Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Knowledge-Based Planning and Model Configuration
2.2.1. Photon Model
2.2.2. Proton Models
2.3. Plan Evaluation
3. Results
3.1. NRG-BN001 Photon Plan Quality Review
3.2. NRG-BN001 Proton Plan Quality Review
3.3. NRG-HN001 Proton Plan Quality Review
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current Trends in the Surgical Management and Treatment of Adult Glioblastoma. Ann. Transl. Med. 2015, 3, 121. [Google Scholar] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010. Neuro Oncol. 2013, 15 (Suppl. S2), ii1–ii56. [Google Scholar] [CrossRef]
- Noch, E.K.; Ramakrishna, R.; Magge, R. Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurg. 2018, 116, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Taillibert, S.; Kanner, A.; Read, W.; Steinberg, D.M.; Lhermitte, B.; Toms, S.; Idbaih, A.; Ahluwalia, M.S.; Fink, K.; et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide Vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma. JAMA 2017, 318, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Armocida, D.; Pesce, A.; Di Giammarco, F.; Frati, A.; Santoro, A.; Salvati, M. Long Term Survival in Patients Suffering from Glio-Blastoma Multiforme: A Single-Center Observational Cohort Study. Diagnostics 2019, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, C.; Pan, L. Nasopharyngeal Carcinoma: A Review of Current Updates. Exp. Ther. Med. 2018, 15, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Figen, M.; Çolpan Öksüz, D.; Duman, E.; Prestwich, R.; Dyker, K.; Cardale, K.; Ramasamy, S.; Murray, P.; Şen, M. Radiotherapy for Head and Neck Cancer: Evaluation of Triggered Adaptive Replanning in Routine Practice. Front. Oncol. 2020, 10, 579917. [Google Scholar] [CrossRef] [PubMed]
- Abrams, R.A.; Winter, K.A.; Regine, W.F.; Safran, H.; Hoffman, J.P.; Lustig, R.; Konski, A.A.; Benson, A.B.; Macdonald, J.S.; Rich, T.A.; et al. Failure to Adhere to Protocol Specified Radiation Therapy Guidelines was Associated with Decreased Survival in RTOG 9704—A Phase III Trial of Adjuvant Chemotherapy and Chemoradiotherapy for Patients with Resected Adenocarcinoma of the Pancreas. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 809–816. [Google Scholar] [CrossRef]
- Gwynne, S.; Spezi, E.; Sebag-Montefiore, D.; Mukherjee, S.; Miles, E.; Conibear, J.; Staffurth, J. Improving Radiotherapy Quality Assurance in Clinical Trials: Assessment of Target Volume Delineation of the Pre-Accrual Benchmark Case. Br. J. Radiol. 2013, 86, 20120398. [Google Scholar] [CrossRef]
