Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Acquisition and Processing
2.2. Raman Spectroscopy
2.3. Modelling and Cross-Validation Strategy
3. Results
3.1. Spectral Data Analysis
3.2. Two-Class Model
3.3. Occlusion Study
3.4. Three-Class Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Adenocarcinoma |
AUROC | Area Under Receiver Operating Curve |
CNN | Convolutional Neural Network |
CRC | Colorectal Cancer |
CV | Cross-Validation |
DL | Deep Learning |
FFPE | Formalin Fixed Paraffin Embedded |
IHC | Immunohistochemistry |
LDA | Linear Discriminant Analysis |
LS | Lynch Syndrome |
ML | Machine Learning |
MMR | Mismatch Repair |
MSI-H | Microsatellite Instability (High) |
MSS | Microsatellite Stability |
PCA | Principle Component Analysis |
PCR | Polymerase Chain Reaction |
ROC | Receiver Operating Curve |
RS | Raman Spectroscopy |
SNV | Standard Normal Variate |
SVM | Support Vector Machine |
Appendix A. Baseline Correction Experiments
Appendix A.1. Methods
Appendix A.2. Results
Appendix A.3. Conclusions
Appendix B. Custom Convolutional Neural Network
Hyperparameter | Value |
---|---|
Learning Rate | 0.0001 |
Batch Size | 256 |
Drop Out Rate | 0.2 |
Early Stopping | 5 epochs |
Optimiser | ADAM (, ) |
Loss Function | Cross-Entropy |
Appendix C. Augmentation Process
Appendix C.1. Poisson Noise
Appendix C.2. Wavenumber Shifting
Appendix D. Sample Characteristics
Sample ID | Sample Type | TNM Stage | Tumour Grade |
---|---|---|---|
LS1 | Resection cancer | T2 N0 M0 | Mod. Diff. |
LS2 | Resection cancer | T2 N0 M0 | Mod. Diff. |
LS3 | Resection cancer | T2 N0 M0 | Mod. Diff. |
LS4 | Resection cancer | T3 N0 M0 | Poor diff. |
LS5 | Resection cancer | T3 N0 M0 | Mod. Diff. |
LS6 | Resection cancer | T3 N0 M0 | Mod. Diff. |
LS7 | Resection cancer | T3.N1.Mx | Poor diff. |
LS8 | Resection cancer | T3 N1 M0 | Poor diff. |
LS9 | Resection cancer | T4 N0 M0 | Mod. Diff. |
LS10 | Resection cancer | T4 N1 M0 | Mod. Diff. |
AC1 | Resection cancer | T2 N2 M0 | Mod. Diff. |
N1 | Normal | - | - |
AC2 | Resection cancer | T2 N0 M0 | Mod. Diff. |
N2 | Normal | - | - |
AC3 | Resection cancer | T2 N0 M0 | Mod. Diff. |
N3 | Normal | - | - |
AC4 | Resection cancer | T3 N1 M0 | Mod. Diff. |
N4 | Normal | - | - |
AC5 | Resection cancer | T3 N3 M0 | Mod. Diff. |
N5 | Normal | - | - |
AC6 | Resection cancer | T3 N0 M0 | Mod. Diff. |
N6 | Normal | - | - |
AC7 | Resection cancer | T3 N0 M0 | Mod. Diff. |
N7 | Normal | - | - |
AC8 | Resection cancer | T3 N0 M0 | Mod. Diff. |
N8 | Normal | - | - |
AC9 | Resection cancer | T4 N2 M0 | Mod. Diff. |
N9 | Normal | - | - |
AC10 | Resection cancer | T4 N0 M1 | Poor diff. |
N10 | Normal | - | - |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Torre, L.A.; Soerjomataram, I.; Hayes, R.B.; Bray, F.; Weber, T.K.; Jemal, A. Global patterns and trends in colorectal cancer incidence in young adults. Gut 2019, 68, 2179–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerretelli, G.; Ager, A.; Arends, M.J.; Frayling, I.M. Molecular pathology of Lynch syndrome. J. Pathol. 2020, 250, 518–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, M.; Nimir, M.; Snead, D.; Taylor, G.S.; Rajpoot, N. Role of AI and digital pathology for colorectal immuno-oncology. Br. J. Cancer 2022, 128, 3–11. [Google Scholar] [CrossRef]
- Shaikh, T.; Handorf, E.A.; Meyer, J.E.; Hall, M.J.; Esnaola, N.F. Mismatch repair deficiency testing in patients with colorectal cancer and nonadherence to testing guidelines in young adults. JAMA Oncol. 2018, 4, e173580. [Google Scholar] [CrossRef]
