlatelet interaction with NETs and
subsequent platelet aggregation
[202,204]
mtDNA, P-selectinNETosis[202,205]
P-selectin, TGF-β, COX-2, PGE2, PF4, PAF, PDGFActivation of TAMs[220,221,222]
CCL2, CCL5, RANTES, SDF-1Migration of TAMs into TME[238,241]
CD40, CCL5, TxA2Apoptosis and inhibition of
CD4+ T helper cells
[264,298]
PF4, TGF-β, P-selectinSuppression of Th1 and Th17 differentiation[288,297,309,310]
P-selectinStimulation of T cell exhaustion[267]
PD-L1, TGF-βInhibition of CD4+ and CD8+ T cell
antitumor functions
[52,319,320,321,326]
CD40L, P-selectin, TNF-α, IL-6, IGF-1, PDGF, SDF-1Activation, proliferation, and
migration of Tregs
[16,62,73,74,263,285,293,302,303]
PF4Differentiation of monocytes
into MDSCs
[21]
CD40LExpansion of Bregs[344]
Platelet microparticlesOverexpression of MMPs[61,100]
CXCL5, CXCL7, TGF-β, TSP-1, P2Y12, COX-1, TxA2Formation of pre-metastatic niches[352]
Anti-
tumorigenic
Endostatin, angiostatin, TSP-1Inhibition of angiogenesis[56,61]
TRAIL, CCL2, MCP-1, IL-8Activation of tumoricidal macrophages[229]
Platelet microparticlesEnhancement of the phagocytic capacity of macrophages[228]
TGF-β, EGFUpregulation of PD-1 in cancer cells
and increase in the effectiveness of immunotherapy
[14,270]
TGF-β, CD40LActivation and infiltration of CD8+ T cells into the tumor[327,353]
CD40LDifferentiation of resting B cells into plasma cells and generation of antibodies[342]
OX40LInfiltration of immune cells into TME[54]
CCL: chemokine (C-C motif) ligand; CD40L: CD40 ligand; CLEC-2: C-type lectin-like receptor 2; COX: cyclooxygenase; CXCL: chemokine (C-X-C motif) ligand; EGF: epidermal growth factor; FGF: fibroblast growth factor; G-CSF: granulocyte colony-stimulating factor; GM-CSF: granulocyte-monocyte colony-stimulating factor; HGF: hepatocyte growth factor; IGF-1: insulin-like growth factor 1; IL: interleukin; MCP-1: monocyte chemoattractant protein 1; MIP-1α: migration inhibitory protein 1-alpha; mtDNA: mitochondrial DNA; PAF: platelet-activating factor; PD-L1: programmed death ligand 1; PDGF: platelet-derived growth factor; PF4: platelet factor 4; PGE2: prostaglandin E2; RANTES: regulated upon activation and normal T cell expressed and secreted; S1P: sphingosine 1-phosphate; SDF-1: stromal-derived factor 1; TGF-β: transforming growth factor-beta; TNF-α: tumor necrosis factor-alpha; TRAIL: TNF-related apoptosis-inducing ligand; TSP-1: thrombospondin 1; TxA2: thromboxane A2; VEGF: vascular endothelial growth factor.

4. Discussion and Perspectives

The involvement of platelets in cancer progression through the modulation of tumor growth, angiogenesis, metastasis, and chemoresistance has been recognized for decades [354]. Tumor cells activate platelets, and platelets alter cancer cells and the TME and their interaction [64]. As a result, improving our understanding of platelets’ role in cancer would have a diagnostic, prognostic, and therapeutic impact.
Ovarian cancer is one of the many types of cancer in which platelets interact with immune and nonimmune cellular components of the TME, including endothelial cells, pericytes, CAFs, neutrophils, macrophages, and T and B lymphocytes. The adhesion molecules on the platelets mediate the platelets’ binding to endothelial cells and extravasation [355,356,357]. The proangiogenic factors released by activated platelets, including VEGF and angiopoietin-1, facilitate neovascularization, lymphangiogenesis [61], and remodeling of the ECM [100], required for tumor growth and metastasis. The binding of platelet CLEC-2 to podoplanin on pericytes [125] and the release of platelet-derived mediators, such as TGF-β and PDGF, promote pericyte accumulation and interaction with endothelial cells [64]. Thus, platelets, through pericytes, contribute to vessel density [127] and integrity [128,129]. Platelets [147,148], platelet microparticles [24], and platelet-derived mitochondria [24] contribute to the transformation of fibroblasts to CAFs, which promotes the peritoneal dissemination of ovarian cancer cells [160] and the formation of malignant ascites [358].
Platelets communicate with immune cells and induce a tolerogenic state [359]. Platelets bind neutrophils [181,182,183,188,189] and facilitate neutrophil recruitment to the TME. Cytokines and chemokines released from platelets promote neutrophil migration to the TME [360]. Neutrophils activate platelets and promote thrombosis by releasing prothrombotic mediators and generating NETs [360,361]. Platelet–macrophage interaction favors immunosuppressive macrophage polarization [222,362]. Activated monocytes, in turn, promote coagulation and thrombosis [230]. Platelets promote the exhaustion of CD4+ T helper and CD8+ cytotoxic T cells [321] in conjunction with Tregs and Bregs [363]. Moreover, platelets promote the expression of immune checkpoint molecules on ovarian cancer cells, which further supports cancer progression [14] and can affect patients’ responses to immunotherapies [307,364].
Thrombocytosis is responsible for the approximately 8-fold elevated risk of ovarian cancer occurrence and 5-fold mortality rate in ovarian cancer patients [28]. An elevated platelet count is significantly associated with poor progression-free and overall survival of patients with localized and advanced cancer stages [365]. Moreover, ovarian cancer patients with high platelet numbers respond less to chemotherapy and demonstrate shorter treatment-free intervals caused by increased resistance [366,367]. This makes platelet count an important parameter for the preoperative assessment of pelvic mass [368] and in evaluating the response to therapy in ovarian cancer patients [369].
Antiplatelet reagents that have been extensively studied in cardiovascular disease [370,371] can be considered for potential therapeutic goals in cancers, including ovarian cancer. Agents that hinder platelet functions, including aspirin, ADP receptor antagonists (e.g., ticagrelor and clopidogrel), thrombin receptor-targeting molecules, inhibitors of GP Ib-IX, P-selectin, and CLEC-2, can be used as complementary therapeutics in ovarian cancer. Although they have a role in preventing cancer progression [372,373,374], long-term usage of antiplatelet agents such as aspirin, clopidogrel, and ticagrelor is associated with increased bleeding risk [375,376]. The blockade of CLEC-2 can be a beneficial alternative for patients with elevated bleeding susceptibility, since this approach a lower tendency to cause hemorrhage due to its inhibition of platelet activation without substantially affecting aggregation [227,377]. Including agents that target EGFR, PDGFR, and FGFR in anti-VEGF therapy can also improve the efficacy of cancer treatment by rewiring multiple cellular pathways and minimizing drug resistance in ovarian and other cancers [89,378,379]. Apart from suppressing the viability, progression, and dissemination of tumor cells, platelet-targeting compounds interfere with platelet-induced angiogenesis, thrombosis, ascites formation, and immunosuppression. Multiple clinical trials have assessed the impact of antiplatelet agents, alone or with chemotherapeutic drugs, on preventing or treating ovarian cancer. Significantly, platelet counts or platelet-derived molecules can be used as diagnostic, prognostic, or predictive biomarkers [380].
Of note, thrombocytopenia, a side-effect of cancer treatment, is a common phenomenon in cancer patients [381]. Platelet transfusion and platelet-stimulating agent treatment are clinically exploited applications to recover the platelet counts of cancer patients with immune thrombocytopenia and those who have undergone chemotherapy or radiotherapy. On the other hand, thrombocytosis supports tumor growth and chemoresistance by enhancing platelet-directed alterations in cancer cells and TME components [30,382]. Therefore, extra caution must be taken during the treatment of thrombocytopenia to avoid promoting cancer progression.

5. Conclusions

Paraneoplastic thrombocytosis in ovarian cancer is due to IL-6 originating from cancer cells and consequent thrombopoietin released from the liver. Thrombocytosis and activated platelets can be detected in advanced diseases, and might be associated with cancer-induced venous thrombosis and reduced overall survival. Besides cancer cells, platelets interact with other components of the TME. Antiplatelet strategies might interfere with neoangiogenesis, lymphangiogenesis, ECM remodeling, and the immunosuppressive profile of the TME. In addition, antiplatelet agents may reduce the formation of malignant ascites and premetastatic niches. Future studies must examine platelet—TME interaction and plan specific treatments for ovarian and other cancers.

Author Contributions

Conceptualization, M.S.C.; initial draft preparation, S.O. and M.S.C.; draft review and editing, S.O. and M.S.C.; visualization, S.O. and M.S.C.; supervision, M.S.C.; project administration, M.S.C. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by an Early Career Investigator Grant from the Ovarian Cancer Research Alliance (ECIG-P-2018–600065); the Ovarian Cancer Research Fund in honor of Liza Chance from the Foundation for Women’s Cancer; and the National Institutes of Health (P50 CA217685) (all to M.S.C.).