- Peters, L.J.; O’Sullivan, B.; Giralt, J.; Fitzgerald, T.J.; Trotti, A.; Bernier, J.; Bourhis, J.; Yuen, K.; Fisher, R.; Rischin, D. Critical Impact of Radiotherapy Protocol Compliance and Quality in the Treatment of Advanced Head and Neck Cancer: Results from TROG 02.02. J. Clin. Oncol. 2010, 28, 2996–3001. [Google Scholar] [CrossRef]
- Powis, R.; Bird, A.; Brennan, M.; Hinks, S.; Newman, H.; Reed, K.; Sage, J.; Webster, G. Clinical Implementation of a Knowledge Based Planning Tool for Prostate VMAT. Radiat. Oncol. 2017, 12, 81. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, F.; Yue, H.; Zhang, H.; Wang, K.; Zhang, Y. Applying a RapidPlan Model Trained on a Technique and Orientation to another: A Feasibility and Dosimetric Evaluation. Radiat. Oncol. 2016, 11, 108. [Google Scholar] [CrossRef]
- Ge, Y.; Wu, Q.J. Knowledge-Based Planning for Intensity-Modulated Radiation Therapy: A Review of Data-Driven Approaches. Med. Phys. 2019, 46, 2760–2775. [Google Scholar] [CrossRef]
- Good, D.; Lo, J.; Lee, W.R.; Wu, Q.J.; Yin, F.; Das, S.K. A Knowledge-Based Approach to Improving and Homogenizing Intensity Modulated Radiation Therapy Planning Quality among Treatment Centers: An Example Application to Prostate Cancer Planning. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 176–181. [Google Scholar] [CrossRef]
- Giaddui, T.; Chen, W.; Yu, J.; Lin, L.; Simone, C.B.; Yuan, L.; Gong, Y.U.T.; Wu, Q.J.; Mohan, R.; Zhang, X.; et al. Establishing the Feasibility of the Dosimetric Compliance Criteria of RTOG 1308: Phase III Randomized Trial Comparing overall Survival After Photon Versus Proton Radiochemotherapy for Inoperable Stage II-IIIB NSCLC. Radiat. Oncol. 2016, 11, 66. [Google Scholar] [CrossRef]
- Younge, K.C.; Marsh, R.B.; Owen, D.; Geng, H.; Xiao, Y.; Spratt, D.E.; Foy, J.; Suresh, K.; Wu, Q.J.; Yin, F.; et al. Improving Quality and Consistency in NRG Oncology Radiation Therapy Oncology Group 0631 for Spine Radiosurgery Via Knowledge-Based Planning. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 1067–1074. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Li, T.; Thongphiew, D.; Yin, F.; Wu, Q.J. A Planning Quality Evaluation Tool for Prostate Adaptive IMRT Based on Machine Learning. Med. Phys. 2011, 38, 719–726. [Google Scholar] [CrossRef]
- Moore, K.L.; Brame, R.S.; Low, D.A.; Mutic, S. Experience-Based Quality Control of Clinical Intensity-Modulated Radiotherapy Planning. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 545–551. [Google Scholar] [CrossRef]