- Hildebrand, L.A.; Pierce, C.J.; Dennis, M.; Paracha, M.; Maoz, A. Artificial intelligence for histology-based detection of microsatellite instability and prediction of response to immunotherapy in colorectal cancer. Cancers 2021, 13, 391. [Google Scholar] [CrossRef]
- Gaifulina, R.; Maher, A.T.; Kendall, C.; Nelson, J.; Rodriguez-Justo, M.; Lau, K.; Thomas, G.M. Label-free R aman spectroscopic imaging to extract morphological and chemical information from a formalin-fixed, paraffin-embedded rat colon tissue section. Int. J. Exp. Pathol. 2016, 97, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Thomas, G.M.H. Machine Learning of Raman Spectroscopy Data for Classifying Cancers: A Review of the Recent Literature. Diagnostics 2022, 12, 1491. [Google Scholar] [CrossRef]
- Santos, I.P.; Barroso, E.M.; Schut, T.C.B.; Caspers, P.J.; van Lanschot, C.G.; Choi, D.H.; Van Der Kamp, M.F.; Smits, R.W.; Van Doorn, R.; Verdijk, R.M.; et al. Raman spectroscopy for cancer detection and cancer surgery guidance: Translation to the clinics. Analyst 2017, 142, 3025–3047. [Google Scholar] [CrossRef]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Gaifulina, R.; Caruana, D.J.; Oukrif, D.; Guppy, N.J.; Culley, S.; Brown, R.; Bell, I.; Rodriguez-Justo, M.; Lau, K.; Thomas, G.M. Rapid and complete paraffin removal from human tissue sections delivers enhanced Raman spectroscopic and histopathological analysis. Analyst 2020, 145, 1499–1510. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.T.; Gaifulina, R.; Isabelle, M.; Dorney, J.; Woods, M.L.; Lloyd, G.R.; Lau, K.; Rodriguez-Justo, M.; Kendall, C.; Stone, N.; et al. Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells. J. Raman Spectrosc. 2017, 48, 119–125. [Google Scholar] [CrossRef]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.M.; Chen, S.; Liang, Y.Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef]
- Afseth, N.K.; Kohler, A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom. Intell. Lab. Syst. 2012, 117, 92–99. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Rieke, J.; Eitel, F.; Weygandt, M.; Haynes, J.D.; Ritter, K. Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In Understanding and Interpreting Machine Learning in Medical Image Computing Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 24–31. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Snowsill, T.; Coelho, H.; Huxley, N.; Jones-Hughes, T.; Briscoe, S.; Frayling, I.M.; Hyde, C. Molecular testing for Lynch syndrome in people with colorectal cancer: Systematic reviews and economic evaluation. Health Technol. Assess. 2017, 21, 1–280. [Google Scholar] [CrossRef] [Green Version]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Li, H.; Sun, L.; Zhuang, Y.; Tian, C.; Yan, F.; Zhang, Z.; Hu, Y.; Liu, P. Molecular mechanisms and differences in lynch syndrome developing into colorectal cancer and endometrial cancer based on gene expression, methylation, and mutation analysis. Cancer Causes Control 2022, 33, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Poynter, J.N.; Siegmund, K.D.; Weisenberger, D.J.; Long, T.I.; Thibodeau, S.N.; Lindor, N.; Young, J.; Jenkins, M.A.; Hopper, J.L.; Baron, J.A.; et al. Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3208–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shia, J.; Holck, S.; DePetris, G.; Greenson, J.K.; Klimstra, D.S. Lynch syndrome-associated neoplasms: A discussion on histopathology and immunohistochemistry. Fam. Cancer 2013, 12, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Barnetson, R.A.; Tenesa, A.; Farrington, S.M.; Nicholl, I.D.; Cetnarskyj, R.; Porteous, M.E.; Campbell, H.; Dunlop, M.G. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N. Engl. J. Med. 2006, 354, 2751–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southey, M.C.; Jenkins, M.A.; Mead, L.; Whitty, J.; Trivett, M.; Tesoriero, A.A.; Smith, L.D.; Jennings, K.; Grubb, G.; Royce, S.G.; et al. Use of molecular tumor characteristics to prioritize mismatch repair gene testing in early-onset colorectal cancer. J. Clin. Oncol. 2005, 23, 6524–6532. [Google Scholar] [CrossRef] [PubMed]