Acknowledgments

The authors thank Vahid Afshar-Kharghan, Section of Benign Hematology, Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center) for his critical reading and valuable comments on the manuscript. Figures were created using Biorender.com.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
  2. Jelovac, D.; Armstrong, D.K. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J. Clin. 2011, 61, 183–203. [Google Scholar] [CrossRef] [PubMed]
  3. Etemadmoghadam, D.; Defazio, A.; Beroukhim, R.; Mermel, C.; George, J.; Getz, G.; Tothill, R.; Okamoto, A.; Raeder, M.B.; Harnett, P.; et al. Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemoresistance in Ovarian Carcinomas. Clin. Cancer Res. 2009, 15, 1417–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Patch, A.-M.; Christie, E.L.; Etemadmoghadam, D.; Garsed, D.W.; George, J.; Fereday, S.; Nones, K.; Cowin, P.; Alsop, K.; Bailey, P.J.; et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature 2015, 521, 489–494. [Google Scholar] [CrossRef]
  5. Jiménez-Sánchez, A.; Cybulska, P.; Mager, K.L.; Koplev, S.; Cast, O.; Couturier, D.-L.; Memon, D.; Selenica, P.; Nikolovski, I.; Mazaheri, Y.; et al. Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet. 2020, 52, 582–593. [Google Scholar] [CrossRef]
  6. Jin, M.-Z.; Jin, W.-L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 166. [Google Scholar] [CrossRef]
  7. Jordan, K.R.; Sikora, M.J.; Slansky, J.E.; Minic, A.; Richer, J.K.; Moroney, M.R.; Hu, J.; Wolsky, R.J.; Watson, Z.L.; Yamamoto, T.M.; et al. The Capacity of the Ovarian Cancer Tumor Microenvironment to Integrate Inflammation Signaling Conveys a Shorter Disease-free Interval. Clin. Cancer Res. 2020, 26, 6362–6373. [Google Scholar] [CrossRef]
  8. CChen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 2015, 13, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  9. Giraldo, N.A.; Sanchez-Salas, R.; Peske, J.D.; Vano, Y.; Becht, E.; Petitprez, F.; Validire, P.; Ingels, A.; Cathelineau, X.; Fridman, W.H.; et al. The clinical role of the TME in solid cancer. Br. J. Cancer 2019, 120, 45–53. [Google Scholar] [CrossRef]
  10. Corvigno, S.; Burks, J.K.; Hu, W.; Zhong, Y.; Jennings, N.B.; Fleming, N.D.; Westin, S.N.; Fellman, B.; Liu, J.; Sood, A.K. Immune microenvironment composition in high-grade serous ovarian cancers based on BRCA mutational status. J. Cancer Res. Clin. Oncol. 2021, 147, 3545–3555. [Google Scholar] [CrossRef]
  11. Kreuzinger, C.; Geroldinger, A.; Smeets, D.; Braicu, E.I.; Sehouli, J.; Koller, J.; Wolf, A.; Darb-Esfahani, S.; Joehrens, K.; Vergote, I.; et al. A Complex Network of Tumor Microenvironment in Human High-Grade Serous Ovarian Cancer. Clin. Cancer Res. 2017, 23, 7621–7632. [Google Scholar] [CrossRef] [Green Version]
  12. Ukita, M.; Hamanishi, J.; Yoshitomi, H.; Yamanoi, K.; Takamatsu, S.; Ueda, A.; Suzuki, H.; Hosoe, Y.; Furutake, Y.; Taki, M.; et al. CXCL13-producing CD4+ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. J. Clin. Investig. 2022, 7, e157215. [Google Scholar] [CrossRef] [PubMed]
  13. Taylor, S.E.; Chan, D.K.; Yang, D.; Bruno, T.; Lieberman, R.; Siddiqui, J.; Soong, T.R.; Coffman, L.; Buckanovich, R.J. Shifting the Soil: Metformin Treatment Decreases the Protumorigenic Tumor Microenvironment in Epithelial Ovarian Cancer. Cancers 2022, 14, 2298. [Google Scholar] [CrossRef] [PubMed]
  14. Cho, M.S.; Lee, H.; Gonzalez-Delgado, R.; Li, D.; Sasano, T.; Carlos-Alcalde, W.; Ma, Q.; Liu, J.; Sood, A.K.; Afshar-Kharghan, V. Platelets Increase the Expression of PD-L1 in Ovarian Cancer. Cancers 2022, 14, 2498. [Google Scholar] [CrossRef] [PubMed]
  15. Miyashita, T.; Tajima, H.; Gabata, R.; Okazaki, M.; Shimbashi, H.; Ohbatake, Y.; Okamoto, K.; Nakanuma, S.; Sakai, S.; Makino, I.; et al. Impact of Extravasated Platelet Activation and Podoplanin-positive Cancer-associated Fibroblasts in Pancreatic Cancer Stroma. Anticancer. Res. 2019, 39, 5565–5572. [Google Scholar] [CrossRef] [PubMed]
  16. Nasti, T.H.; Bullard, D.C.; Yusuf, N. P-selectin enhances growth and metastasis of mouse mammary tumors by promoting regulatory T cell infiltration into the tumors. Life Sci. 2015, 131, 11–18. [Google Scholar] [CrossRef]
  17. Yamaguchi, T.; Fushida, S.; Kinoshita, J.; Okazaki, M.; Ishikawa, S.; Ohbatake, Y.; Terai, S.; Okamoto, K.; Nakanuma, S.; Makino, I.; et al. Extravasated platelet aggregation contributes to tumor progression via the accumulation of myeloid-derived suppressor cells in gastric cancer with peritoneal metastasis. Oncol. Lett. 2020, 20, 1879–1887. [Google Scholar] [CrossRef]
  18. Lonsdorf, A.S.; Krämer, B.F.; Fahrleitner, M.; Schönberger, T.; Gnerlich, S.; Ring, S.; Gehring, S.; Schneider, S.W.; Kruhlak, M.J.; Meuth, S.G.; et al. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 Integrin Mediates Interaction of Melanoma Cells with Platelets. J. Biol. Chem. 2012, 287, 2168–2178. [Google Scholar] [CrossRef] [Green Version]
  19. Shirai, T.; Inoue, O.; Tamura, S.; Tsukiji, N.; Sasaki, T.; Endo, H.; Satoh, K.; Osada, M.; Sato-Uchida, H.; Fujii, H.; et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J. Thromb. Haemost. 2016, 15, 513–525. [Google Scholar] [CrossRef] [Green Version]
  20. Haemmerle, M.; Bottsford-Miller, J.; Pradeep, S.; Taylor, M.L.; Choi, H.-J.; Hansen, J.M.; Dalton, H.J.; Stone, R.L.; Cho, M.S.; Nick, A.M.; et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J. Clin. Investig. 2016, 126, 1885–1896. [Google Scholar] [CrossRef] [Green Version]
  21. Joseph, R.; Soundararajan, R.; Vasaikar, S.; Yang, F.; Allton, K.L.; Tian, L.; Hollander, P.D.; Isgandarova, S.; Haemmerle, M.; Mino, B.; et al. CD8+ T cells inhibit metastasis and CXCL4 regulates its function. Br. J. Cancer 2021, 125, 176–189. [Google Scholar] [CrossRef]
  22. Plantureux, L.; Mège, D.; Crescence, L.; Carminita, E.; Robert, S.; Cointe, S.; Brouilly, N.; Ezzedine, W.; Dignat-George, F.; Dubois, C.; et al. The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Res. 2020, 80, 291–303. [Google Scholar] [CrossRef] [PubMed]
  23. Pavlovic, N.; Rani, B.; Gerwins, P.; Heindryckx, F. Platelets as Key Factors in Hepatocellular Carcinoma. Cancers 2019, 11, 1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Levoux, J.; Prola, A.; Lafuste, P.; Gervais, M.; Chevallier, N.; Koumaiha, Z.; Kefi, K.; Braud, L.; Schmitt, A.; Yacia, A.; et al. Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab. 2021, 33, 283–299. [Google Scholar] [CrossRef]
  25. Sibilano, M.; Tullio, V.; Adorno, G.; Savini, I.; Gasperi, V.; Catani, M.V. Platelet-Derived miR-126-3p Directly Targets AKT2 and Exerts Anti-Tumor Effects in Breast Cancer Cells: Further Insights in Platelet-Cancer Interplay. Int. J. Mol. Sci. 2022, 23, 5484. [Google Scholar] [CrossRef] [PubMed]
  26. Ye, B.; Li, F.; Chen, M.; Weng, Y.; Qi, C.; Xie, Y.; Zhang, Q.; Ding, H.; Zhang, J.; Gao, X. A panel of platelet-associated circulating long non-coding RNAs as potential biomarkers for colorectal cancer. Genomics 2021, 114, 31–37. [Google Scholar] [CrossRef] [PubMed]
  27. Stone, R.L.; Nick, A.M.; McNeish, I.A.; Balkwill, F.; Han, H.D.; Bottsford-Miller, J.; Rupaimoole, R.; Armaiz-Pena, G.N.; Pecot, C.V.; Coward, J.; et al. Paraneoplastic Thrombocytosis in Ovarian Cancer. N. Engl. J. Med. 2012, 366, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Allensworth, S.; Langstraat, C.; Martin, J.; Lemens, M.; McGree, M.; Weaver, A.; Dowdy, S.; Podratz, K.; Bakkum-Gamez, J. Evaluating the prognostic significance of preoperative thrombocytosis in epithelial ovarian cancer. Gynecol. Oncol. 2013, 130, 499–504. [Google Scholar] [CrossRef] [Green Version]
  29. Cohen, J.G.; Tran, A.-Q.; Rimel, B.; Cass, I.; Walsh, C.S.; Karlan, B.Y.; Li, A.J. Thrombocytosis at secondary cytoreduction for recurrent ovarian cancer predicts suboptimal resection and poor survival. Gynecol. Oncol. 2014, 132, 556–559. [Google Scholar] [CrossRef]
  30. Bottsford-Miller, J.; Choi, H.-J.; Dalton, H.J.; Stone, R.L.; Cho, M.S.; Haemmerle, M.; Nick, A.M.; Pradeep, S.; Zand, B.; Previs, R.A.; et al. Differential Platelet Levels Affect Response to Taxane-Based Therapy in Ovarian Cancer. Clin. Cancer Res. 2015, 21, 602–610. [Google Scholar] [CrossRef] [Green Version]
  31. Cho, M.S.; Bottsford-Miller, J.; Vasquez, H.G.; Stone, R.; Zand, B.; Kroll, M.H.; Sood, A.K.; Afshar-Kharghan, V. Platelets increase the proliferation of ovarian cancer cells. Blood 2012, 120, 4869–4872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Guo, Y.; Cui, W.; Pei, Y.; Xu, D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway. Gynecol. Oncol. 2019, 153, 639–650. [Google Scholar] [CrossRef] [PubMed]
  33. Haemmerle, M.; Taylor, M.L.; Gutschner, T.; Pradeep, S.; Cho, M.S.; Sheng, J.; Lyons, Y.M.; Nagaraja, A.S.; Dood, R.L.; Wen, Y.; et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 2017, 8, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Davis, A.N.; Afshar-Kharghan, V.; Sood, A.K. Platelet Effects on Ovarian Cancer. Semin. Oncol. 2014, 41, 378–384. [Google Scholar] [CrossRef] [Green Version]
  35. Cho, M.S.; Gonzalez-Pagan, O.; Pinto, K.C.; Sood, A.; Afshar-Kharghan, V. The Inhibition of Platelets Restore Anti-Tumor Immune Response to Ovarian Cancer and Its Therapeutic Implication. Blood 2018, 132, 3698. [Google Scholar] [CrossRef]
  36. Saboor, M.; Ayub, Q.; Ilyas, S. Moinuddin Platelet receptors; an instrumental of platelet physiology. Pak. J. Med. Sci. 2013, 29, 891–896. [Google Scholar] [CrossRef]
  37. McEver, R.P.; Beckstead, J.H.; Moore, K.L.; Marshall-Carlson, L.; Bainton, D.F. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Investig. 1989, 84, 92–99. [Google Scholar] [CrossRef] [Green Version]
  38. Rayes, J.; Lax, S.; Wichaiyo, S.; Watson, S.K.; Di, Y.; Lombard, S.; Grygielska, B.; Smith, S.W.; Skordilis, K.; Watson, S.P. The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat. Commun. 2017, 8, 2239. [Google Scholar] [CrossRef] [Green Version]
  39. Cognasse, F.; Nguyen, K.A.; Damien, P.; McNicol, A.; Pozzetto, B.; Hamzeh-Cognasse, H.; Garraud, O. The inflammatory role of platelets via their TLRs and Siglec receptors. Front. Immunol. 2015, 6, 83. [Google Scholar] [CrossRef] [Green Version]
  40. Clark, S.R.; Ma, A.C.; Tavener, S.A.; McDonald, B.; Goodarzi, Z.; Kelly, M.M.; Patel, K.D.; Chakrabarti, S.; McAvoy, E.; Sinclair, G.D.; et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 2007, 13, 463–469. [Google Scholar] [CrossRef]
  41. Cho, M.S.; Noh, K.; Haemmerle, M.; Li, D.; Park, H.; Hu, Q.; Hisamatsu, T.; Mitamura, T.; Mak, S.L.C.; Kunapuli, S.; et al. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood 2017, 130, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
  42. Camerer, E.; Qazi, A.A.; Duong, D.N.; Cornelissen, I.; Advincula, R.; Coughlin, S.R. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 2004, 104, 397–401. [Google Scholar] [CrossRef]
  43. Jain, S.; Zuka, M.; Liu, J.; Russell, S.; Dent, J.; Guerrero, J.A.; Forsyth, J.; Maruszak, B.; Gartner, T.K.; Felding-Habermann, B.; et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc. Natl. Acad. Sci. USA 2007, 104, 9024–9028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Tynan, S.S.; Andersen, N.H.; Wills, M.T.; Harker, L.A.; Hanson, S.R. On the multiplicity of platelet prostaglandin receptors. Prostaglandins 1984, 27, 683–696. [Google Scholar] [CrossRef] [PubMed]
  45. Paul, B.Z.S.; Jin, J.; Kunapuli, S.P. Molecular Mechanism of Thromboxane A2-induced Platelet Aggregation. J. Biol. Chem. 1999, 274, 29108–29114. [Google Scholar] [CrossRef] [Green Version]
  46. Burgers, J.A.; Akkerman, J.W.N. Regulation of the receptor for platelet-activating factor on human platelets. Biochem. J. 1993, 291, 157–161. [Google Scholar] [CrossRef] [Green Version]
  47. Motohashi, K.; Shibata, S.; Ozaki, Y.; Yatomi, Y.; Igarashi, Y. Identification of lysophospholipid receptors in human platelets: The relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate. FEBS Lett. 2000, 468, 189–193. [Google Scholar] [CrossRef] [Green Version]
  48. Tsuji, M.; Ezumi, Y.; Arai, M.; Takayama, H. A Novel Association of Fc Receptor γ-Chain with Glycoprotein VI and Their Co-expression as a Collagen Receptor in Human Platelets. J. Biol. Chem. 1997, 272, 23528–23531. [Google Scholar] [CrossRef] [Green Version]
  49. Hasegawa, S.; Pawankar, R.; Suzuki, K.; Nakahata, T.; Furukawa, S.; Okumura, K.; Ra, C. Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its’ intracellular expression in human megakaryocytes. Blood 1999, 93, 2543–2551. [Google Scholar] [CrossRef]
  50. Santoso, S.; Sachs, U.J.H.; Kroll, H.; Linder, M.; Ruf, A.; Preissner, K.T.; Chavakis, T. The Junctional Adhesion Molecule 3 (JAM-3) on Human Platelets is a Counterreceptor for the Leukocyte Integrin Mac-1. J. Exp. Med. 2002, 196, 679–691. [Google Scholar] [CrossRef]
  51. Newman, D.K.; Hamilton, C.; Newman, P.J. Inhibition of antigen-receptor signaling by Platelet Endothelial Cell Adhesion Molecule-1 (CD31) requires functional ITIMs, SHP-2, and p56lck. Blood 2001, 97, 2351–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Hinterleitner, C.; Strähle, J.; Malenke, E.; Hinterleitner, M.; Henning, M.; Seehawer, M.; Bilich, T.; Heitmann, J.; Lutz, M.; Mattern, S.; et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat. Commun. 2021, 12, 7005. [Google Scholar] [CrossRef] [PubMed]
  53. Zhou, Y.; Heitmann, J.S.; Clar, K.L.; Kropp, K.N.; Hinterleitner, M.; Engler, T.; Koch, A.; Hartkopf, A.D.; Zender, L.; Salih, H.R.; et al. Platelet-expressed immune checkpoint regulator GITRL in breast cancer. Cancer Immunol. Immunother. 2021, 70, 2483–2496. [Google Scholar] [CrossRef] [PubMed]
  54. Rittig, S.M.; Lutz, M.S.; Clar, K.L.; Zhou, Y.; Kropp, K.N.; Koch, A.; Hartkopf, A.D.; Hinterleitner, M.; Zender, L.; Salih, H.R.; et al. Controversial Role of the Immune Checkpoint OX40L Expression on Platelets in Breast Cancer Progression. Front. Oncol. 2022, 12, 917834. [Google Scholar] [CrossRef]
  55. Dale, G.L.; Friese, P.; Batar, P.; Hamilton, S.F.; Reed, G.L.; Jackson, K.W.; Clemetson, K.J.; Alberio, L. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 2002, 415, 175–179. [Google Scholar] [CrossRef] [PubMed]
  56. Isenberg, J.S.; Romeo, M.J.; Yu, C.; Nghiem, K.; Monsale, J.; Rick, M.E.; Wink, D.A.; Frazier, W.A.; Roberts, D.D. Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 2008, 111, 613–623. [Google Scholar] [CrossRef] [Green Version]