- Giaddui, T.; Geng, H.; Chen, Q.; Linnemann, N.; Radden, M.; Lee, N.Y.; Xia, P.; Xiao, Y. Offline Quality Assurance for Intensity Modulated Radiation Therapy Treatment Plans for NRG-HN001 Head and Neck Clinical Trial using Knowledge-Based Planning. Adv. Radiat. Oncol. 2020, 5, 1342–1349. [Google Scholar] [CrossRef]
- Wu, B.; McNutt, T.; Zahurak, M.; Simari, P.; Pang, D.; Taylor, R.; Sanguineti, G. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 647. [Google Scholar] [CrossRef]
- Chen, H.; Craft, D.L.; Gierga, D.P. Multicriteria Optimization Informed VMAT Planning. Med. Dosim. 2014, 39, 64–73. [Google Scholar] [CrossRef]
- Geng, H.; Giaddui, T.; Cheng, C.; Zhong, H.; Ryu, S.; Liao, Z.; Yin, F.; Gillin, M.; Mohan, R.; Xiao, Y. A Comparison of Two Methodologies for Radiotherapy Treatment Plan Optimization and QA for Clinical Trials. J. Appl. Clin. Med. Phys. 2021, 22, 329–337. [Google Scholar] [CrossRef]
- Cao, W.; Gronberg, M.; Olanrewaju, A.; Whitaker, T.; Hoffman, K.; Cardenas, C.; Garden, A.; Skinner, H.; Beadle, B.; Court, L. Knowledge-based Planning for the Radiation Therapy Treatment Plan Quality Assurance for Patients with Head and Neck Cancer. J. Appl. Clin. Med. Phys. 2022, 23, e13614. [Google Scholar] [CrossRef]
- Fogliata, A.; Wang, P.; Belosi, F.; Clivio, A.; Nicolini, G.; Vanetti, E.; Cozzi, L. Assessment of a Model Based Optimization Engine for Volumetric Modulated Arc Therapy for Patients with Advanced Hepatocellular Cancer. Radiat. Oncol. 2014, 9, 236. [Google Scholar] [CrossRef]
- Paddick, I. A Simple Scoring Ratio to Index the Conformity of Radiosurgical Treatment Plans. Technical Note. J. Neurosurg. 2000, 93 (Suppl. S3), 219–222. [Google Scholar] [CrossRef]
- van’t Riet, A.; Mak, A.C.; Moerland, M.A.; Elders, L.H.; van der Zee, W. A Conformation Number to Quantify the Degree of Conformality in Brachytherapy and External Beam Irradiation: Application to the Prostate. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 731–736. [Google Scholar] [CrossRef]
- Langen, K.; Zhu, M. Concepts of PTV and Robustness in Passively Scattered and Pencil Beam Scanning Proton Therapy. Semin. Radiat. Oncol. 2018, 28, 248–255. [Google Scholar] [CrossRef]
- Liu, H.; Chang, J.Y. Proton Therapy in Clinical Practice. Chin. J. Cancer 2011, 30, 315–326. [Google Scholar] [CrossRef]
- Kanai, T.; Kawachi, K.; Kumamoto, Y.; Ogawa, H.; Yamada, T.; Matsuzawa, H.; Inada, T. Spot Scanning System for Proton Radiotherapy. Med. Phys. 1980, 7, 365–369. [Google Scholar] [CrossRef]
- Seco, J.; Robertson, D.; Trofimov, A.; Paganetti, H. Breathing Interplay Effects during Proton Beam Scanning: Simulation and Statistical Analysis. Phys. Med. Biol. 2009, 54, 283. [Google Scholar] [CrossRef] [PubMed]