- Limburg, P.J.; Harmsen, W.S.; Chen, H.H.; Gallinger, S.; Haile, R.W.; Baron, J.A.; Casey, G.; Woods, M.O.; Thibodeau, S.N.; Lindor, N.M. Prevalence of alterations in DNA mismatch repair genes in patients with young-onset colorectal cancer. Clin. Gastroenterol. Hepatol. 2011, 9, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Faolain, E.O.; Hunter, M.B.; Byrne, J.M.; Kelehan, P.; McNamara, M.; Byrne, H.J.; Lyng, F.M. A study examining the effects of tissue processing on human tissue sections using vibrational spectroscopy. Vib. Spectrosc. 2005, 38, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Kallenbach-Thieltges, A.; Großerueschkamp, F.; Jütte, H.; Kuepper, C.; Reinacher-Schick, A.; Tannapfel, A.; Gerwert, K. Label-free, automated classification of microsatellite status in colorectal cancer by infrared imaging. Sci. Rep. 2020, 10, 10161. [Google Scholar] [CrossRef]
- Ma, D.; Shang, L.; Tang, J.; Bao, Y.; Fu, J.; Yin, J. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 256, 119732. [Google Scholar] [CrossRef]
- Echle, A.; Grabsch, H.I.; Quirke, P.; van den Brandt, P.A.; West, N.P.; Hutchins, G.G.; Heij, L.R.; Tan, X.; Richman, S.D.; Krause, J.; et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroenterology 2020, 159, 1406–1416. [Google Scholar] [CrossRef]
- Lee, W.; Lenferink, A.; Otto, C.; Offerhaus, H. Classifying Raman spectra of extracellular vesicles based on convolutional neural networks for prostate cancer detection. J. Raman Spectrosc. 2020, 51, 293–300. [Google Scholar] [CrossRef]
- Yan, H.; Yu, M.; Xia, J.; Zhu, L.; Zhang, T.; Zhu, Z.; Sun, G. Diverse Region-Based CNN for Tongue Squamous Cell Carcinoma Classification With Raman Spectroscopy. IEEE Access 2020, 8, 127313–127328. [Google Scholar] [CrossRef]
- Wu, X.; Li, S.; Xu, Q.; Yan, X.; Fu, Q.; Fu, X.; Fang, X.; Zhang, Y. Rapid and accurate identification of colon cancer by Raman spectroscopy coupled with convolutional neural networks. Jpn. J. Appl. Phys. 2021, 60, 067001. [Google Scholar] [CrossRef]
PCA–LDA | SVM | CNN | |
---|---|---|---|
Sensitivity | 70.0% +/− 36.1 | 85.6% +/− 21.0 | 73.0% +/− 10.0 |
Specificity | 62.8% +/− 27.5 | 32.8% +/− 15.7 | 48.9% +/− 12.5 |
AUROC | 0.65 +/− 0.21 | 0.71 +/− 0.16 | 0.75 +/− 0.15 |
PCA–LDA | SVM | CNN | |
---|---|---|---|
Log Loss | 0.66 +/− 0.17 | 0.80 +/− 0.07 | 0.54 +/− 0.17 |
Accuracy | 71.3% +/− 8.8 | 74.7% +/− 7.2 | 74.0% +/− 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blake, N.; Gaifulina, R.; Griffin, L.D.; Bell, I.M.; Rodriguez-Justo, M.; Thomas, G.M.H. Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer. Cancers 2023, 15, 1720. https://doi.org/10.3390/cancers15061720
Blake N, Gaifulina R, Griffin LD, Bell IM, Rodriguez-Justo M, Thomas GMH. Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer. Cancers. 2023; 15(6):1720. https://doi.org/10.3390/cancers15061720
Chicago/Turabian StyleBlake, Nathan, Riana Gaifulina, Lewis D. Griffin, Ian M. Bell, Manuel Rodriguez-Justo, and Geraint M. H. Thomas. 2023. "Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer" Cancers 15, no. 6: 1720. https://doi.org/10.3390/cancers15061720
APA StyleBlake, N., Gaifulina, R., Griffin, L. D., Bell, I. M., Rodriguez-Justo, M., & Thomas, G. M. H. (2023). Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer. Cancers, 15(6), 1720. https://doi.org/10.3390/cancers15061720