  57. Hamzeh-Cognasse, H.; Damien, P.; Chabert, A.; Pozzetto, B.; Cognasse, F.; Garraud, O. Platelets and Infections-Complex Interactions with Bacteria. Front. Immunol. 2015, 6, 82. [Google Scholar] [CrossRef] [Green Version]
  58. Inwald, D.P.; McDowall, A.; Peters, M.J.; Callard, R.E.; Klein, N.J. CD40 Is Constitutively Expressed on Platelets and Provides a Novel Mechanism for Platelet Activation. Circ. Res. 2003, 92, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
  59. Huang, J.; Jochems, C.; Talaie, T.; Anderson, A.; Jales, A.; Tsang, K.Y.; Madan, R.A.; Gulley, J.L.; Schlom, J. Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood 2012, 120, 3030–3038. [Google Scholar] [CrossRef] [Green Version]
  60. Fitch-Tewfik, J.L.; Flaumenhaft, R. Platelet Granule Exocytosis: A Comparison with Chromaffin Cells. Front. Endocrinol. 2013, 4, 77. [Google Scholar] [CrossRef] [Green Version]
  61. Wojtukiewicz, M.Z.; Sierko, E.; Hempel, D.; Tucker, S.C.; Honn, K.V. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev. 2017, 36, 249–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Kim, S.; Garcia, A.; Jackson, S.P.; Kunapuli, S.P. Insulin-like growth factor-1 regulates platelet activation through PI3-Kα isoform. Blood 2007, 110, 4206–4213. [Google Scholar] [CrossRef] [PubMed]
  63. Kubota, S.; Kawata, K.; Yanagita, T.; Doi, H.; Kitoh, T.; Takigawa, M. Abundant Retention and Release of Connective Tissue Growth Factor (CTGF/CCN2) by Platelets. J. Biochem. 2004, 136, 279–282. [Google Scholar] [CrossRef] [PubMed]
  64. Haemmerle, M.; Stone, R.L.; Menter, D.G.; Afshar-Kharghan, V.; Sood, A.K. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 2018, 33, 965–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Walsh, P.N. Platelets and coagulation proteins. Fed. Proc. 1981, 40, 2086–2091. [Google Scholar] [PubMed]
  66. Stavenuiter, F.; Davis, N.F.; Duan, E.; Gale, A.J.; Heeb, M.J. Platelet protein S directly inhibits procoagulant activity on platelets and microparticles. Thromb. Haemost. 2013, 109, 229–237. [Google Scholar] [CrossRef] [Green Version]
  67. Trivedi, V.; Boire, A.; Tchernychev, B.; Kaneider, N.C.; Leger, A.J.; O’Callaghan, K.; Covic, L.; Kuliopulos, A. Platelet Matrix Metalloprotease-1 Mediates Thrombogenesis by Activating PAR1 at a Cryptic Ligand Site. Cell 2009, 137, 332–343. [Google Scholar] [CrossRef] [Green Version]
  68. Sheu, J.R.; Fong, T.H.; Liu, C.M.; Shen, M.Y.; Chen, T.L.; Chang, Y.; Lu, M.S.; Hsiao, G. Expression of matrix metalloproteinase-9 in human platelets: Regulation of platelet activation in in vitro and in vivo studies. Br. J. Pharmacol. 2004, 143, 193–201. [Google Scholar] [CrossRef] [Green Version]
  69. Santos-Martínez, M.J.; Medina, C.; Jurasz, P.; Radomski, M.W. Role of metalloproteinases in platelet function. Thromb. Res. 2008, 121, 535–542. [Google Scholar] [CrossRef]
  70. Lishko, V.K.; Yakubenko, V.P.; Ugarova, T.P.; Podolnikova, N.P. Leukocyte integrin Mac-1 (CD11b/CD18, αMβ2, CR3) acts as a functional receptor for platelet factor 4. J. Biol. Chem. 2018, 293, 6869–6882. [Google Scholar] [CrossRef] [Green Version]
  71. Walz, A.; Dewald, B.; von Tscharner, V.; Baggiolini, M. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J. Exp. Med. 1989, 170, 1745–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Chen, R.; Jin, G.; Li, W.; McIntyre, T.M. Epidermal Growth Factor (EGF) Autocrine Activation of Human Platelets Promotes EGF Receptor–Dependent Oral Squamous Cell Carcinoma Invasion, Migration, and Epithelial Mesenchymal Transition. J. Immunol. 2018, 201, 2154–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Chen, Y.; Zhong, H.; Zhao, Y.; Luo, X.; Gao, W. Role of platelet biomarkers in inflammatory response. Biomark. Res. 2020, 8, 28. [Google Scholar] [CrossRef]
  74. Bock, M.; Bergmann, C.B.; Jung, S.; Kalbitz, M.; Relja, B.; Huber-Wagner, S.; Biberthaler, P.; van Griensven, M.; Hanschen, M. The posttraumatic activation of CD4+ T regulatory cells is modulated by TNFR2- and TLR4-dependent pathways, but not by IL-10. Cell. Immunol. 2018, 331, 137–145. [Google Scholar] [CrossRef]
  75. Raiden, S.; Schettini, J.; Salamone, G.; Trevani, A.; Vermeulen, M.; Gamberale, R.; Giordano, M.; Geffner, J. Human Platelets Produce Granulocyte-Macrophage Colony-Stimulating Factor and Delay Eosinophil Apoptosis. Lab. Investig. 2003, 83, 589–598. [Google Scholar] [CrossRef] [Green Version]
  76. Kim, H.; Conway, E.M. Platelets and Complement Crosstalk in Early Atherogenesis. Front. Cardiovasc. Med. 2019, 6, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. George, J.N.; Saucerman, S. Platelet Igg, Iga, Igm, and Albumin: Correlation of Platelet and Plasma Concentrations in Normal Subjects and in Patients with Itp or Dysproteinemia. Blood 1988, 72, 362–365. [Google Scholar] [CrossRef]
  78. Huff, T.; Otto, A.M.; Müller, C.S.G.; Meier, M.; Hannappel, E. Thymosin β4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. FASEB J. 2002, 16, 691–696. [Google Scholar] [CrossRef] [Green Version]
  79. de Jong, J.S.S.G.; Dekker, L.R.C. Platelets and Cardiac Arrhythmia. Front. Physiol. 2010, 1, 166. [Google Scholar] [CrossRef] [Green Version]
  80. Chesney, C.M.; Harper, E.; Colman, R.W. Human Platelet Collagenase. J. Clin. Investig. 1974, 53, 1647–1654. [Google Scholar] [CrossRef] [Green Version]
  81. Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020, 77, 1745–1770. [Google Scholar] [CrossRef] [Green Version]
  82. Nagy, J.A.; Chang, S.-H.; Dvorak, A.M.; Dvorak, H.F. Why are tumour blood vessels abnormal and why is it important to know. Br. J. Cancer 2009, 100, 865–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Klein, D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front. Oncol. 2018, 8, 367. [Google Scholar] [CrossRef] [PubMed]
  84. Chaplin, D.J.; Olive, P.L.; Durand, R.E. Intermittent blood flow in a murine tumor: Radiobiological effects. Cancer Res. 1987, 47, 597–601. [Google Scholar] [PubMed]
  85. Fitzgerald, G.; Soro-Arnaiz, I.; de Bock, K. The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer. Front. Cell Dev. Biol. 2018, 6, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Dvorak, H.F.; Brown, L.F.; Detmar, M.; Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 1995, 146, 1029–1039. [Google Scholar] [PubMed]
  87. Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; et al. A Phase 3 Trial of Bevacizumab in Ovarian Cancer. N. Engl. J. Med. 2011, 365, 2484–2496. [Google Scholar] [CrossRef] [Green Version]
  88. Burger, R.A.; Sill, M.W.; Monk, B.J.; Greer, B.E.; Sorosky, J.I. Phase II Trial of Bevacizumab in Persistent or Recurrent Epithelial Ovarian Cancer or Primary Peritoneal Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 5165–5171. [Google Scholar] [CrossRef] [PubMed]
  89. Choi, H.-J.; Pena, G.N.A.; Pradeep, S.; Cho, M.S.; Coleman, R.L.; Sood, A.K. Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Rev. 2014, 34, 19–40. [Google Scholar] [CrossRef] [Green Version]
  90. Kisucka, J.; Butterfield, C.E.; Duda, D.G.; Eichenberger, S.C.; Saffaripour, S.; Ware, J.; Ruggeri, Z.M.; Jain, R.K.; Folkman, J.; Wagner, D.D. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc. Natl. Acad. Sci. USA 2006, 103, 855–860. [Google Scholar] [CrossRef] [Green Version]
  91. Martins, P.D.C.; García-Vallejo, J.-J.; van Thienen, J.V.; Fernandez-Borja, M.; van Gils, J.M.; Beckers, C.; Horrevoets, A.J.; Hordijk, P.L.; Zwaginga, J.-J. P-Selectin Glycoprotein Ligand-1 Is Expressed on Endothelial Cells and Mediates Monocyte Adhesion to Activated Endothelium. Arter. Thromb. Vasc. Biol. 2007, 27, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Gong, L.; Cai, Y.; Zhou, X.; Yang, H. Activated Platelets Interact with Lung Cancer Cells Through P-Selectin Glycoprotein Ligand-1. Pathol. Oncol. Res. 2012, 18, 989–996. [Google Scholar] [CrossRef] [PubMed]
  93. Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2020, 46, 100733. [Google Scholar] [CrossRef]
  94. Yan, M.; Lesyk, G.; Radziwon-Balicka, A.; Jurasz, P. Pharmacological Regulation of Platelet Factors That Influence Tumor Angiogenesis. Semin. Oncol. 2014, 41, 370–377. [Google Scholar] [CrossRef]
  95. Raica, M.; Cimpean, A.M. Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Pharmaceuticals 2010, 3, 572–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Langer, H.; May, A.E.; Daub, K.; Heinzmann, U.; Lang, P.; Schumm, M.; Vestweber, D.; Massberg, S.; Schönberger, T.; Pfisterer, I.; et al. Adherent Platelets Recruit and Induce Differentiation of Murine Embryonic Endothelial Progenitor Cells to Mature Endothelial Cells In Vitro. Circ. Res. 2006, 98, e2–e10. [Google Scholar] [CrossRef] [Green Version]
  97. Trikha, M.; Zhou, Z.; Timar, J.; Raso, E.; Kennel, M.; Emmell, E.; Nakada, M.T. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res. 2002, 62, 2824–2833. [Google Scholar]
  98. Ho-Tin-Noé, B.; Goerge, T.; Cifuni, S.M.; Duerschmied, D.; Wagner, D.D. Platelet Granule Secretion Continuously Prevents Intratumor Hemorrhage. Cancer Res. 2008, 68, 6851–6858. [Google Scholar] [CrossRef] [Green Version]
  99. Schumacher, D.; Strilic, B.; Sivaraj, K.K.; Wettschureck, N.; Offermanns, S. Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor. Cancer Cell 2013, 24, 130–137. [Google Scholar] [CrossRef] [Green Version]
  100. Sun, C.; Feng, S.-B.; Cao, Z.-W.; Bei, J.-J.; Chen, Q.; Xu, X.-J.; Zhou, Z.; Yu, Z.-P.; Hu, H.-Y. Up-Regulated Expression of Matrix Metalloproteinases in Endothelial Cells Mediates Platelet Microvesicle-Induced Angiogenesis. Cell. Physiol. Biochem. 2017, 41, 2319–2332. [Google Scholar] [CrossRef]
  101. Yuan, L.; Liu, X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol. Med. Rep. 2014, 11, 2449–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Artini, P.G.; Ruggiero, M.; Monteleone, P.; Carpi, A.; Cristello, F.; Cela, V.; Genazzani, A.R. Vascular endothelial growth factor and its soluble receptor in benign and malignant ovarian tumors. Biomed. Pharmacother. 2008, 62, 373–377. [Google Scholar] [CrossRef] [PubMed]
  103. Byrne, A.T.; Ross, L.; Holash, J.; Nakanishi, M.; Hu, L.; Hofmann, J.I.; Yancopoulos, G.D.; Jaffe, R.B. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin. Cancer Res. 2003, 9, 5721–5728. [Google Scholar] [PubMed]
  104. Li, L.; Wang, L.; Zhang, W.; Tang, B.; Zhang, J.; Song, H.; Yao, D.; Tang, Y.; Chen, X.; Yang, Z.; et al. Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer. Res. 2004, 24, 1973–1979. [Google Scholar] [PubMed]
  105. Matei, D.; Kelich, S.; Cao, L.; Menning, N.; Emerson, R.E.; Rao, J.; Jeng, M.H.; Sledge, G.W. PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biol. Ther. 2007, 6, 1951–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Silini, A.; Ghilardi, C.; Figini, S.; Sangalli, F.; Fruscio, R.; Dahse, R.; Pedley, R.B.; Giavazzi, R.; Bani, M. Regulator of G-protein signaling 5 (RGS5) protein: A novel marker of cancer vasculature elicited and sustained by the tumor’s proangiogenic microenvironment. Cell. Mol. Life Sci. 2011, 69, 1167–1178. [Google Scholar] [CrossRef] [Green Version]
  107. Bergmeier, W.; Piffath, C.L.; Goerge, T.; Cifuni, S.M.; Ruggeri, Z.M.; Ware, J.; Wagner, D.D. The role of platelet adhesion receptor GPIbα far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc. Natl. Acad. Sci. USA 2006, 103, 16900–16905. [Google Scholar] [CrossRef] [Green Version]
  108. Borsig, L.; Wong, R.; Feramisco, J.; Nadeau, D.R.; Varki, N.M.; Varki, A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. USA 2001, 98, 3352–3357. [Google Scholar] [CrossRef] [Green Version]
  109. Zhang, N.; Zhang, W.-J.; Cai, H.-Q.; Liu, H.-L.; Peng, L.; Li, C.-H.; Ye, L.-Y.; Xu, S.-Q.; Yang, Z.-H.; Lou, J.-N. Platelet adhesion and fusion to endothelial cell facilitate the metastasis of tumor cell in hypoxia-reoxygenation condition. Clin. Exp. Metastasis 2010, 28, 1–12. [Google Scholar] [CrossRef]
  110. Stacker, S.A.; Williams, S.P.; Karnezis, T.; Shayan, R.; Fox, S.B.; Achen, M.G. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 2014, 14, 159–172. [Google Scholar] [CrossRef]
  111. Suzuki-Inoue, K. Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation. J. Biochem. 2011, 150, 127–132. [Google Scholar] [CrossRef] [PubMed]
  112. Lim, L.; Bui, H.; Farrelly, O.; Yang, J.; Li, L.; Enis, D.; Ma, W.; Chen, M.; Oliver, G.; Welsh, J.D.; et al. Hemostasis stimulates lymphangiogenesis through release and activation of VEGFC. Blood 2019, 134, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
  113. Da, M.-X.; Wu, Z.; Tian, H.-W. Tumor Lymphangiogenesis and Lymphangiogenic Growth Factors. Arch. Med. Res. 2008, 39, 365–372. [Google Scholar] [CrossRef]
  114. Sopo, M.; Anttila, M.; Muukkonen, O.-T.; Ylä-Herttuala, S.; Kosma, V.-M.; Keski-Nisula, L.; Sallinen, H. Microvessels in Epithelial Ovarian Tumors: High Microvessel Density Is a Significant Feature of Malignant Ovarian Tumors. Anticancer. Res. 2020, 40, 6923–6931. [Google Scholar] [CrossRef]
  115. Kitano, H.; Kageyama, S.-I.; Hewitt, S.M.; Hayashi, R.; Doki, Y.; Ozaki, Y.; Fujino, S.; Takikita, M.; Kubo, H.; Fukuoka, J. Podoplanin Expression in Cancerous Stroma Induces Lymphangiogenesis and Predicts Lymphatic Spread and Patient Survival. Arch. Pathol. Lab. Med. 2010, 134, 1520–1527. [Google Scholar] [CrossRef]
  116. Bianchi, R.; Fischer, E.; Yuen, D.; Ernst, E.; Ochsenbein, A.M.; Chen, L.; Otto, V.I.; Detmar, M. Mutation of Threonine 34 in Mouse Podoplanin-Fc Reduces CLEC-2 Binding and Toxicity in Vivo While Retaining Anti-lymphangiogenic Activity. J. Biol. Chem. 2014, 289, 21016–21027. [Google Scholar] [CrossRef] [Green Version]
  117. Zhao, R.-W.; Yang, S.-H.; Cai, L.-Q.; Zhang, J.; Wang, J.; Wang, Z.-H. Roles of vascular endothelial growth factor and platelet-derived growth factor in lymphangiogenesis in epithelial ovarian carcinoma. Zhonghua Fu Chan Ke Za Zhi 2009, 44, 760–764. [Google Scholar]
  118. Krishnapriya, S.; Sidhanth, C.; Manasa, P.; Sneha, S.; Bindhya, S.; Nagare, R.P.; Ramachandran, B.; Vishwanathan, P.; Murhekar, K.; Shirley, S.; et al. Cancer stem cells contribute to angiogenesis and lymphangiogenesis in serous adenocarcinoma of the ovary. Angiogenesis 2019, 22, 441–455. [Google Scholar] [CrossRef]