- Yoo, G.S.; Yu, J.I.; Cho, S.; Jung, S.H.; Han, Y.; Park, S.; Oh, Y.; Lee, B.; Park, H.C.; Lim, D.H.; et al. Comparison of Clinical Outcomes between Passive Scattering Versus Pencil-Beam Scanning Proton Beam Therapy for Hepatocellular Carcinoma. Radiother. Oncol. 2020, 146, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Delaney, A.R.; Verbakel, W.F.; Lindberg, J.; Koponen, T.K.; Slotman, B.J.; Dahele, M. Evaluation of an Automated Proton Planning Solution. Cureus 2018, 10, e3696. [Google Scholar] [CrossRef] [PubMed]
- Tol, J.P.; Dahele, M.; Delaney, A.R.; Slotman, B.J.; Verbakel, W.F.A.R. Can Knowledge-Based DVH Predictions be used for Automated, Individualized Quality Assurance of Radiotherapy Treatment Plans? Radiat. Oncol. 2015, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Lee, J.J.; Komaki, R.; Gomez, D.R.; O’Reilly, M.S.; Fossella, F.V.; Blumenschein, G.R.; Heymach, J.V.; Vaporciyan, A.A.; Swisher, S.G.; et al. Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 1813–1822. [Google Scholar] [CrossRef]
- Fogliata, A.; Belosi, F.; Clivio, A.; Navarria, P.; Nicolini, G.; Scorsetti, M.; Vanetti, E.; Cozzi, L. On the Pre-Clinical Validation of a Commercial Model-Based Optimisation Engine: Application to Volumetric Modulated Arc Therapy for Patients with Lung Or Prostate Cancer. Radiother. Oncol. 2014, 113, 385–391. [Google Scholar] [CrossRef]
- Li, N.; Carmona, R.; Sirak, I.; Kasaova, L.; Followill, D.; Michalski, J.; Bosch, W.; Straube, W.; Mell, L.K.; Moore, K.L. Highly Efficient Training, Refinement, and Validation of a Knowledge-Based Planning Quality-Control System for Radiation Therapy Clinical Trials. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 164–172. [Google Scholar] [CrossRef]
Structures | Dosimetric Parameter | Photon Submitted | Photon KBP | ||||
---|---|---|---|---|---|---|---|
Score 1 | Score 2 | Score 3 | Score 1 | Score 2 | Score 3 | ||
PTV_5000 | D95%[Gy] | 110 | 27 | 2 | 130 | 9 | 0 |
PTV_7500 | D95%[Gy] | 105 | 26 | 8 | 111 | 19 | 9 |
PTV_7500 | D10%[Gy] | 101 | 35 | 3 | 138 | 1 | 0 |
PTV_7500 | D0.03cc[Gy] | 84 | 47 | 8 | 126 | 13 | 0 |
SpinalCord | D0.03cc[Gy] | 139 | 0 | 0 | 139 | 0 | 0 |
BrainStemCore | D0.03cc[Gy] | 125 | 13 | 1 | 126 | 13 | 0 |
BrainStemSurf | D0.03cc[Gy] | 121 | 18 | 0 | 124 | 15 | 0 |
OpticChiasm_PRV | D0.03cc[Gy] | 129 | 10 | 0 | 130 | 9 | 0 |
OpticNerve_L_PRV | D0.03cc[Gy] | 135 | 3 | 1 | 134 | 5 | 0 |
OpticNerve_R_PRV | D0.03cc[Gy] | 133 | 5 | 1 | 132 | 6 | 1 |