  119. Liao, S.; Liu, J.; Lin, P.; Shi, T.; Jain, R.K.; Xu, L. TGF-β Blockade Controls Ascites by Preventing Abnormalization of Lymphatic Vessels in Orthotopic Human Ovarian Carcinoma Models. Clin. Cancer Res. 2011, 17, 1415–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  120. Sweeney, M.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 2016, 19, 771–783. [Google Scholar] [CrossRef]
  121. Xian, X.; Håkansson, J.; Ståhlberg, A.; Lindblom, P.; Betsholtz, C.; Gerhardt, H.; Semb, H. Pericytes limit tumor cell metastasis. J. Clin. Investig. 2006, 116, 642–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Raza, A.; Franklin, M.J.; Dudek, A.Z. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am. J. Hematol. 2010, 85, 593–598. [Google Scholar] [CrossRef] [PubMed]
  123. Bergers, G.; Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 2005, 7, 452–464. [Google Scholar] [CrossRef] [Green Version]
  124. Sinha, D.; Chong, L.; George, J.; Schlueter, H.; Mönchgesang, S.; Mills, S.; Jason Australian Ovarian Cancer Study Group; Parish, C.R.; Bowtell, D.D.; Kaur, P. Pericytes Promote Malignant Ovarian Cancer Progression in Mice and Predict Poor Prognosis in Serous Ovarian Cancer Patients. Clin. Cancer Res. 2016, 22, 1813–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Sasano, T.; Gonzalez-Delgado, R.; Muñoz, N.M.; Carlos-Alcade, W.; Cho, M.S.; Sheth, R.A.; Sood, A.K.; Afshar-Kharghan, V. Podoplanin promotes tumor growth, platelet aggregation, and venous thrombosis in murine models of ovarian cancer. J. Thromb. Haemost. 2021, 20, 104–114. [Google Scholar] [CrossRef]
  126. Armulik, A.; Genové, G.; Betsholtz, C. Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Dev. Cell 2011, 21, 193–215. [Google Scholar] [CrossRef] [Green Version]
  127. Zonneville, J.; Safina, A.; Truskinovsky, A.M.; Arteaga, C.L.; Bakin, A.V. TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association. BMC Cancer 2018, 18, 670. [Google Scholar] [CrossRef] [Green Version]
  128. Zhang, L.; Yang, N.; Park, J.-W.; Katsaros, D.; Fracchioli, S.; Cao, G.; O’Brien-Jenkins, A.; Randall, T.C.; Rubin, S.C.; Coukos, G. Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 2003, 63, 3403–3412. [Google Scholar]
  129. Sallinen, H.; Anttila, M.; Gröhn, O.; Koponen, J.; Hämäläinen, K.; Kholova, I.; Kosma, V.-M.; Heinonen, S.; Alitalo, K.; Ylä-Herttuala, S. Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. Cancer Gene Ther. 2010, 18, 100–109. [Google Scholar] [CrossRef] [Green Version]
  130. Heldin, C.-H.; Westermark, B. Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor. Physiol. Rev. 1999, 79, 1283–1316. [Google Scholar] [CrossRef] [Green Version]
  131. Lu, C.; Shahzad, M.M.; Moreno-Smith, M.; Lin, Y.; Jennings, N.B.; Allen, J.K.; Landen, C.N.; Mangala, L.S.; Armaiz-Pena, G.N.; Schmandt, R.; et al. Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol. Ther. 2010, 9, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Taraboletti, G.; Roberts, D.; Liotta, L.A.; Giavazzi, R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: A potential angiogenesis regulatory factor. J. Cell Biol. 1990, 111, 765–772. [Google Scholar] [CrossRef]
  133. Bagavandoss, P.; Wilks, J. Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem. Biophys. Res. Commun. 1990, 170, 867–872. [Google Scholar] [CrossRef]
  134. Matuszewska, K.; Kortenaar, S.T.; Pereira, M.; Santry, L.A.; Petrik, D.; Lo, K.-M.; Bridle, B.W.; Wootton, S.K.; Lawler, J.; Petrik, J. Addition of an Fc-IgG induces receptor clustering and increases the in vitro efficacy and in vivo anti-tumor properties of the thrombospondin-1 type I repeats (3TSR) in a mouse model of advanced stage ovarian cancer. Gynecol. Oncol. 2021, 164, 154–169. [Google Scholar] [CrossRef] [PubMed]
  135. Russell, S.; Duquette, M.; Liu, J.; Drapkin, R.; Lawler, J.; Petrik, J. Combined therapy with thrombospondin-1 type I repeats (3TSR) and chemotherapy induces regression and significandy improves survival in a preclinical model of advanced stage epithelial ovarian cancer. FASEB J. 2014, 29, 576–588. [Google Scholar] [CrossRef] [Green Version]
  136. Matuszewska, K.; Santry, L.A.; van Vloten, J.P.; Auyeung, A.W.K.; Major, P.P.; Lawler, J.; Wootton, S.K.; Bridle, B.W.; Petrik, J. Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clin. Cancer Res. 2019, 25, 1624–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Boucharaba, A.; Serre, C.-M.; Grès, S.; Saulnier-Blache, J.S.; Bordet, J.-C.; Guglielmi, J.; Clézardin, P.; Peyruchaud, O. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Investig. 2004, 114, 1714–1725. [Google Scholar] [CrossRef] [Green Version]
  138. Gopinathan, G.; Milagre, C.; Pearce, O.M.; Reynolds, L.E.; Hodivala-Dilke, K.; Leinster, D.A.; Zhong, H.; Hollingsworth, R.E.; Thompson, R.; Whiteford, J.R.; et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015, 75, 3098–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  139. Merritt, W.M.; Nick, A.M.; Carroll, A.R.; Lu, C.; Matsuo, K.; Dumble, M.; Jennings, N.; Zhang, S.; Lin, Y.G.; Spannuth, W.A.; et al. Bridging the Gap between Cytotoxic and Biologic Therapy with Metronomic Topotecan and Pazopanib in Ovarian Cancer. Mol. Cancer Ther. 2010, 9, 985–995. [Google Scholar] [CrossRef] [Green Version]
  140. Tullemans, B.M.E.; Nagy, M.; Sabrkhany, S.; Griffioen, A.W.; Egbrink, M.G.A.O.; Aarts, M.; Heemskerk, J.W.M.; Kuijpers, M.J.E. Tyrosine Kinase Inhibitor Pazopanib Inhibits Platelet Procoagulant Activity in Renal Cell Carcinoma Patients. Front. Cardiovasc. Med. 2018, 5, 142. [Google Scholar] [CrossRef] [Green Version]
  141. Tracy, L.E.; Minasian, R.A.; Caterson, E. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5, 119–136. [Google Scholar] [CrossRef] [PubMed]
  142. Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef] [PubMed]
  144. Luga, V.; Zhang, L.; Viloria-Petit, A.M.; Ogunjimi, A.A.; Inanlou, M.R.; Chiu, E.; Buchanan, M.; Hosein, A.N.; Basik, M.; Wrana, J.L. Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell 2012, 151, 1542–1556. [Google Scholar] [CrossRef] [Green Version]
  145. Hu, Y.; Yan, C.; Mu, L.; Huang, K.; Li, X.; Tao, D.; Wu, Y.; Qin, J. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS ONE 2015, 10, e0125625. [Google Scholar] [CrossRef] [Green Version]
  146. Ronca, R.; van Ginderachter, J.; Turtoi, A. Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: Tumor allies and foes. Curr. Opin. Oncol. 2018, 30, 45–53. [Google Scholar] [CrossRef]
  147. Kojima, Y.; Acar, A.; Eaton, E.N.; Mellody, K.T.; Scheel, C.; Ben-Porath, I.; Onder, T.T.; Wang, Z.C.; Richardson, A.L.; Weinberg, R.A.; et al. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci. USA 2010, 107, 20009–20014. [Google Scholar] [CrossRef] [Green Version]
  148. Anderberg, C.; Li, H.; Fredriksson, L.; Andrae, J.; Betsholtz, C.; Li, X.; Eriksson, U.; Pietras, K. Paracrine Signaling by Platelet-Derived Growth Factor-CC Promotes Tumor Growth by Recruitment of Cancer-Associated Fibroblasts. Cancer Res. 2009, 69, 369–378. [Google Scholar] [CrossRef] [Green Version]
  149. Aoto, K.; Ito, K.; Aoki, S. Complex formation between platelet-derived growth factor receptor β and transforming growth factor β receptor regulates the differentiation of mesenchymal stem cells into cancer-associated fibroblasts. Oncotarget 2018, 9, 34090–34102. [Google Scholar] [CrossRef] [Green Version]
  150. Zeltz, C.; Alam, J.; Liu, H.; Erusappan, P.M.; Hoschuetzky, H.; Molven, A.; Parajuli, H.; Cukierman, E.; Costea, D.-E.; Lu, N.; et al. α11β1 Integrin is Induced in a Subset of Cancer-Associated Fibroblasts in Desmoplastic Tumor Stroma and Mediates In Vitro Cell Migration. Cancers 2019, 11, 765. [Google Scholar] [CrossRef] [Green Version]
  151. Fukagawa, D.; Sugai, T.; Osakabe, M.; Suga, Y.; Nagasawa, T.; Itamochi, H.; Sugiyama, T. Protein expression patterns in cancer-associated fibroblasts and cells undergoing the epithelial-mesenchymal transition in ovarian cancers. Oncotarget 2018, 9, 27514–27524. [Google Scholar] [CrossRef] [Green Version]
  152. Radhakrishnan, R.; Ha, J.H.; Jayaraman, M.; Liu, J.; Moxley, K.M.; Isidoro, C.; Sood, A.K.; Song, Y.S.; Dhanasekaran, D.N. Ovarian cancer cell-derived lysophosphatidic acid induces glycolytic shift and cancer-associated fibroblast-phenotype in normal and peritumoral fibroblasts. Cancer Lett. 2018, 442, 464–474. [Google Scholar] [CrossRef] [PubMed]
  153. Rother, E.; Brandl, R.; Baker, D.L.; Goyal, P.; Gebhard, H.; Tigyi, G.; Siess, W. Subtype-Selective Antagonists of Lysophosphatidic Acid Receptors Inhibit Platelet Activation Triggered by the Lipid Core of Atherosclerotic Plaques. Circulation 2003, 108, 741–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Jeon, E.S.; Heo, S.C.; Lee, I.H.; Choi, Y.J.; Park, J.H.; Choi, K.U.; Park, Y.; Suh, D.-S.; Yoon, M.-S.; Kim, J.H. Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1α from human mesenchymal stem cells. Exp. Mol. Med. 2010, 42, 280–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Chignard, M.; Le Couedic, J.P.; Tence, M.; Vargaftig, B.B.; Benveniste, J. The role of platelet-activating factor in platelet aggregation. Nature 1979, 279, 799–800. [Google Scholar] [CrossRef] [PubMed]
  156. Cho, J.A.; Park, H.; Lim, E.H.; Kim, K.H.; Choi, J.S.; Lee, J.H.; Shin, J.W.; Lee, K.W. Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol. Oncol. 2011, 123, 379–386. [Google Scholar] [CrossRef] [PubMed]
  157. So, K.A.; Min, K.J.; Hong, J.H.; Lee, J.-K. Interleukin-6 expression by interactions between gynecologic cancer cells and human mesenchymal stem cells promotes epithelial-mesenchymal transition. Int. J. Oncol. 2015, 47, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
  158. Gastl, G.; Plante, M.; Finstad, C.L.; Wong, G.Y.; Federici, M.G.; Bander, N.H.; Rubin, S.C. High IL-6 levels in ascitic fluid correlate with reactive thrombocytosis in patients with epithelial ovarian cancer. Br. J. Haematol. 1993, 83, 433–441. [Google Scholar] [CrossRef]
  159. Shield, K.; Ackland, M.L.; Ahmed, N.; Rice, G.E. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol. Oncol. 2009, 113, 143–148. [Google Scholar] [CrossRef]
  160. Rynne-Vidal, A.; Au-Yeung, C.L.; Jiménez-Heffernan, J.A.; Perez-Lozano, M.-L.; Cremades-Jimeno, L.; Bárcena, C.; Cristobal, I.; Fernández-Chacón, C.; Yeung, T.L.; Mok, S.C.; et al. Mesothelial-to-mesenchymal transition as a possible therapeutic target in peritoneal metastasis of ovarian cancer. J. Pathol. 2017, 242, 140–151. [Google Scholar] [CrossRef] [Green Version]
  161. Matte, I.; Lane, D.; Laplante, C.; Rancourt, C.; Piché, A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am. J. Cancer Res. 2012, 2, 566–580. [Google Scholar] [PubMed]
  162. Yan, D.; Liu, X.; Xu, H.; Guo, S.-W. Mesothelial Cells Participate in Endometriosis Fibrogenesis through Platelet-Induced Mesothelial-Mesenchymal Transition. J. Clin. Endocrinol. Metab. 2020, 105, e4124–e4147. [Google Scholar] [CrossRef] [PubMed]
  163. Steidel, C.; Ender, F.; Rody, A.; von Bubnoff, N.; Gieseler, F. Biologically Active Tissue Factor-Bearing Larger Ectosome-Like Extracellular Vesicles in Malignant Effusions from Ovarian Cancer Patients: Correlation with Incidence of Thrombosis. Int. J. Mol. Sci. 2021, 22, 790. [Google Scholar] [CrossRef]
  164. Orellana, R.; Kato, S.; Erices, R.; Bravo, M.L.; Gonzalez, P.; Oliva, B.; Cubillos, S.; Valdivia, A.; Ibañez, C.; Brañes, J.; et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer 2015, 15, 290. [Google Scholar] [CrossRef] [Green Version]
  165. Malacrida, B.; Nichols, S.; Maniati, E.; Jones, R.; Delanie-Smith, R.; Roozitalab, R.; Tyler, E.J.; Thomas, M.; Boot, G.; Mackerodt, J.; et al. A human multi-cellular model shows how platelets drive production of diseased extracellular matrix and tissue invasion. Iscience 2021, 24, 102676. [Google Scholar] [CrossRef] [PubMed]
  166. Motohara, T.; Masuda, K.; Morotti, M.; Zheng, Y.; El-Sahhar, S.; Chong, K.Y.; Wietek, N.; Alsaadi, A.; Carrami, E.M.; Hu, Z.; et al. An evolving story of the metastatic voyage of ovarian cancer cells: Cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2018, 38, 2885–2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Ryner, L.; Guan, Y.; Firestein, R.; Xiao, Y.; Choi, Y.; Rabe, C.; Lu, S.; Fuentes, E.; Huw, L.-Y.; Lackner, M.R.; et al. Upregulation of Periostin and Reactive Stroma Is Associated with Primary Chemoresistance and Predicts Clinical Outcomes in Epithelial Ovarian Cancer. Clin. Cancer Res. 2015, 21, 2941–2951. [Google Scholar] [CrossRef] [Green Version]
  168. Moran-Jones, K.; Gloss, B.S.; Murali, R.; Chang, D.K.; Colvin, E.K.; Jones, M.D.; Yuen, S.; Howell, V.M.; Brown, L.M.; Wong, C.W.; et al. Connective tissue growth factor as a novel therapeutic target in high grade serous ovarian cancer. Oncotarget 2015, 6, 44551–44562. [Google Scholar] [CrossRef]
  169. Yeung, T.-L.; Leung, C.S.; Wong, K.-K.; Samimi, G.; Thompson, M.S.; Liu, J.; Zaid, T.M.; Ghosh, S.; Birrer, M.J.; Mok, S.C. TGF-β Modulates Ovarian Cancer Invasion by Upregulating CAF-Derived Versican in the Tumor Microenvironment. Cancer Res. 2013, 73, 5016–5028. [Google Scholar] [CrossRef] [Green Version]
  170. Ghoneum, A.; Afify, H.; Salih, Z.; Kelly, M.; Said, N. Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 2018, 9, 22832–22849. [Google Scholar] [CrossRef] [Green Version]
  171. Crawford, Y.; Kasman, I.; Yu, L.; Zhong, C.; Wu, X.; Modrusan, Z.; Kaminker, J.; Ferrara, N. PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment. Cancer Cell 2009, 15, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Wawro, M.E.; Sobierajska, K.; Ciszewski, W.M.; Niewiarowska, J. Nonsteroidal Anti-Inflammatory Drugs Prevent Vincristine-Dependent Cancer-Associated Fibroblasts Formation. Int. J. Mol. Sci. 2019, 20, 1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  173. Masucci, M.T.; Minopoli, M.; Carriero, M.V. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front. Oncol. 2019, 9, 1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  174. Emmons, T.R.; Giridharan, T.; Singel, K.L.; Khan, A.N.H.; Ricciuti, J.; Howard, K.; Toro, S.L.S.-D.; Debreceni, I.L.; Aarts, C.E.; Brouwer, M.C.; et al. Mechanisms Driving Neutrophil-Induced T-cell Immunoparalysis in Ovarian Cancer. Cancer Immunol. Res. 2021, 9, 790–810. [Google Scholar] [CrossRef]
  175. Shang, A.; Wang, W.; Gu, C.; Chen, C.; Zeng, B.; Yang, Y.; Ji, P.; Sun, J.; Wu, J.; Lu, W.; et al. Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J. Exp. Clin. Cancer Res. 2019, 38, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  176. Hanabuchi, S.; Watanabe, N.; Wang, Y.-H.; Wang, Y.-H.; Ito, T.; Shaw, J.; Cao, W.; Qin, F.X.-F.; Liu, Y.-J. Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 2006, 107, 3617–3623. [Google Scholar] [CrossRef]
  177. Lines, J.L.; Pantazi, E.; Mak, J.; Sempere, L.F.; Wang, L.; O’Connell, S.; Ceeraz, S.; Suriawinata, A.A.; Yan, S.; Ernstoff, M.S.; et al. VISTA Is an Immune Checkpoint Molecule for Human T Cells. Cancer Res. 2014, 74, 1924–1932. [Google Scholar] [CrossRef] [Green Version]
  178. Zhou, M.; Li, L.; Wang, X.; Wang, C.; Wang, D. Neutrophil-to-Lymphocyte Ratio and Platelet Count Predict Long-Term Outcome of Stage IIIC Epithelial Ovarian Cancer. Cell. Physiol. Biochem. 2018, 46, 178–186. [Google Scholar] [CrossRef]
  179. Komura, N.; Mabuchi, S.; Yokoi, E.; Kozasa, K.; Kuroda, H.; Sasano, T.; Matsumoto, Y.; Kimura, T. Comparison of clinical utility between neutrophil count and neutrophil–lymphocyte ratio in patients with ovarian cancer: A single institutional experience and a literature review. Int. J. Clin. Oncol. 2017, 23, 104–113. [Google Scholar] [CrossRef]
  180. Williams, M.R.; Azcutia, V.; Newton, G.; Alcaide, P.; Luscinskas, F.W. Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 2011, 32, 461–469. [Google Scholar] [CrossRef] [Green Version]
  181. Larsen, E.; Celi, A.; Gilbert, G.E.; Furie, B.C.; Erban, J.K.; Bonfanti, R.; Wagner, D.D.; Furie, B. PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 1989, 59, 305–312. [Google Scholar] [CrossRef] [PubMed]
  182. Simon, D.I.; Chen, Z.; Xu, H.; Li, C.Q.; Dong, J.-F.; McIntire, L.V.; Ballantyne, C.M.; Zhang, L.; Furman, M.I.; Berndt, M.C.; et al. Platelet Glycoprotein Ibα Is a Counterreceptor for the Leukocyte Integrin Mac-1 (Cd11b/Cd18). J. Exp. Med. 2000, 192, 193–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Kuijper, P.H.M.; Torres, H.I.G.; Lammers, J.-W.J.; Sixma, J.J.; Koenderman, L.; Zwaginga, J.J. Platelet Associated Fibrinogen and ICAM-2 Induce Firm Adhesion of Neutrophils under Flow Conditions. Thromb. Haemost. 1998, 80, 443–448. [Google Scholar] [CrossRef] [PubMed]
  184. Bednarska, K.; Klink, M.; Wilczyński, J.R.; Szyłło, K.; Malinowski, A.; Sułowska, Z.; Nowak, M. Heterogeneity of the Mac-1 expression on peripheral blood neutrophils in patients with different types of epithelial ovarian cancer. Immunobiology 2016, 221, 323–332. [Google Scholar] [CrossRef]
  185. Klink, M.; Jastrzembska, K.; Nowak, M.; Bednarska, K.; Szpakowski, M.; Szyllo, K.; Sulowska, Z. Ovarian Cancer Cells Modulate Human Blood Neutrophils Response to Activation In Vitro. Scand. J. Immunol. 2008, 68, 328–336. [Google Scholar] [CrossRef]
  186. Stadtmann, A.; Germena, G.; Block, H.; Boras, M.; Rossaint, J.; Sundd, P.; Lefort, C.; Fisher, C.I.; Buscher, K.; Gelschefarth, B.; et al. The PSGL-1–L-selectin signaling complex regulates neutrophil adhesion under flow. J. Exp. Med. 2013, 210, 2171–2180. [Google Scholar] [CrossRef] [Green Version]
  187. Di Wu, Q.; Wang, J.H.; Condron, C.; Bouchier-Hayes, D.; Redmond, H.P. Human neutrophils facilitate tumor cell transendothelial migration. Am. J. Physiol. Physiol. 2001, 280, C814–C822. [Google Scholar] [CrossRef] [Green Version]
  188. Vanichakarn, P.; Blair, P.; Wu, C.; Freedman, J.E.; Chakrabarti, S. Neutrophil CD40 enhances platelet-mediated inflammation. Thromb. Res. 2008, 122, 346–358. [Google Scholar] [CrossRef]
  189. Frenette, P.S.; Denis, C.V.; Weiss, L.; Jurk, K.; Subbarao, S.; Kehrel, B.; Hartwig, J.H.; Vestweber, D.; Wagner, D.D. P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Expressed on Platelets and Can Mediate Platelet–Endothelial Interactions in Vivo. J. Exp. Med. 2000, 191, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
  190. Weber, C.; Springer, A.T. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J. Clin. Investig. 1997, 100, 2085–2093. [Google Scholar] [CrossRef]
  191. Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil pheno-type by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. Yang, M.; Zhang, G.; Wang, Y.; He, M.; Xu, Q.; Lu, J.; Liu, H.; Xu, C. Tumour-associated neutrophils orchestrate intratumoural IL-8-driven immune evasion through Jagged2 activation in ovarian cancer. Br. J. Cancer 2020, 123, 1404–1416. [Google Scholar] [CrossRef]
  193. Singh, A.; Bisht, P.; Bhattacharya, S.; Guchhait, P. Role of Platelet Cytokines in Dengue Virus Infection. Front. Cell. Infect. Microbiol. 2020, 10, 561366. [Google Scholar] [CrossRef] [PubMed]
  194. Johnson, K.E.; Ceglowski, J.R.; Roweth, H.G.; Forward, J.A.; Tippy, M.D.; El-Husayni, S.; Kulenthirarajan, R.; Malloy, M.W.; Machlus, K.R.; Chen, W.Y.; et al. Aspirin inhibits platelets from reprogramming breast tumor cells and promoting metastasis. Blood Adv. 2019, 3, 198–211. [Google Scholar] [CrossRef] [Green Version]
  195. Micheli, D.C.; Jammal, M.P.; Martins-Filho, A.; Côrtes, J.R.X.D.M.; de Souza, C.N.; Nomelini, R.S.; Murta, E.F.C.; Tavares-Murta, B.M. Serum cytokines and CXCR2: Potential tumour markers in ovarian neoplasms. Biomarkers 2020, 25, 474–482. [Google Scholar] [CrossRef]
  196. Rodrigues, I.S.S.; Martins-Filho, A.; Micheli, D.C.; de Lima, C.A.; Tavares-Murta, B.M.; Murta, E.F.C.; Nomelini, R.S. IL-6 and IL-8 as Prognostic Factors in Peritoneal Fluid of Ovarian Cancer. Immunol. Investig. 2019, 49, 510–521. [Google Scholar] [CrossRef]
  197. Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  198. Metelli, A.; Wu, B.X.; Riesenberg, B.; Guglietta, S.; Huck, J.D.; Mills, C.; Li, A.; Rachidi, S.; Krieg, C.; Rubinstein, M.P.; et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci. Transl. Med. 2020, 12, eaay4860. [Google Scholar] [CrossRef] [PubMed]
  199. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
  200. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2017, 18, 134–147. [Google Scholar] [CrossRef]
  201. Elaskalani, O.; Abdol Razak, N.B.; Metharom, P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun. Signal. 2018, 16, 24. [Google Scholar] [CrossRef] [Green Version]
  202. Etulain, J.; Martinod, K.; Wong, S.L.; Cifuni, S.M.; Schattner, M.; Wagner, D.D. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015, 126, 242–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  203. Mayer, C.; Darb-Esfahani, S.; Meyer, A.-S.; Hübner, K.; Rom, J.; Sohn, C.; Braicu, I.; Sehouli, J.; Hänsch, G.M.; Gaida, M.M. Neutrophil Granulocytes in Ovarian Cancer—Induction of Epithelial-To-Mesenchymal-Transition and Tumor Cell Migration. J. Cancer 2016, 7, 546–554. [Google Scholar] [CrossRef]
  204. Si-Tahar, M.; Pidard, D.; Balloy, V.; Moniatte, M.; Kieffer, N.; van Dorsselaer, A.; Chignard, M. Human Neutrophil Elastase Proteolytically Activates the Platelet Integrin αIIbβ3 through Cleavage of the Carboxyl Terminus of the αIIb Subunit Heavy Chain. J. Biol. Chem. 1997, 272, 11636–11647. [Google Scholar] [CrossRef] [Green Version]
  205. Itagaki, K.; Kaczmarek, E.; Lee, Y.T.; Tang, I.T.; Isal, B.; Adibnia, Y.; Sandler, N.; Grimm, M.J.; Segal, B.H.; Otterbein, L.E.; et al. Mitochondrial DNA Released by Trauma Induces Neutrophil Extracellular Traps. PLoS ONE 2015, 10, e0120549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  206. Demers, M.; Krause, D.S.; Schatzberg, D.; Martinod, K.; Voorhees, J.R.; Fuchs, T.A.; Scadden, D.T.; Wagner, D.D. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. USA 2012, 109, 13076–13081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  207. Lee, W.; Ko, S.Y.; Mohamed, M.S.; Kenny, H.A.; Lengyel, E.; Naora, H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J. Exp. Med. 2018, 216, 176–194. [Google Scholar] [CrossRef] [PubMed]
  208. Singel, K.; Grzankowski, K.S.; Khan, A.N.M.N.H.; Grimm, M.J.; D’Auria, A.C.; Morrell, K.; Eng, K.H.; Hylander, B.; Mayor, P.C.; Emmons, T.R.; et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br. J. Cancer 2018, 120, 207–217. [Google Scholar] [CrossRef] [Green Version]
  209. Zhang, T.; Ma, Z.; Wang, R.; Wang, Y.; Wang, S.; Cheng, Z.; Xu, H.; Jin, X.; Li, W.; Wang, X. Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol. Immunother. 2010, 59, 1097–1108. [Google Scholar] [CrossRef]
  210. Duan, Z.; Luo, Y. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 127. [Google Scholar] [CrossRef]
  211. Reinartz, S.; Schumann, T.; Finkernagel, F.; Wortmann, A.; Jansen, J.M.; Meissner, W.; Krause, M.; Schwörer, A.; Wagner, U.; Müller-Brüsselbach, S.; et al. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early relapse. Int. J. Cancer 2013, 134, 32–42. [Google Scholar] [CrossRef]
  212. Kawamura, K.; Komohara, Y.; Takaishi, K.; Katabuchi, H.; Takeya, M. Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol. Int. 2009, 59, 300–305. [Google Scholar] [CrossRef] [PubMed]
  213. Gupta, V.; Yull, F.; Khabele, D. Bipolar Tumor-Associated Macrophages in Ovarian Cancer as Targets for Therapy. Cancers 2018, 10, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  214. Yin, M.; Shen, J.; Yu, S.; Fei, J.; Zhu, X.; Zhao, J.; Zhai, L.; Sadhukhan, A.; Zhou, J. Tumor-Associated Macrophages (TAMs): A Critical Activator in Ovarian Cancer Metastasis. OncoTargets Ther. 2019, 12, 8687–8699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  215. Burleson, K.M.; Casey, R.C.; Skubitz, K.M.; Pambuccian, S.E.; Oegema, T.R., Jr.; Skubitz, A.P.N. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol. Oncol. 2004, 93, 170–181. [Google Scholar] [CrossRef]
  216. Long, L.; Hu, Y.; Long, T.; Lu, X.; Tuo, Y.; Li, Y.; Wang, M.; Ke, Z. Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoelomic metastasis of ovarian cancer. J. Immunother. Cancer 2021, 9, e003973. [Google Scholar] [CrossRef]
  217. Zhang, M.; He, Y.; Sun, X.; Li, Q.; Wang, W.; Zhao, A.; Di, W. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 2014, 7, 19. [Google Scholar] [CrossRef] [Green Version]
  218. Michelson, A.D.; Barnard, M.R.; Krueger, L.A.; Valeri, C.R.; Furman, M.I. Circulating Monocyte-Platelet Aggregates Are a More Sensitive Marker of In Vivo Platelet Activation Than Platelet Surface P-Selectin. Circulation 2001, 104, 1533–1537. [Google Scholar] [CrossRef] [Green Version]
  219. Duque, G.A.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [Green Version]
  220. Nagata, K.; Tsuji, T.; Todoroki, N.; Katagiri, Y.; Tanoue, K.; Yamazaki, H.; Hanai, N.; Irimura, T. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J. Immunol. 1993, 151, 3267–3273. [Google Scholar] [CrossRef]
  221. Griess, B.; Mir, S.; Datta, K.; Teoh-Fitzgerald, M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic. Biol. Med. 2019, 147, 48–60. [Google Scholar] [CrossRef] [PubMed]
  222. Lee, S.J.; Yoon, B.R.; Kim, H.Y.; Yoo, S.-J.; Kang, S.W.; Lee, W.-W. Activated Platelets Convert CD14+CD16- Into CD14+CD16+ Monocytes with Enhanced FcγR-Mediated Phagocytosis and Skewed M2 Polarization. Front. Immunol. 2021, 11, 611133. [Google Scholar] [CrossRef]
  223. Reader, J.; Holt, D.; Fulton, A. Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev. 2011, 30, 449–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Klimp, A.H.; Hollema, H.; Kempinga, C.; van der Zee, A.G.; de Vries, E.G.; Daemen, T. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res. 2001, 61, 7305–7309. [Google Scholar] [PubMed]
  225. Dijkgraaf, E.M.; Heusinkveld, M.; Tummers, B.; Vogelpoel, L.T.; Goedemans, R.; Jha, V.; Nortier, J.W.; Welters, M.J.; Kroep, J.R.; van der Burg, S.H. Chemotherapy Alters Monocyte Differentiation to Favor Generation of Cancer-Supporting M2 Macrophages in the Tumor Microenvironment. Cancer Res. 2013, 73, 2480–2492. [Google Scholar] [CrossRef] [Green Version]
  226. Mussbacher, M.; Salzmann, M.; Brostjan, C.; Hoesel, B.; Schoergenhofer, C.; Datler, H.; Hohensinner, P.; Basílio, J.; Petzelbauer, P.; Assinger, A.; et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front. Immunol. 2019, 10, 85. [Google Scholar] [CrossRef] [Green Version]
  227. Suzuki-Inoue, K. Platelets and cancer-associated thrombosis: Focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood 2019, 134, 1912–1918. [Google Scholar] [CrossRef]
  228. Laffont, B.; Corduan, A.; Rousseau, M.; Duchez, A.C.; Lee, C.H.C.; Boilard, E.; Provost, P. Platelet microparticles reprogram macrophage gene expression and function. Thromb. Haemost. 2016, 115, 311–323. [Google Scholar] [CrossRef]
  229. Olingy, C.E.; Dinh, H.Q.; Hedrick, C.C. Monocyte heterogeneity and functions in cancer. J. Leukoc. Biol. 2019, 106, 309–322. [Google Scholar] [CrossRef] [Green Version]
  230. Deng, C.; Wu, S.; Zhang, L.; Yang, M.; Lin, Q.; Xie, Q.; Ding, H.; Lian, N.; Gao, S.; Huang, Y.; et al. Role of monocyte tissue factor on patients with non-small cell lung cancer. Clin. Respir. J. 2017, 12, 1125–1133. [Google Scholar] [CrossRef]
  231. Hell, L.; Däullary, T.; Burghart, V.; Mauracher, L.-M.; Grilz, E.; Moser, B.; Kramer, G.; Schmid, J.; Ay, C.; Pabinger, I.; et al. Extracellular Vesicle-Associated Tissue Factor Activity in Prostate Cancer Patients with Disseminated Intravascular Coagulation. Cancers 2021, 13, 1487. [Google Scholar] [CrossRef] [PubMed]
  232. Zhang, C.; Yang, Z.; Zhou, P.; Yu, M.; Li, B.; Liu, Y.; Jin, J.; Liu, W.; Jing, H.; Du, J.; et al. Phosphatidylserine-exposing tumor-derived microparticles exacerbate coagulation and cancer cell transendothelial migration in triple-negative breast cancer. Theranostics 2021, 11, 6445–6460. [Google Scholar] [CrossRef] [PubMed]
  233. Montoro-García, S.; Shantsila, E.; Hernández-Romero, D.; Jover, E.; Valdés, M.; Marin, F.; Lip, G.Y.H. Small-size platelet microparticles trigger platelet and monocyte functionality and modulate thrombogenesis via P-selectin. Br. J. Haematol. 2014, 166, 571–580. [Google Scholar] [CrossRef] [PubMed]
  234. Vasina, E.M.; Cauwenberghs, S.; Feijge, M.A.H.; Heemskerk, J.W.M.; Weber, C.; Koenen, R.R. Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis. 2011, 2, e211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  235. Ádány, R.; Kappelmayer, J.; Berényi, E.; Szegedi, A.; Fábián, E.; Muszbek, L. Factors of the Extrinsic Pathway of Blood Coagulation in Tumour Associated Macrophages. Thromb. Haemost. 1989, 62, 850–855. [Google Scholar] [CrossRef]