Retina_L | D0.03cc[Gy] | 138 | 1 | 0 | 139 | 0 | 0 |
Retina_R | D0.03cc[Gy] | 139 | 0 | 0 | 137 | 2 | 0 |
Brain | D5% [Gy] | 136 | 2 | 1 | 139 | 0 | 0 |
Lens_L | D0.03cc[Gy] | 126 | 11 | 2 | 118 | 20 | 1 |
Lens_R | D0.03cc[Gy] | 126 | 12 | 1 | 123 | 16 | 0 |
Structures | Dosimetric Parameter | Photon Submitted | Photon KBP | p Value |
---|---|---|---|---|
PTV_5000 | D95%[Gy] | 50.9 ± 1.5 | 51.7 ± 1.2 | <0.001 * |
PTV_7500 | D95%[Gy] | 74.2 ± 2.9 | 74.0 ± 2.8 | 0.001 * |
PTV_7500 | D10%[Gy] | 78.1 ± 1.6 | 76.7 ± 0.8 | <0.001 * |
PTV_7500 | D0.03cc[Gy] | 79.8 ± 1.9 | 78.5 ± 1.3 | <0.001 * |
Spinal Cord | D0.03cc[Gy] | 6.6 ± 5.9 | 5.6 ± 5.1 | <0.001 * |
BrainStem_Core | D0.03cc[Gy] | 46.6 ± 11.6 | 44.6 ± 14.0 | 0.019 * |
BrainStem_Surf | D0.03cc[Gy] | 46.1 ± 12.7 | 43.6 ± 14.7 | <0.001 * |
OpticChiasm_PRV | D0.03cc[Gy] | 39.7 ± 16.3 | 35.9 ± 16.9 | <0.001 * |
OpticNerve_PRV | D0.03cc[Gy] | 33.7 ± 20.1 | 31.1 ± 20.2 | <0.001 * |
Retina | D0.03cc[Gy] | 16.4 ± 12.3 | 17.5 ± 12.1 | 0.054 |
Brain | D5% [Gy] | 72.1 ± 7.0 | 72.42 ± 6.2 | 0.803 |
Lens | D0.03cc[Gy] | 4.6 ± 2.7 | 5.3 ± 2.6 | <0.001 * |
HIPTV_7500 | 1.06 ± 0.02 | 1.04 ± 0.02 | <0.001 * | |
CIPTV_7500 | 1.00 ± 0.18 | 1.00 ± 0.10 | 0.39 |
Structures | Dosimetric Parameter | Proton Submitted | Proton KBP | ||||
---|---|---|---|---|---|---|---|
Score 1 | Score 2 | Score 3 | Score 1 | Score 2 | Score 3 | ||
PTV_5000 | D95%[Gy] | 49 | 14 | 1 | 63 | 1 | 0 |
PTV_7500 | D95%[Gy] | 37 | 22 | 5 | 61 | 1 | 2 |
PTV_7500 | D10%[Gy] | 60 | 4 | 0 | 64 | 0 | 0 |
PTV_7500 | D0.03cc[Gy] | 63 | 1 | 0 | 57 | 7 | 0 |
SpinalCord | D0.03cc[Gy] | 64 | 0 | 0 | 64 | 0 | 0 |
BrainStemCore | D0.03cc[Gy] | 61 | 3 | 0 | 64 | 0 | 0 |
BrainStemSurf | D0.03cc[Gy] | 58 | 6 | 0 | 63 | 1 | 0 |
OpticChiasm_PRV | D0.03cc[Gy] | 62 | 2 | 0 | 63 | 1 | 0 |
OpticNerve_L_PRV | D0.03cc[Gy] | 61 | 3 | 0 | 64 | 0 | 0 |
OpticNerve_R_PRV | D0.03cc[Gy] | 62 | 1 | 1 | 62 | 1 | 1 |
Retina_L | D0.03cc[Gy] | 64 | 0 | 0 | 64 | 0 | 0 |
Retina_R | D0.03cc[Gy] | 63 | 0 | 1 | 64 | 0 | 0 |
Brain | D5%[Gy] | 64 | 0 | 0 | 64 | 0 | 0 |
Lens_L | D0.03cc[Gy] | 63 | 0 | 1 | 64 | 0 | 0 |
Lens_R | D0.03cc[Gy] | 62 | 2 | 0 | 63 | 1 | 0 |
Structures | Dosimetric Parameter | IMPT | PS | ||||
---|---|---|---|---|---|---|---|
Clinical | KBP | p Value | Clinical | KBP | p Value | ||
PTV_5000 | D95%[Gy] | 50.9 ± 1.7 | 50.8 ± 0.4 | 0.772 | 50.3 ± 1.5 | 50.9 ± 0.35 | 0.037 * |
PTV_7500 | D95%[Gy] | 73.3 ± 3.5 | 75.0 ± 1.4 | <0.001 * | 74.2 ± 1.5 | 75.2 ± 0.5 | 0.002 * |
PTV_7500 | D10%[Gy] | 77.4 ± 0.8 | 77.5 ± 0.4 | 0.22 | 77.1 ± 1.5 | 77.5 ± 0.4 | 0.164 |