  236. Ruf, W.; Mueller, B. Thrombin Generation and the Pathogenesis of Cancer. Semin. Thromb. Hemost. 2006, 32, 061–068. [Google Scholar] [CrossRef]
  237. Chanakira, A.; Westmark, P.R.; Ong, I.M.; Sheehan, J.P. Tissue factor-factor VIIa complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol. Oncol. 2017, 145, 167–175. [Google Scholar] [CrossRef] [Green Version]
  238. Gil-Bernabé, A.M.; Ferjančič, Š.; Tlalka, M.; Zhao, L.; Allen, P.D.; Im, J.H.; Watson, K.; Hill, S.A.; Amirkhosravi, A.; Francis, J.L.; et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 2012, 119, 3164–3175. [Google Scholar] [CrossRef] [Green Version]
  239. Läubli, H.; Spanaus, K.-S.; Borsig, L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood 2009, 114, 4583–4591. [Google Scholar] [CrossRef] [Green Version]
  240. Ratajczak, M.Z.; Zuba-Surma, E.; Kucia, M.; Reca, R.; Wojakowski, W.; Ratajczak, J. The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006, 20, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
  241. Sánchez-Martín, L.; Estecha, A.; Samaniego, R.; Sánchez-Ramón, S.; Vega, M.Á.; Sánchez-Mateos, P. The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood 2011, 117, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  242. Zeng, Y.; Li, B.; Liang, Y.; Reeves, P.M.; Qu, X.; Ran, C.; Liu, Q.; Callahan, M.V.; Sluder, A.E.; Gelfand, J.A.; et al. Dual blockade of CXCL12-CXCR4 and PD-1–PD-L1 pathways prolongs survival of ovarian tumor–bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. 2019, 33, 6596–6608. [Google Scholar] [CrossRef]
  243. Junior, I.A.D.S.; Stone, S.C.; Rossetti, R.M.; Jancar, S.; Lepique, A.P. Modulation of Tumor-Associated Macrophages (TAM) Phenotype by Platelet-Activating Factor (PAF) Receptor. J. Immunol. Res. 2017, 2017, 5482768. [Google Scholar] [CrossRef] [Green Version]
  244. Deuster, E.; Hysenaj, I.; Kahaly, M.; Schmoeckel, E.; Mayr, D.; Beyer, S.; Kolben, T.; Hester, A.; Kraus, F.; Chelariu-Raicu, A.; et al. The Platelet-Activating Factor Receptor’s Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine. Cells 2021, 10, 2337. [Google Scholar] [CrossRef]
  245. Spiel, A.; Bartko, J.; Schwameis, M.; Firbas, C.; Siller-Matula, J.M.; Schuetz, M.; Weigl, M.; Jilma, B. Increased platelet aggregation and in vivo platelet activation after granulocyte colony-stimulating factor administration. Thromb. Haemost. 2011, 105, 655–662. [Google Scholar] [CrossRef]
  246. Zeng, X.-Y.; Xie, H.; Yuan, J.; Jiang, X.-Y.; Yong, J.-H.; Zeng, D.; Dou, Y.-Y.; Xiao, S.-S. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol. Ther. 2019, 20, 956–966. [Google Scholar] [CrossRef] [Green Version]
  247. Yu, Y.; Zhang, M.; Zhang, X.; Cai, Q.; Hong, S.; Jiang, W.; Xu, C. Synergistic effects of combined platelet-activating factor receptor and epidermal growth factor receptor targeting in ovarian cancer cells. J. Hematol. Oncol. 2014, 7, 39. [Google Scholar] [CrossRef] [Green Version]
  248. Reinartz, S.; Lieber, S.; Pesek, J.; Brandt, D.T.; Asafova, A.; Finkernagel, F.; Watzer, B.; Nockher, W.A.; Nist, A.; Stiewe, T.; et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Mol. Oncol. 2018, 13, 185–201. [Google Scholar] [CrossRef] [Green Version]
  249. Leblanc, R.; Lee, S.-C.; David, M.; Bordet, J.-C.; Norman, D.D.; Patil, R.; Miller, D.; Sahay, D.; Ribeiro, J.; Clézardin, P.; et al. Interaction of platelet-derived autotaxin with tumor integrin αVβ3 controls metastasis of breast cancer cells to bone. Blood 2014, 124, 3141–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  250. Feng, Y.; Xiao, M.; Zhang, Z.; Cui, R.; Jiang, X.; Wang, S.; Bai, H.; Liu, C.; Zhang, Z. Potential interaction between lysophosphatidic acid and tumor-associated macrophages in ovarian carcinoma. J. Inflamm. 2020, 17, 23. [Google Scholar] [CrossRef]
  251. Onallah, H.; Catane, L.J.; Tropé, C.G.; Falkenthal, T.E.H.; Reich, R.; Davidson, B. Activity and clinical relevance of autotaxin and lysophosphatidic acid pathways in high-grade serous carcinoma. Virchows Arch. 2018, 473, 463–470. [Google Scholar] [CrossRef] [Green Version]
  252. Khandoga, A.L.; Fujiwara, Y.; Goyal, P.; Pandey, D.; Tsukahara, R.; Bolen, A.; Guo, H.; Wilke, N.; Liu, J.; Valentine, W.J.; et al. Lysophosphatidic acid-induced platelet shape change revealed through LPA1–5 receptor-selective probes and albumin. Platelets 2008, 19, 415–427. [Google Scholar] [CrossRef] [Green Version]
  253. Rogers, L.C.; Davis, R.R.; Said, N.; Hollis, T.; Daniel, L.W. Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy. Redox Biol. 2018, 15, 380–386. [Google Scholar] [CrossRef]
  254. Wang, W.; Zou, W.; Liu, J.R. Tumor-infiltrating T cells in epithelial ovarian cancer: Predictors of prognosis and biological basis of immunotherapy. Gynecol. Oncol. 2018, 151, 1–3. [Google Scholar] [CrossRef]
  255. Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; et al. Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef] [Green Version]
  256. Pinto, M.P.; Balmaceda, C.; Bravo, M.L.; Kato, S.; Villarroel, A.; Owen, G.I.; Roa, J.C.; Cuello, M.A.; Ibañez, C. Patient inflammatory status and CD4+/CD8+ intraepithelial tumor lymphocyte infiltration are predictors of outcomes in high-grade serous ovarian cancer. Gynecol. Oncol. 2018, 151, 10–17. [Google Scholar] [CrossRef] [Green Version]
  257. Starossom, S.C.; Veremeyko, T.; Yung, A.W.; Dukhinova, M.; Au, C.; Lau, A.Y.; Weiner, H.L.; Ponomarev, E.D. Platelets Play Differential Role During the Initiation and Progression of Autoimmune Neuroinflammation. Circ. Res. 2015, 117, 779–792. [Google Scholar] [CrossRef] [Green Version]
  258. Gerdes, N.; Zhu, L.; Ersoy, M.; Hermansson, A.; Hjemdahl, P.; Hu, H.; Hansson, G.K.; Li, N. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb. Haemost. 2011, 106, 353–362. [Google Scholar] [CrossRef]
  259. Eken, C.; Sadallah, S.; Amicarella, F.; Iezzi, G.; Schifferli, J.A. Ectosomes released by platelets induce differentiation of CD4+ T cells into T regulatory cells. Thromb. Haemost. 2014, 112, 1219–1229. [Google Scholar] [CrossRef] [Green Version]
  260. Yu, H.; Hu, W.; Song, X.; Zhao, Y. Immune Modulation of Platelet-Derived Mitochondria on Memory CD4+ T Cells in Humans. Int. J. Mol. Sci. 2020, 21, 6295. [Google Scholar] [CrossRef]
  261. Vitkovsky, Y.; Brill, G.; Koltakov, A.; Farzam, N.; Varon, D.; Bank, I.; Solpov, A.; Shenkman, B.; Savion, N. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: Role of platelet aggregation, integrins, and non-integrin receptors. Thromb. Haemost. 2006, 95, 815–821. [Google Scholar] [CrossRef]
  262. Shenkman, B.; Brill, G.; Solpov, A.; Vitkovsky, Y.; Kuznik, B.; Koltakov, A.; Kotev-Emeth, S.; Savion, N.; Bank, I. CD4+ lymphocytes require platelets for adhesion to immobilized fibronectin in flow: Role of β1 (CD29)-, β2 (CD18)-related integrins and non-integrin receptors. Cell. Immunol. 2006, 242, 52–59. [Google Scholar] [CrossRef] [PubMed]
  263. Danese, S.; de la Motte, C.; Reyes, B.M.R.; Sans, M.; Levine, A.D.; Fiocchi, C. Cutting Edge: T Cells Trigger CD40-Dependent Platelet Activation and Granular RANTES Release: A Novel Pathway for Immune Response Amplification. J. Immunol. 2004, 172, 2011–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  264. Blair, P.J.; Riley, J.L.; Harlan, D.M.; Abe, R.; Tadaki, D.K.; Hoffmann, S.C.; White, L.; Francomano, T.; Perfetto, S.J.; Kirk, A.D.; et al. Cd40 Ligand (Cd154) Triggers a Short-Term Cd4+ T Cell Activation Response That Results in Secretion of Immunomodulatory Cytokines and Apoptosis. J. Exp. Med. 2000, 191, 651–660. [Google Scholar] [CrossRef] [Green Version]
  265. Salas-Perdomo, A.; Miró-Mur, F.; Urra, X.; Justicia, C.; Gallizioli, M.; Zhao, Y.; Brait, V.H.; Laredo, C.; Tudela, R.; Hidalgo, A.; et al. T Cells Prevent Hemorrhagic Transformation in Ischemic Stroke by P-Selectin Binding. Arter. Thromb. Vasc. Biol. 2018, 38, 1761–1771. [Google Scholar] [CrossRef] [Green Version]
  266. Hirata, T.; Merrill-Skoloff, G.; Aab, M.; Yang, J.; Furie, B.C.; Furie, B. P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is a Physiological Ligand for E-Selectin in Mediating T Helper 1 Lymphocyte Migration. J. Exp. Med. 2000, 192, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
  267. Tinoco, R.; Carrette, F.; Barraza, M.L.; Otero, D.C.; Magaña, J.; Bosenberg, M.W.; Swain, S.L.; Bradley, L.M. PSGL-1 Is an Immune Checkpoint Regulator that Promotes T Cell Exhaustion. Immunity 2016, 44, 1190–1203. [Google Scholar] [CrossRef] [Green Version]
  268. Zaslavsky, A.B.; Adams, M.P.; Cao, X.; Maj, T.; Choi, J.E.; Stangl-Kremser, J.; Patel, S.; Putelo, A.; Lee, S.K.; Nallandhighal, S.; et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci. Rep. 2020, 10, 19296. [Google Scholar] [CrossRef]
  269. Zhou, Z.; Zhang, B.; Zai, W.; Kang, L.; Yuan, A.; Hu, Y.; Wu, J. Perfluorocarbon nanoparticle-mediated platelet inhibition promotes intratumoral infiltration of T cells and boosts immunotherapy. Proc. Natl. Acad. Sci. USA 2019, 116, 11972–11977. [Google Scholar] [CrossRef] [Green Version]
  270. Guo, Q.; Malloy, M.W.; Roweth, H.G.; McAllister, S.S.; Italiano, J.J.E.; Battinelli, E.M. Platelets upregulate tumor cell programmed death ligand 1 in an epidermal growth factor receptor-dependent manner in vitro. Blood Adv. 2022, 6, 5668–5675. [Google Scholar] [CrossRef]
  271. Lutz, M.S.; Klimovich, B.; Maurer, S.; Heitmann, J.S.; Märklin, M.; Zekri, L.; Jung, G.; Salih, H.R.; Hinterleitner, C. Platelets subvert antitumor efficacy of T cell-recruiting bispecific antibodies. J. Immunother. Cancer 2022, 10, e003655. [Google Scholar] [CrossRef] [PubMed]
  272. Crawford, A.; Haber, L.; Kelly, M.P.; Vazzana, K.; Canova, L.; Ram, P.; Pawashe, A.; Finney, J.; Jalal, S.; Chiu, D.; et al. A Mucin 16 bispecific T cell–engaging antibody for the treatment of ovarian cancer. Sci. Transl. Med. 2019, 11, eaau7534. [Google Scholar] [CrossRef] [PubMed]
  273. Yeku, O.O.; Rao, T.D.; Laster, I.; Kononenko, A.; Purdon, T.J.; Wang, P.; Cui, Z.; Liu, H.; Brentjens, R.J.; Spriggs, D. Bispecific T-Cell Engaging Antibodies Against MUC16 Demonstrate Efficacy Against Ovarian Cancer in Monotherapy and in Combination With PD-1 and VEGF Inhibition. Front. Immunol. 2021, 12, 663379. [Google Scholar] [CrossRef] [PubMed]
  274. Raffin, C.; Vo, L.T.; Bluestone, J.A. Treg cell-based therapies: Challenges and perspectives. Nat. Rev. Immunol. 2019, 20, 158–172. [Google Scholar] [CrossRef]
  275. Fialová, A.; Partlová, S.; Sojka, L.; Hromádková, H.; Brtnický, T.; Fučíková, J.; Kocián, P.; Rob, L.; Bartůňková, J.; Špíšek, R. Dynamics of T-cell infiltration during the course of ovarian cancer: The gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int. J. Cancer 2012, 132, 1070–1079. [Google Scholar] [CrossRef]
  276. Facciabene, A.; Peng, X.; Hagemann, I.S.; Balint, K.; Barchetti, A.; Wang, L.-P.; Gimotty, P.A.; Gilks, C.B.; Lal, P.; Zhang, L.; et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011, 475, 226–230. [Google Scholar] [CrossRef]
  277. Giuntoli, R.L., 2nd; Webb, T.J.; Zoso, A.; Rogers, O.; Diaz-Montes, T.P.; Bristow, R.E.; Oelke, M. Ovarian Cancer-Associated Ascites Demonstrates Altered Immune Environment: Implications for Antitumor Immunity. Anticancer. Res. 2009, 29, 2875–2884. [Google Scholar]
  278. Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004, 10, 942–949. [Google Scholar] [CrossRef]
  279. Knutson, K.L.; Maurer, M.J.; Preston, C.C.; Moysich, K.B.; Goergen, K.; Hawthorne, K.M.; Cunningham, J.M.; Odunsi, K.; Hartmann, L.C.; Kalli, K.R.; et al. Regulatory T cells, inherited variation, and clinical outcome in epithelial ovarian cancer. Cancer Immunol. Immunother. 2015, 64, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
  280. Sun, J.; Yan, C.; Xu, D.; Zhang, Z.; Li, K.; Li, X.; Zhou, M.; Hao, D. Immuno-genomic characterisation of high-grade serous ovarian cancer reveals immune evasion mechanisms and identifies an immunological subtype with a favourable prognosis and improved therapeutic efficacy. Br. J. Cancer 2022, 126, 1570–1580. [Google Scholar] [CrossRef]
  281. Angiari, S.; Rossi, B.; Piccio, L.; Zinselmeyer, B.H.; Budui, S.; Zenaro, E.; della Bianca, V.; Bach, S.D.; Scarpini, E.; Bolomini-Vittori, M.; et al. Regulatory T Cells Suppress the Late Phase of the Immune Response in Lymph Nodes through P-Selectin Glycoprotein Ligand-1. J. Immunol. 2013, 191, 5489–5500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  282. Kohm, A.P.; Miller, S.D. Role of ICAM-1 and P-selectin expression in the development and effector function of CD4+CD25+regulatory T cells. J. Autoimmun. 2003, 21, 261–271. [Google Scholar] [CrossRef] [PubMed]
  283. Urzainqui, A.; Serrador, J.M.; Viedma, F.; Yáñez-Mó, M.; Rodríguez, A.; Corbí, A.L.; Alonso-Lebrero, J.L.; Luque, A.; Deckert, M.; Vázquez, J.; et al. ITAM-Based Interaction of ERM Proteins with Syk Mediates Signaling by the Leukocyte Adhesion Receptor PSGL-1. Immunity 2002, 17, 401–412. [Google Scholar] [CrossRef] [Green Version]
  284. Rupp, M.-C.; Bergmann, C.B.; Jung, S.; Bock, M.; Biberthaler, P.; Heimann, L.; Hanschen, M. The posttraumatic response of CD4+ regulatory T cells is modulated by direct cell-cell contact via CD40L- and P-selectin-dependent pathways. Central Eur. J. Immunol. 2021, 46, 283–294. [Google Scholar] [CrossRef] [PubMed]
  285. Guiducci, C.; Valzasina, B.; Dislich, H.; Colombo, M.P. CD40/CD40L interaction regulates CD4+CD25+ T reg homeostasis through dendritic cell-produced IL-2. Eur. J. Immunol. 2005, 35, 557–567. [Google Scholar] [CrossRef]
  286. Renshaw, B.R.; Fanslow, W.C.; Armitage, R.J.; Campbell, K.A.; Liggitt, D.; Wright, B.; Davison, B.L.; Maliszewski, C.R. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 1994, 180, 1889–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  287. Yao, L.; Pan, J.; Setiadi, H.; Pate, K.D.; McEver, R.P. Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J. Exp. Med. 1996, 184, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  288. Legein, B.; Temmerman, L.; Biessen, E.A.L.; Lutgens, E. Inflammation and immune system interactions in atherosclerosis. Cell. Mol. Life Sci. 2013, 70, 3847–3869. [Google Scholar] [CrossRef]
  289. Kampan, N.C.; Madondo, M.T.; McNally, O.M.; Stephens, A.N.; Quinn, M.A.; Plebanski, M. Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells. Front. Immunol. 2017, 8, 1482. [Google Scholar] [CrossRef]
  290. Torrey, H.; Butterworth, J.; Mera, T.; Okubo, Y.; Wang, L.; Baum, D.; Defusco, A.; Plager, S.; Warden, S.; Huang, D.; et al. Targeting TNFR2 with antagonistic antibodies inhibits proliferation of ovarian cancer cells and tumor-associated T regs. Sci. Signal. 2017, 10, eaaf8608. [Google Scholar] [CrossRef]
  291. Haribhai, D.; Luo, X.; Chen, J.; Jia, S.; Shi, L.; Schroeder, J.A.; Weiler, H.; Aster, R.H.; Hessner, M.J.; Hu, J.; et al. TGF-β1 along with other platelet contents augments Treg cells to suppress anti-FVIII immune responses in hemophilia A mice. Blood Adv. 2016, 1, 139–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  292. Zimmer, N.; Krebs, F.K.; Zimmer, S.; Mitzel-Rink, H.; Kumm, E.J.; Jurk, K.; Grabbe, S.; Loquai, C.; Tuettenberg, A. Platelet-Derived GARP Induces Peripheral Regulatory T Cells—Potential Impact on T Cell Suppression in Patients with Melanoma-Associated Thrombocytosis. Cancers 2020, 12, 3653. [Google Scholar] [CrossRef] [PubMed]
  293. Re, S.L.; Lecocq, M.; Uwambayinema, F.; Yakoub, Y.; Delos, M.; Demoulin, J.-B.; Lucas, S.; Sparwasser, T.; Renauld, J.-C.; Lison, D.; et al. Platelet-Derived Growth Factor–Producing CD4+ Foxp3+ Regulatory T Lymphocytes Promote Lung Fibrosis. Am. J. Respir. Crit. Care Med. 2011, 184, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
  294. Roane, B.M.; Meza-Perez, S.; Katre, A.A.; Goldsberry, W.N.; Randall, T.D.; Norian, L.A.; Birrer, M.J.; Arend, R.C. Neutralization of TGFβ Improves Tumor Immunity and Reduces Tumor Progression in Ovarian Carcinoma. Mol. Cancer Ther. 2021, 20, 602–611. [Google Scholar] [CrossRef]
  295. Yahya, M.A.; Sharon, S.M.; Hantisteanu, S.; Hallak, M.; Bruchim, I. The Role of the Insulin-Like Growth Factor 1 Pathway in Immune Tumor Microenvironment and Its Clinical Ramifications in Gynecologic Malignancies. Front. Endocrinol. 2018, 9, 297. [Google Scholar] [CrossRef]
  296. Camorani, S.; Passariello, M.; Agnello, L.; Esposito, S.; Collina, F.; Cantile, M.; di Bonito, M.; Ulasov, I.V.; Fedele, M.; Zannetti, A.; et al. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J. Exp. Clin. Cancer Res. 2020, 39, 180. [Google Scholar] [CrossRef]
  297. Liu, C.Y.; Battaglia, M.; Lee, S.H.; Sun, Q.-H.; Aster, R.H.; Visentin, G.P. Platelet Factor 4 Differentially Modulates CD4+CD25+ (Regulatory) versus CD4+CD25 (Nonregulatory) T Cells. J. Immunol. 2005, 174, 2680–2686. [Google Scholar] [CrossRef] [Green Version]
  298. Kabashima, K.; Murata, T.; Tanaka, H.; Matsuoka, T.; Sakata, D.; Yoshida, N.; Katagiri, K.; Kinashi, T.; Tanaka, T.; Miyasaka, M.; et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat. Immunol. 2003, 4, 694–701. [Google Scholar] [CrossRef]
  299. von Hundelshausen, P.; Agten, S.M.; Eckardt, V.; Blanchet, X.; Schmitt, M.M.; Ippel, H.; Neideck, C.; Bidzhekov, K.; Leberzammer, J.; Wichapong, K.; et al. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci. Transl. Med. 2017, 9, eaah6650. [Google Scholar] [CrossRef]
  300. Tan, S.; Zhang, J.; Sun, Y.; Gisterå, A.; Sheng, Z.; Malmström, R.E.; Hou, M.; Peng, J.; Ma, C.; Liao, W.; et al. Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation. Platelets 2021, 33, 360–370. [Google Scholar] [CrossRef]
  301. Figueras, A.; Alsina-Sanchís, E.; Lahiguera, Á.; Abreu, M.; Muinelo-Romay, L.; Moreno-Bueno, G.; Casanovas, O.; Graupera, M.; Matias-Guiu, X.; Vidal, A.; et al. A Role for CXCR4 in Peritoneal and Hematogenous Ovarian Cancer Dissemination. Mol. Cancer Ther. 2018, 17, 532–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  302. Chatterjee, M.; Rath, D.; Gawaz, M. Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem. Soc. Trans. 2015, 43, 720–726. [Google Scholar] [CrossRef] [PubMed]
  303. Chatterjee, M.; I von Ungern-Sternberg, S.N.; Seizer, P.; Schlegel, F.; Büttcher, M.; Sindhu, N.A.; Müller, S.; Mack, A.; Gawaz, M. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4–CXCR7. Cell Death Dis. 2015, 6, e1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  304. Yan, M.; Jene, N.; Byrne, D.; Millar, E.K.A.; O’Toole, S.A.; McNeil, C.M.; Bates, G.J.; Harris, A.L.; Banham, A.H.; Sutherland, R.L.; et al. Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res. 2011, 13, R47. [Google Scholar] [CrossRef] [Green Version]
  305. Righi, E.; Kashiwagi, S.; Yuan, J.; Santosuosso, M.; Leblanc, P.; Ingraham, R.; Forbes, B.; Edelblute, B.; Collette, B.; Xing, D.; et al. CXCL12/CXCR4 Blockade Induces Multimodal Antitumor Effects That Prolong Survival in an Immunocompetent Mouse Model of Ovarian Cancer. Cancer Res. 2011, 71, 5522–5534. [Google Scholar] [CrossRef] [Green Version]
  306. Toker, A.; Nguyen, L.T.; Stone, S.C.; Yang, S.C.; Katz, S.R.; Shaw, P.A.; Clarke, B.A.; Ghazarian, D.; Al-Habeeb, A.; Easson, A.; et al. Regulatory T Cells in Ovarian Cancer Are Characterized by a Highly Activated Phenotype Distinct from that in Melanoma. Clin. Cancer Res. 2018, 24, 5685–5696. [Google Scholar] [CrossRef] [Green Version]
  307. Battaglia, A.; Piermattei, A.; Buzzonetti, A.; Pasciuto, T.; Zampetti, N.; Fossati, M.; Angelico, G.; Iacobelli, V.; Nero, C.; Iannucci, V.; et al. PD-L1 Expression on Circulating Tumour-Derived Microvesicles as a Complementary Tool for Stratification of High-Grade Serous Ovarian Cancer Patients. Cancers 2021, 13, 5200. [Google Scholar] [CrossRef]
  308. Kamada, T.; Togashi, Y.; Tay, C.; Ha, D.; Sasaki, A.; Nakamura, Y.; Sato, E.; Fukuoka, S.; Tada, Y.; Tanaka, A.; et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 9999–10008. [Google Scholar] [CrossRef] [Green Version]
  309. Dinkla, S.; van Cranenbroek, B.; van der Heijden, W.A.; He, X.; Wallbrecher, R.; Dumitriu, I.E.; van der Ven, A.J.; Bosman, G.J.C.G.M.; Koenen, H.J.P.M.; Joosten, I. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016, 127, 1976–1986. [Google Scholar] [CrossRef] [Green Version]
  310. Ayyoub, M.; Deknuydt, F.; Raimbaud, I.; Dousset, C.; Leveque, L.; Bioley, G.; Valmori, D. Human memory FOXP3 + Tregs secrete IL-17 ex vivo and constitutively express the T H 17 lineage-specific transcription factor RORγt. Proc. Natl. Acad. Sci. USA 2009, 106, 8635–8640. [Google Scholar] [CrossRef] [Green Version]
  311. Fleischer, J.; Grage-Griebenow, E.; Kasper, B.; Heine, H.; Ernst, M.; Brandt, E.; Flad, H.-D.; Petersen, F. Platelet Factor 4 Inhibits Proliferation and Cytokine Release of Activated Human T Cells. J. Immunol. 2002, 169, 770–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  312. Forlow, S.B.; McEver, R.P.; Nollert, M.U. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 2000, 95, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
  313. Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; et al. The Immunoreceptor TIGIT Regulates Antitumor and Antiviral CD8 + T Cell Effector Function. Cancer Cell 2014, 26, 923–937. [Google Scholar] [CrossRef] [Green Version]
  314. Osorio Ovarian Tumor Tissue Analysis (OTTA) Consortium; Goode, E.L.; Block, M.S.; Kalli, K.R.; Vierkant, R.A.; Chen, W.; Fogarty, Z.C.; Gentry-Maharaj, A.; Toloczko, A.; Hein, A.; et al. Dose-Response Association of CD8+ Tumor-Infiltrating Lymphocytes and Survival Time in High-Grade Serous Ovarian Cancer. JAMA Oncol. 2017, 3, e173290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  315. Lieber, S.; Reinartz, S.; Raifer, H.; Finkernagel, F.; Dreyer, T.; Bronger, H.; Jansen, J.M.; Wagner, U.; Worzfeld, T.; Müller, R.; et al. Prognosis of ovarian cancer is associated with effector memory CD8+ T cell accumulation in ascites, CXCL9 levels and activation-triggered signal transduction in T cells. Oncoimmunology 2018, 7, e1424672. [Google Scholar] [CrossRef] [Green Version]
  316. Meikle, C.K.; Meisler, A.J.; Bird, C.M.; Jeffries, J.A.; Azeem, N.; Garg, P.; Crawford, E.L.; Kelly, C.A.; Gao, T.Z.; Wuescher, L.M.; et al. Platelet-T cell aggregates in lung cancer patients: Implications for thrombosis. PLoS ONE 2020, 15, e0236966. [Google Scholar] [CrossRef]
  317. Veerman, K.M.; Williams, M.J.; Uchimura, K.; Singer, M.S.; Merzaban, J.S.; Naus, S.; Carlow, D.A.; Owen, P.; Rivera-Nieves, J.; Rosen, S.D.; et al. Interaction of the selectin ligand PSGL-1 with chemokines CCL21 and CCL19 facilitates efficient homing of T cells to secondary lymphoid organs. Nat. Immunol. 2007, 8, 532–539. [Google Scholar] [CrossRef]
  318. Tinoco, R.; Neubert, E.N.; Stairiker, C.J.; Henriquez, M.L.; Bradley, L.M. PSGL-1 Is a T Cell Intrinsic Inhibitor That Regulates Effector and Memory Differentiation and Responses During Viral Infection. Front. Immunol. 2021, 12, 677824. [Google Scholar] [CrossRef]
  319. Zhang, Q.; Yang, X.J.; Kundu, S.D.; Pins, M.; Javonovic, B.; Meyer, R.; Kim, S.-J.; Greenberg, N.M.; Kuzel, T.; Meagher, R.; et al. Blockade of transforming growth factor-β signaling in tumor-reactive CD8+ T cells activates the antitumor immune response cycle. Mol. Cancer Ther. 2006, 5, 1733–1743. [Google Scholar] [CrossRef] [Green Version]
  320. Marcheteau, E.; Farge, T.; Pérès, M.; Labrousse, G.; Tenet, J.; Delmas, S.; Chusseau, M.; Duprez-Paumier, R.; Franchet, C.; Dalenc, F.; et al. Thrombospondin-1 Silencing Improves Lymphocyte Infiltration in Tumors and Response to Anti-PD-1 in Triple-Negative Breast Cancer. Cancers 2021, 13, 4059. [Google Scholar] [CrossRef]
  321. Rachidi, S.; Metelli, A.; Riesenberg, B.; Wu, B.X.; Nelson, M.H.; Wallace, C.; Paulos, C.M.; Rubinstein, M.P.; Garrett-Mayer, E.; Hennig, M.; et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci. Immunol. 2017, 2, eaai7911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  322. Riesenberg, B.P.; Ansa-Addo, E.A.; Gutierrez, J.; Timmers, C.D.; Liu, B.; Li, Z. Cutting Edge: Targeting Thrombocytes to Rewire Anticancer Immunity in the Tumor Microenvironment and Potentiate Efficacy of PD-1 Blockade. J. Immunol. 2019, 203, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
  323. Zhang, X.; Wang, J.; Chen, Z.; Hu, Q.; Wang, C.; Yan, J.; Dotti, G.; Huang, P.; Gu, Z. Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. Nano Lett. 2018, 18, 5716–5725. [Google Scholar] [CrossRef] [PubMed]
  324. Zhang, S.; Ke, X.; Zeng, S.; Wu, M.; Lou, J.; Wu, L.; Huang, P.; Huang, L.; Wang, F.; Pan, S. Analysis of CD8+ Treg cells in patients with ovarian cancer: A possible mechanism for immune impairment. Cell. Mol. Immunol. 2015, 12, 580–591. [Google Scholar] [CrossRef] [Green Version]
  325. Napoletano, C.; Bellati, F.; Landi, R.; Pauselli, S.; Marchetti, C.; Visconti, V.; Sale, P.; Liberati, M.; Rughetti, A.; Frati, L.; et al. Ovarian cancer cytoreduction induces changes in T cell population subsets reducing immunosuppression. J. Cell. Mol. Med. 2010, 14, 2748–2759. [Google Scholar] [CrossRef] [Green Version]
  326. Wu, M.; Chen, X.; Lou, J.; Zhang, S.; Zhang, X.; Huang, L.; Sun, R.; Huang, P.; Wang, F.; Pan, S. TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget 2016, 7, 44534–44544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  327. Webb, J.R.; Wick, D.A.; Nielsen, J.S.; Tran, E.; Milne, K.; McMurtrie, E.; Nelson, B.H. Profound elevation of CD8+ T cells expressing the intraepithelial lymphocyte marker CD103 (αE/β7 Integrin) in high-grade serous ovarian cancer. Gynecol. Oncol. 2010, 118, 228–236. [Google Scholar] [CrossRef]
  328. Nierodzik, M.L.; Karpatkin, S. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006, 10, 355–362. [Google Scholar] [CrossRef] [Green Version]
  329. Kopp, H.-G.; Placke, T.; Salih, H.R. Platelet-Derived Transforming Growth Factor-β Down-Regulates NKG2D Thereby Inhibiting Natural Killer Cell Antitumor Reactivity. Cancer Res. 2009, 69, 7775–7783. [Google Scholar] [CrossRef] [Green Version]
  330. Alexander, E.T.; Minton, A.R.; Peters, M.C.; van Ryn, J.; Gilmour, S.K. Thrombin inhibition and cisplatin block tumor progression in ovarian cancer by alleviating the immunosuppressive microenvironment. Oncotarget 2016, 7, 85291–85305. [Google Scholar] [CrossRef] [Green Version]
  331. Motz, G.T.; Santoro, S.P.; Wang, L.-P.; Garrabrant, T.; Lastra, R.R.; Hagemann, I.S.; Lal, P.; Feldman, M.D.; Benencia, F.; Coukos, G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 2014, 20, 607–615. [Google Scholar] [CrossRef] [PubMed]
  332. Zelenay, S.; van der Veen, A.G.; Böttcher, J.P.; Snelgrove, K.J.; Rogers, N.; Acton, S.E.; Chakravarty, P.; Girotti, M.R.; Marais, R.; Quezada, S.A.; et al. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 2015, 162, 1257–1270. [Google Scholar] [CrossRef] [Green Version]
  333. Melchers, F. Checkpoints that control B cell development. J. Clin. Investig. 2015, 125, 2203–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  334. Petitprez, F.; de Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoüin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef]
  335. Wei, X.; Jin, Y.; Tian, Y.; Zhang, H.; Wu, J.; Lu, W.; Lu, X. Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients. Tumor Biol. 2015, 37, 6581–6588. [Google Scholar] [CrossRef]
  336. Capello, M.; Vykoukal, J.V.; Katayama, H.; Bantis, L.E.; Wang, H.; Kundnani, D.L.; Aguilar-Bonavides, C.; Aguilar, M.; Tripathi, S.C.; Dhillon, D.S.; et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 2019, 10, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  337. de Visser, K.E.; Korets, L.V.; Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005, 7, 411–423. [Google Scholar] [CrossRef] [Green Version]
  338. Miao, S.; Shu, D.; Zhu, Y.; Lu, M.; Zhang, Q.; Pei, Y.; He, A.-D.; Ma, R.; Zhang, B.; Ming, Z.-Y. Cancer cell-derived immunoglobulin G activates platelets by binding to platelet FcγRIIa. Cell Death Dis. 2019, 10, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  339. van de Veen, W.; Globinska, A.; Jansen, K.; Straumann, A.; Kubo, T.; Verschoor, D.; Wirz, O.F.; Castro-Giner, F.; Tan, G.; Rückert, B.; et al. A novel proangiogenic B cell subset is increased in cancer and chronic inflammation. Sci. Adv. 2020, 6, eaaz3559. [Google Scholar] [CrossRef] [PubMed]
  340. Dong, H.P.; Elstrand, M.B.; Holth, A.; Silins, I.; Berner, A.; Trope, C.G.; Davidson, B.; Risberg, B. Nk- and B-Cell Infiltration Correlates with Worse Outcome in Metastatic Ovarian Carcinoma. Am. J. Clin. Pathol. 2006, 125, 451–458. [Google Scholar] [CrossRef]