PTV_7500 | D0.03cc[Gy] | 78.4 ± 1.0 | 79.5 ± 0.8 | <0.001 * | 78.4 ± 1.8 | 79.3 ± 0.6 | 0.015* |
Spinal Cord | D0.03cc[Gy] | 0.1 ± 0.1 | 0.0 ± 0.0 | 0.005 * | 0.1 ± 0.3 | 0.0 ± 0.0 | 0.364 |
BrainStem_Core | D0.03cc[Gy] | 44.0 ± 14.7 | 33.6 ± 15.1 | <0.001 * | 38.3 ± 17.0 | 28.6 ± 14.2 | <0.001 * |
BrainStem_Surf | D0.03cc[Gy] | 43.0 ± 16.3 | 30.2 ± 16.4 | <0.001 * | 38.8 ± 19.3 | 28.5 ± 14.3 | <0.001 * |
OpticChiasm_PRV | D0.03cc[Gy] | 31.7 ± 22.2 | 21.1 ± 20.6 | <0.001 * | 34.8± 20.6 | 22.0 ± 18.4 | <0.001 * |
OpticNerve_PRV | D0.03cc[Gy] | 24.3 ± 25.6 | 20.0 ± 22.7 | <0.001 * | 22.0 ± 23.2 | 16.5 ± 19.7 | 0.002 * |
Retina | D0.03cc[Gy] | 7.4 ± 13.6 | 3.2 ± 8 | <0.001 * | 7.5 ± 12.8 | 3.3 ± 7.0 | 0.014 * |
Brain | D5%[Gy] | 71.4 ± 5.0 | 72.6 ± 4.6 | 0.013 * | 73.2 ± 5.6 | 72.3 ± 5.3 | 0.059 |
Lens | D0.03cc[Gy] | 1.2 ± 2.8 | 0.4 ± 1.5 | 0.027 * | 1.7 ± 0.4 | 0.7 ± 0.3 | 0.689 |
HIPTV_7500 | 1.05 ± 0.01 | 1.06 ± 0.01 | <0.001 * | 1.06 ± 0.01 | 1.04 ± 0.02 | <0.008 * | |
CIPTV_7500 | 0.80 ± 0.16 | 0.89 ± 0.07 | 0.002 * | 0.68 ± 0.31 | 0.89 ± 0.08 | 0.003 * |
Structures | Dosimetric Parameter | Proton Submitted | Proton KBP | ||||
---|---|---|---|---|---|---|---|
Score 1 | Score 2 | Score 3 | Score 1 | Score 2 | Score 3 | ||
PTV_High | V100%[%] | 3 | 4 | 13 | 13 | 4 | 3 |
PTV_High | D99%[%] | 6 | 3 | 11 | 12 | 2 | 6 |
PTV_High | D0.03cc[%] | 20 | 0 | 0 | 18 | 2 | 0 |
PTV_Intermediate1 | V63Gy[%]/V62.7Gy[%] | 2 | 0 | 7 | 8 | 1 | 0 |
PTV_Intermediate2 | V59Gy[%]/V59.4Gy[%] | 1 | 3 | 5 | 8 | 1 | 0 |
PTV_Low | V56Gy[%] | 1 | 2 | 8 | 9 | 0 | 2 |
SpinalCord | D0.03cc[Gy] | 18 | 2 | 0 | 20 | 0 | 0 |
BrainStem | D0.03cc[Gy] | 13 | 7 | 0 | 20 | 0 | 0 |
OpticChiasm | D0.03cc[Gy] | 17 | 1 | 0 | 20 | 0 | 0 |
OpticNerve_L | D0.03cc[Gy] | 17 | 1 | 0 | 20 | 0 | 0 |
OpticNerve_R | D0.03cc[Gy] | 17 | 1 | 0 | 20 | 0 | 0 |
TMjoint_L | D0.03cc[Gy] | 15 | 0 | 0 | 15 | 0 | 0 |
TMjoint_R | D0.03cc[Gy] | 15 | 0 | 0 | 15 | 0 | 0 |
Mandible | D0.03cc[Gy] | 19 | 1 | 0 | 19 | 1 | 0 |
BrachialPlexus_L | D0.03cc[Gy] | 18 | 2 | 0 | 20 | 0 | 0 |
BrachialPlexus_R | D0.03cc[Gy] | 20 | 0 | 0 | 19 | 1 | 0 |
TemporalLobe_L | D0.03cc[Gy] | 19 | 1 | 0 | 19 | 1 | 0 |
TemporalLobe_R | D0.03cc[Gy] | 20 | 0 | 0 | 20 | 0 | 0 |
Parotid_L | Mean[Gy] | 17 | 2 | 1 | 20 | 0 | 0 |
Parotid_R | Mean[Gy] | 16 | 1 | 3 | 18 | 1 | 1 |
Structures | Dosimetric Parameter | Proton Submitted | Proton KBP | p Value |
---|---|---|---|---|
PTV_High | V100%[%] | 42.1% ± 41.8% | 84.1% ± 30.4% | <0.001 * |
PTV_High | D99%[%] | 89.7% ± 5.4% | 93.3% ± 6.7% | 0.037 * |
PTV_High | D0.03cc[%] | 102.2% ± 4.0% | 111.0% ± 4.9% | <0.001 * |
PTV_Intermediate1 | V63Gy[%]/V62.7Gy[%] | 53.3% ± 29.7% | 97.1% ± 2.0% | <0.001 * |
PTV_Intermediate2 | V59Gy[%]/V59.4Gy[%] | 77.3% ± 21.2% | 97.1% ± 2.5% | <0.001 * |
PTV_Low | V56Gy[%] | 63.8% ± 24.7% | 91.4% ± 15.0% | 0.003 * |
SpinalCord | D0.03cc[Gy] | 37 ± 10.5 | 37.1 ± 2.3 | 0.486 |
BrainStem | D0.03cc[Gy] | 51.3 ± 7.4 | 46.7 ± 2.9 | 0.008 * |
OpticChiasm | D0.03cc[Gy] | 34.3 ± 14.7 | 25.4 ± 15.7 | 0.040 * |
OpticNerve_L | D0.03cc[Gy] | 41.7 ± 14.3 | 31.9 ± 17.6 | 0.034 * |
OpticNerve_R | D0.03cc[Gy] | 42.7 ± 11.3 | 29.6 ± 15.2 | 0.002 * |
TMjoint_L | D0.03cc[Gy] | 52.5 ± 11.1 | 47.8 ± 16.4 | 0.195 |
TMjoint_R | D0.03cc[Gy] | 50 ± 11.4 | 44.3 ± 16 | 0.146 |
Mandible | D0.03cc[Gy] | 63.6 ± 6.7 | 64.3 ± 4.7 | 0.361 |
BrachialPlexus_L | D0.03cc[Gy] | 60.9 ± 4.3 | 61.3 ± 2.3 | 0.345 |
BrachialPlexus_R | D0.03cc[Gy] | 60.7 ± 3.6 | 61.6 ± 2.8 | 0.208 |
TemporalLobe_L | D0.03cc[Gy] | 61.6 ± 6.8 | 60.7 ± 7.9 | 0.438 |
TemporalLobe_R | D0.03cc[Gy] | 62.6 ± 6.2 | 62.3 ± 7.4 | 0.342 |
Parotid_L | Mean[Gy] | 25.5 ± 6.3 | 22.6 ± 5.4 | 0.040 * |
Parotid_R | Mean[Gy] | 24.5 ± 5.3 | 22.1 ± 2.8 | 0.067 |
HIPTV_high | 1 ± 0 | 1.1 ± 0 | <0.001 * | |
CI PTV_High | 0.3 ± 0.3 | 0.7 ± 0.3 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Geng, H.; Gondi, V.; Lee, N.Y.; Tsien, C.I.; Xia, P.; Chenevert, T.L.; Michalski, J.M.; Gilbert, M.R.; Le, Q.-T.; et al. Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach. Cancers 2024, 16, 2007. https://doi.org/10.3390/cancers16112007
Wang D, Geng H, Gondi V, Lee NY, Tsien CI, Xia P, Chenevert TL, Michalski JM, Gilbert MR, Le Q-T, et al. Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach. Cancers. 2024; 16(11):2007. https://doi.org/10.3390/cancers16112007
Chicago/Turabian StyleWang, Du, Huaizhi Geng, Vinai Gondi, Nancy Y. Lee, Christina I. Tsien, Ping Xia, Thomas L. Chenevert, Jeff M. Michalski, Mark R. Gilbert, Quynh-Thu Le, and et al. 2024. "Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach" Cancers 16, no. 11: 2007. https://doi.org/10.3390/cancers16112007
APA StyleWang, D., Geng, H., Gondi, V., Lee, N. Y., Tsien, C. I., Xia, P., Chenevert, T. L., Michalski, J. M., Gilbert, M. R., Le, Q. -T., Omuro, A. M., Men, K., Aldape, K. D., Cao, Y., Srinivasan, A., Barani, I. J., Sachdev, S., Huang, J., Choi, S., ... Xiao, Y. (2024). Radiotherapy Plan Quality Assurance in NRG Oncology Trials for Brain and Head/Neck Cancers: An AI-Enhanced Knowledge-Based Approach. Cancers, 16(11), 2007. https://doi.org/10.3390/cancers16112007