  341. Nielsen, J.S.; Sahota, R.A.; Milne, K.; Kost, S.E.; Nesslinger, N.J.; Watson, P.H.; Nelson, B.H. CD20+ Tumor-Infiltrating Lymphocytes Have an Atypical CD27− Memory Phenotype and Together with CD8+ T Cells Promote Favorable Prognosis in Ovarian Cancer. Clin. Cancer Res. 2012, 18, 3281–3292. [Google Scholar] [CrossRef] [Green Version]
  342. Elzey, B.D.; Grant, J.F.; Sinn, H.W.; Nieswandt, B.; Waldschmidt, T.J.; Ratliff, T.L. Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J. Leukoc. Biol. 2005, 78, 80–84. [Google Scholar] [CrossRef]
  343. Morva, A.; Lemoine, S.; Achour, A.; Pers, J.-O.; Youinou, P.; Jamin, C. Maturation and function of human dendritic cells are regulated by B lymphocytes. Blood 2012, 119, 106–114. [Google Scholar] [CrossRef] [PubMed]
  344. Shao, Y.; Lo, C.M.; Ling, C.C.; Liu, X.B.; Ng, K.T.-P.; Chu, A.C.Y.; Ma, Y.Y.; Li, C.X.; Fan, S.T.; Man, K. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett. 2014, 355, 264–272. [Google Scholar] [CrossRef] [PubMed]
  345. Wallace, C.H.; Wu, B.X.; Salem, M.; Ansa-Addo, E.A.; Metelli, A.; Sun, S.; Gilkeson, G.; Shlomchik, M.J.; Liu, B.; Li, Z. B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex. J. Clin. Investig. 2018, 3, e99863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  346. Kehrl, J.H.; Thevenin, C.; Rieckmann, P.; Fauci, A.S. Transforming growth factor-beta suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J. Immunol. 1991, 146, 4016–4023. [Google Scholar] [CrossRef] [PubMed]
  347. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 2008, 8, 421–434. [Google Scholar] [CrossRef]
  348. Bulk, J.V.D.; de Miranda, N.F.; Dijke, P.T. Therapeutic targeting of TGF-β in cancer: Hacking a master switch of immune suppression. Clin. Sci. 2021, 135, 35–52. [Google Scholar] [CrossRef]
  349. Olkhanud, P.B.; Damdinsuren, B.; Bodogai, M.; Gress, R.E.; Sen, R.; Wejksza, K.; Malchinkhuu, E.; Wersto, R.P.; Biragyn, A. Tumor-Evoked Regulatory B Cells Promote Breast Cancer Metastasis by Converting Resting CD4+ T Cells to T-Regulatory Cells. Cancer Res. 2011, 71, 3505–3515. [Google Scholar] [CrossRef] [Green Version]
  350. Gill, P.; Jindal, N.L.; Jagdis, A.; Vadas, P. Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis. J. Allergy Clin. Immunol. 2015, 135, 1424–1432. [Google Scholar] [CrossRef] [Green Version]
  351. Denizot, Y.; Guglielmi, L.; Donnard, M.; Trimoreau, F. Platelet-activating Factor and Normal or Leukaemic Haematopoiesis. Leuk. Lymphoma 2003, 44, 775–782. [Google Scholar] [CrossRef] [PubMed]
  352. Braun, A.; Anders, H.-J.; Gudermann, T.; Mammadova-Bach, E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front. Oncol. 2021, 11, 665534. [Google Scholar] [CrossRef] [PubMed]
  353. Ma, C.; Fu, Q.; Diggs, L.P.; McVey, J.C.; McCallen, J.; Wabitsch, S.; Ruf, B.; Brown, Z.; Heinrich, B.; Zhang, Q.; et al. Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. Cancer Cell 2022, 40, 986–998.e5. [Google Scholar] [CrossRef] [PubMed]
  354. Menter, D.G.; Tucker, S.C.; Kopetz, S.; Sood, A.K.; Crissman, J.D.; Honn, K.V. Platelets and cancer: A casual or causal relationship: Revisited. Cancer Metastasis Rev. 2014, 33, 231–269. [Google Scholar] [CrossRef] [Green Version]
  355. Gawaz, M.; Neumann, F.-J.; Dickfeld, T.; Reininger, A.; Adelsberger, H.; Gebhardt, A.; Schömig, A. Vitronectin Receptor (α v β 3) Mediates Platelet Adhesion to the Luminal Aspect of Endothelial Cells. Circulation 1997, 96, 1809–1818. [Google Scholar] [CrossRef]
  356. Bombeli, T.; Schwartz, B.R.; Harlan, J.M. Adhesion of Activated Platelets to Endothelial Cells: Evidence for a GPIIbIIIa-dependent Bridging Mechanism and Novel Roles for Endothelial Intercellular Adhesion Molecule 1 (ICAM-1), αvβ3 Integrin, and GPIbα. J. Exp. Med. 1998, 187, 329–339. [Google Scholar] [CrossRef]
  357. Langer, H.; May, A.E.; Bültmann, A.; Gawaz, M. ADAM15 is an adhesion receptor for platelet GPIIb-IIIa and induces platelet activation. Thromb. Haemost. 2005, 94, 555–561. [Google Scholar] [CrossRef]
  358. Tan, D.S.; Agarwal, R.; Kaye, S.B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006, 7, 925–934. [Google Scholar] [CrossRef]
  359. Schmied, L.; Höglund, P.; Meinke, S. Platelet-Mediated Protection of Cancer Cells from Immune Surveillance—Possible Implications for Cancer Immunotherapy. Front. Immunol. 2021, 12, 640578. [Google Scholar] [CrossRef]
  360. Schlesinger, M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 2018, 11, 125. [Google Scholar] [CrossRef] [Green Version]
  361. Olsson, A.-K.; Cedervall, J. NETosis in Cancer—Platelet–Neutrophil Crosstalk Promotes Tumor-Associated Pathology. Front. Immunol. 2016, 7, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  362. Linke, B.; Schreiber, Y.; Picard-Willems, B.; Slattery, P.; Nüsing, R.M.; Harder, S.; Geisslinger, G.; Scholich, K. Activated Platelets Induce an Anti-Inflammatory Response of Monocytes/Macrophages through Cross-Regulation of PGE2 and Cytokines. Mediat. Inflamm. 2017, 2017, 1463216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  363. Li, X.; Zhong, H.; Bao, W.; Boulad, N.; Evangelista, J.; Haider, M.A.; Bussel, J.; Yazdanbakhsh, K. Defective regulatory B-cell compartment in patients with immune thrombocytopenia. Blood 2012, 120, 3318–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  364. Rolfes, V.; Idel, C.; Pries, R.; Plötze-Martin, K.; Habermann, J.; Gemoll, T.; Bohnet, S.; Latz, E.; Ribbat-Idel, J.; Franklin, B.S.; et al. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget 2018, 9, 27460–27470. [Google Scholar] [CrossRef] [Green Version]
  365. Ye, Q.; Cheng, J.; Ye, M.; Liu, D.; Zhang, Y. Association of pretreatment thrombocytosis with prognosis in ovarian cancer: A systematic review and meta-analysis. J. Gynecol. Oncol. 2019, 30, e5. [Google Scholar] [CrossRef]
  366. Canzler, U.; Lück, H.-J.; Neuser, P.; Sehouli, J.; Burges, A.; Harter, P.; Schmalfeldt, B.; Aminossadati, B.; Mahner, S.; Kommoss, S.; et al. Prognostic role of thrombocytosis in recurrent ovarian cancer: A pooled analysis of the AGO Study Group. Arch. Gynecol. Obstet. 2020, 301, 1267–1274. [Google Scholar] [CrossRef]
  367. Nakao, S.; Minaguchi, T.; Itagaki, H.; Hosokawa, Y.; Shikama, A.; Tasaka, N.; Akiyama, A.; Ochi, H.; Matsumoto, K.; Satoh, T. Pretreatment thrombocytosis as an independent predictive factor for chemoresistance and poor survival in epithelial ovarian cancer. J. Ovarian Res. 2020, 13, 55–59. [Google Scholar] [CrossRef]
  368. Watrowski, R.; Heinze, G.; Jäger, C.; Forster, J.; Zeillinger, R. Usefulness of the preoperative platelet count in the diagnosis of adnexal tumors. Tumor Biol. 2016, 37, 12079–12087. [Google Scholar] [CrossRef]
  369. Hufnagel, D.H.; Cozzi, G.D.; Crispens, M.A.; Beeghly-Fadiel, A. Platelets, Thrombocytosis, and Ovarian Cancer Prognosis: Surveying the Landscape of the Literature. Int. J. Mol. Sci. 2020, 21, 8169. [Google Scholar] [CrossRef]
  370. Naito, R.; Miyauchi, K.; Yasuda, S.; Kaikita, K.; Akao, M.; Ako, J.; Matoba, T.; Nakamura, M.; Hagiwara, N.; Kimura, K.; et al. Rivaroxaban Monotherapy vs Combination Therapy with Antiplatelets on Total Thrombotic and Bleeding Events in Atrial Fibrillation with Stable Coronary Artery Disease. JAMA Cardiol. 2022, 7, 787–794. [Google Scholar] [CrossRef]
  371. Anadani, M.; de Havenon, A.; Henninger, N.; Kuohn, L.; Mac Grory, B.; Furie, K.L.; Kim, A.S.; Easton, J.D.; Johnston, S.C.; Yaghi, S. Antiplatelet Use and Ischemic Stroke Risk in Minor Stroke or Transient Ischemic Attack: A Post Hoc Analysis of the POINT Trial. Stroke 2021, 52, e773–e776. [Google Scholar] [CrossRef] [PubMed]
  372. Cooke, N.M.; Spillane, C.D.; Sheils, O.; O’Leary, J.; Kenny, D. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer 2015, 15, 627. [Google Scholar] [CrossRef] [Green Version]
  373. Denslow, A.; Świtalska, M.; Jarosz, J.; Papiernik, D.; Porshneva, K.; Nowak, M.; Wietrzyk, J. Clopidogrel in a combined therapy with anticancer drugs—Effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models. PLoS ONE 2017, 12, e0188740. [Google Scholar] [CrossRef]
  374. Wright, J.R.; Chauhan, M.; Shah, C.; Ring, A.; Thomas, A.L.; Goodall, A.H.; Adlam, D. The TICONC (Ticagrelor-Oncology) Study. JACC CardioOncol. 2020, 2, 236–250. [Google Scholar] [CrossRef] [PubMed]
  375. Cuzick, J.; Thorat, M.A.; Bosetti, C.; Brown, P.H.; Burn, J.; Cook, N.R.; Ford, L.G.; Jacobs, E.J.; Jankowski, J.A.; La Vecchia, C.; et al. Estimates of benefits and harms of prophylactic use of aspirin in the general population. Ann. Oncol. 2014, 26, 47–57. [Google Scholar] [CrossRef] [PubMed]
  376. Hwang, B.-O.; Park, S.-Y.; Cho, E.S.; Zhang, X.; Lee, S.K.; Ahn, H.-J.; Chun, K.-S.; Chung, W.-Y.; Song, N.-Y. Platelet CLEC2-Podoplanin Axis as a Promising Target for Oral Cancer Treatment. Front. Immunol. 2021, 12, 807600. [Google Scholar] [CrossRef] [PubMed]
  377. Hughes, C.E.; Navarro-Núñez, L.; Finney, B.A.; Mourão-Sá, D.; Pollitt, A.Y.; Watson, S.P. CLEC-2 is not required for platelet aggregation at arteriolar shear. J. Thromb. Haemost. 2010, 8, 2328–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  378. Le, X.; Nilsson, M.; Goldman, J.; Reck, M.; Nakagawa, K.; Kato, T.; Ares, L.P.; Frimodt-Moller, B.; Wolff, K.; Visseren-Grul, C.; et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients With EGFR-Mutant NSCLC. J. Thorac. Oncol. 2020, 16, 205–215. [Google Scholar] [CrossRef]
  379. Subbiah, V.; Dumbrava, E.I.; Jiang, Y.; Thein, K.Z.; Naing, A.; Hong, D.S.; Fu, S.; Piha-Paul, S.A.; Tsimberidou, A.M.; Janku, F.; et al. Dual EGFR blockade with cetuximab and erlotinib combined with anti-VEGF antibody bevacizumab in advanced solid tumors: A phase 1 dose escalation triplet combination trial. Exp. Hematol. Oncol. 2020, 9, 7–8. [Google Scholar] [CrossRef]
  380. Hu, Q.; Hada, A.; Han, L. Platelet count as a biomarker for monitoring treatment response and disease recurrence in recurrent epithelial ovarian cancer. J. Ovarian Res. 2020, 13, 78. [Google Scholar] [CrossRef]
  381. Soff, G.A.; Ray-Coquard, I.; Rivera, L.J.M.; Fryzek, J.; Mullins, M.; Bylsma, L.C.; Park, J.K. Systematic literature review and meta-analysis on use of Thrombopoietic agents for chemotherapy-induced thrombocytopenia. PLoS ONE 2022, 17, e0257673. [Google Scholar] [CrossRef] [PubMed]
  382. Wang, J.; Zhou, P.; Han, Y.; Zhang, H. Platelet transfusion for cancer secondary thrombocytopenia: Platelet and cancer cell interaction. Transl. Oncol. 2021, 14, 101022. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The tumor microenvironment (TME) of ovarian cancer. Tumor cell-induced activated platelets engage with endothelial cells, pericytes, mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), adipocytes, immune cells, and extracellular matrix (ECM) elements through direct interaction or by releasing various modulatory factors and platelet microparticles. Platelets promote the extravasation, differentiation, and activation of these cells, which, in turn, contribute to the hyper-responsiveness of platelets and thrombosis in a positive feedback loop.
Figure 1. The tumor microenvironment (TME) of ovarian cancer. Tumor cell-induced activated platelets engage with endothelial cells, pericytes, mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), adipocytes, immune cells, and extracellular matrix (ECM) elements through direct interaction or by releasing various modulatory factors and platelet microparticles. Platelets promote the extravasation, differentiation, and activation of these cells, which, in turn, contribute to the hyper-responsiveness of platelets and thrombosis in a positive feedback loop.
Cancers 15 01282 g001
Figure 2. The pro-angiogenic role of platelets in cancer. The interaction between platelets, endothelial cells, and pericytes supports the extravasation of immune cells, mesenchymal stem cells (MSCs), endothelial precursor cells (EPCs), and tumor cells. Platelets also release proangiogenic factors that promote new blood vessel formation and facilitate tumor growth. The newly formed cancer-associated blood vessels are branched, leaky, and less supported by pericytes. Insufficient oxygen and nutrient supplies lead to hypoxic and necrotic areas in the tumor. Platelet-targeting strategies can restrict neoangiogenesis.
Figure 2. The pro-angiogenic role of platelets in cancer. The interaction between platelets, endothelial cells, and pericytes supports the extravasation of immune cells, mesenchymal stem cells (MSCs), endothelial precursor cells (EPCs), and tumor cells. Platelets also release proangiogenic factors that promote new blood vessel formation and facilitate tumor growth. The newly formed cancer-associated blood vessels are branched, leaky, and less supported by pericytes. Insufficient oxygen and nutrient supplies lead to hypoxic and necrotic areas in the tumor. Platelet-targeting strategies can restrict neoangiogenesis.
Cancers 15 01282 g002
Figure 3. The molecules that mediate the interaction between platelets and immune cells in the tumor immune microenvironment (TIME). Activated platelets and immune cells in the TME communicate through various receptors and ligands or secreted modulatory factors, and these interactions can be targeted for the therapy of ovarian cancer.
Figure 3. The molecules that mediate the interaction between platelets and immune cells in the tumor immune microenvironment (TIME). Activated platelets and immune cells in the TME communicate through various receptors and ligands or secreted modulatory factors, and these interactions can be targeted for the therapy of ovarian cancer.
Cancers 15 01282 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Oncul, S.; Cho, M.S. Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers 2023, 15, 1282. https://doi.org/10.3390/cancers15041282

AMA Style

Oncul S, Cho MS. Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers. 2023; 15(4):1282. https://doi.org/10.3390/cancers15041282

Chicago/Turabian Style

Oncul, Selin, and Min Soon Cho. 2023. "Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes" Cancers 15, no. 4: 1282. https://doi.org/10.3390/cancers15041282

APA Style

Oncul, S., & Cho, M. S. (2023). Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers, 15(4), 1282. https://doi.org/10.3390/cancers15041282

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop