Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice and Radiation Exposure
2.2. Biospecimen Collection, Tumor Counting, and Histological Assessments
2.3. Mammary Gland Whole Mount Staining
2.4. Serum Immunoassays
2.5. Immunohistochemistry and Image Quantification
2.6. mRNA Expression Analysis
2.7. Tissue Microarray Analysis of ERRα and SPP1 Protein Expression
2.8. Co-Expression Analysis of Esr1, Esrra, and Spp1 Genes in Human Breast Cancer
2.9. Statistical Analysis
3. Results
3.1. Increased Ductal Overgrowth and Mammary Tumorigenesis After GCRsim
3.2. GCRsim-Exposure Induces Activation of ERα and Downstream Target Genes
3.3. GCRsim-Exposure Induces Activation of ERRα and Downstream Target Genes
3.4. ERα, ERRα and SPP1 Protein Expression in Mouse and Human Mammary Tumors
3.5. Co-Expression of Spp1 in ERα and ERRα Positive Human Breast Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barr, Y.R.; Bacal, K.; Jones, J.A.; Hamilton, D.R. Breast cancer and spaceflight: Risk and management. Aviat. Space Environ. Med. 2007, 78, A26–A37. [Google Scholar]
- Cucinotta, F.A. Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions. Life Sci. Space Res. 2024, 40, 166–175. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, J.; Wang, Y.; Xu, C.; Liu, Y.; Du, L.; Wang, Q.; Ji, K.; He, N.; Zhang, M.; et al. Association of low-dose ionising radiation with site-specific solid cancers: Chinese medical X-ray workers cohort study, 1950–1995. Occup. Environ. Med. 2023, 80, 687–693. [Google Scholar] [CrossRef]
- Little, M.P.; Hamada, N. Low-Dose Extrapolation Factors Implied by Mortality and Incidence Data from the Japanese Atomic Bomb Survivor Life Span Study Data. Radiat. Res. 2022, 198, 582–589. [Google Scholar] [CrossRef]
- Walsh, L.; Hafner, L.; Straube, U.; Ulanowski, A.; Fogtman, A.; Durante, M.; Weerts, G.; Schneider, U. A bespoke health risk assessment methodology for the radiation protection of astronauts. Radiat. Environ. Biophys. 2021, 60, 213–231. [Google Scholar] [CrossRef]
- Kaiser, J.C.; Jacob, P.; Meckbach, R.; Cullings, H.M. Breast cancer risk in atomic bomb survivors from multi-model inference with incidence data 1958–1998. Radiat. Environ. Biophys. 2012, 51, 1–14. [Google Scholar] [CrossRef]
- Ramos, R.L.; Carante, M.P.; Ferrari, A.; Sala, P.; Vercesi, V.; Ballarini, F. A Mission to Mars: Prediction of GCR Doses and Comparison with Astronaut Dose Limits. Int. J. Mol. Sci. 2023, 24, 2328. [Google Scholar] [CrossRef]
- Ballarini, F.; Battistoni, G.; Cerutti, F.; Fassò, A.; Ferrari, A.; Gadioli, E.; Garzelli, M.V.; Mairani, A.; Ottolenghi, A.; Paretzke, H.; et al. GCR and SPE organ doses in deep space with different shielding: Monte Carlo simulations based on the FLUKA code coupled to anthropomorphic phantoms. Adv. Space Res. 2006, 37, 1791–1797. [Google Scholar] [CrossRef]
- Ramos, R.L.; Carante, M.P.; Bernardini, E.; Ferrari, A.; Sala, P.; Vercesi, V.; Ballarini, F. A method to predict space radiation biological effectiveness for non-cancer effects following intense Solar Particle Events. Life Sci. Space Res. 2024, 41, 210–217. [Google Scholar] [CrossRef]
- Huff, J.L.; Poignant, F.; Rahmanian, S.; Khan, N.; Blakely, E.A.; Britten, R.A.; Chang, P.; Fornace, A.J.; Hada, M.; Kronenberg, A.; et al. Galactic cosmic ray simulation at the NASA space radiation laboratory-Progress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 2023, 36, 90–104. [Google Scholar] [CrossRef]
- Simonsen, L.C.; Slaba, T.C.; Guida, P.; Rusek, A. NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. PLoS Biol. 2020, 18, e3000669. [Google Scholar] [CrossRef]
- Naito, M.; Kodaira, S.; Ogawara, R.; Tobita, K.; Someya, Y.; Kusumoto, T.; Kusano, H.; Kitamura, H.; Koike, M.; Uchihori, Y.; et al. Investigation of shielding material properties for effective space radiation protection. Life Sci. Space Res. 2020, 26, 69–76. [Google Scholar] [CrossRef]
- Kumar, K.; Fornace, A.J.; Suman, S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024, 4, 221–238. [Google Scholar] [CrossRef]
- Suman, S.; Jaruga, P.; Dizdaroglu, M.; Fornace, A.J.; Datta, K. Heavy ion space radiation triggers ongoing DNA base damage by downregulating DNA repair pathways. Life Sci. Space Res. 2020, 27, 27–32. [Google Scholar] [CrossRef]
- Kumar, K.; Datta, K.; Fornace, A.J.; Suman, S. Total body proton and heavy-ion irradiation causes cellular senescence and promotes pro-osteoclastogenic activity in mouse bone marrow. Heliyon 2022, 8, e08691. [Google Scholar] [CrossRef]
- Suman, S.; Kumar, S.; Moon, B.H.; Angdisen, J.; Kallakury, B.V.S.; Datta, K.; Fornace, A.J. Effects of dietary aspirin on high-LET radiation-induced prostaglandin E2 levels and gastrointestinal tumorigenesis in Apc1638N/+ mice. Life Sci. Space Res. 2021, 31, 85–91. [Google Scholar] [CrossRef]
- Rahmanian, S.; Slaba, T.C. Applicability of the NASA galactic cosmic ray simulator for mice, rats, and minipigs. Acta Astronaut. 2023, 208, 111–123. [Google Scholar] [CrossRef]
- Imaoka, T.; Okamoto, M.; Nishimura, M.; Nishimura, Y.; Ootawara, M.; Kakinuma, S.; Tokairin, Y.; Shimada, Y. Mammary tumorigenesis in ApcMin/+ mice is enhanced by X irradiation with a characteristic age dependence. Radiat. Res. 2006, 165, 165–173. [Google Scholar] [CrossRef]
- Suman, S.; Shuryak, I.; Kallakury, B.; Brenner, D.J.; Fornace, A.J.; Johnson, M.D.; Datta, K. Protons Show Greater Relative Biological Effectiveness for Mammary Tumorigenesis with Higher ERα- and HER2-Positive Tumors Relative to γ-rays in APCMin/+ Mice. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 202–211. [Google Scholar] [CrossRef]
- Kumar, K.; Moon, B.H.; Datta, K.; Fornace, A.J.; Suman, S. Simulated galactic cosmic radiation (GCR)-induced expression of Spp1 coincide with mammary ductal cell proliferation and preneoplastic changes in ApcMin/+ mouse. Life Sci. Space Res. 2023, 36, 116–122. [Google Scholar] [CrossRef]
- Miziak, P.; Baran, M.; Błaszczak, E.; Przybyszewska-Podstawka, A.; Kałafut, J.; Smok-Kalwat, J.; Dmoszyńska-Graniczka, M.; Kiełbus, M.; Stepulak, A. Estrogen Receptor Signaling in Breast Cancer. Cancers 2023, 15, 4689. [Google Scholar] [CrossRef]
- Mangani, S.; Piperigkou, Z.; Koletsis, N.E.; Ioannou, P.; Karamanos, N.K. Estrogen receptors and extracellular matrix: The critical interplay in cancer development and progression. FEBS J. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Lin, C.Y.; Ström, A.; Vega, V.B.; Kong, S.L.; Yeo, A.L.; Thomsen, J.S.; Chan, W.C.; Doray, B.; Bangarusamy, D.K.; Ramasamy, A.; et al. Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol. 2004, 5, R66. [Google Scholar] [CrossRef]
- Datta, K.; Hyduke, D.R.; Suman, S.; Moon, B.H.; Johnson, M.D.; Fornace, A.J. Exposure to ionizing radiation induced persistent gene expression changes in mouse mammary gland. Radiat. Oncol. 2012, 7, 205. [Google Scholar] [CrossRef]
- Suman, S.; Johnson, M.D.; Fornace, A.J.; Datta, K. Exposure to ionizing radiation causes long-term increase in serum estradiol and activation of PI3K-Akt signaling pathway in mouse mammary gland. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 500–507. [Google Scholar] [CrossRef]
- Hubbard, N.E.; Chen, Q.J.; Sickafoose, L.K.; Wood, M.B.; Gregg, J.P.; Abrahamsson, N.M.; Engelberg, J.A.; Walls, J.E.; Borowsky, A.D. Transgenic mammary epithelial osteopontin (spp1) expression induces proliferation and alveologenesis. Genes Cancer 2013, 4, 201–212. [Google Scholar] [CrossRef]
- Göthlin Eremo, A.; Lagergren, K.; Othman, L.; Montgomery, S.; Andersson, G.; Tina, E. Evaluation of SPP1/osteopontin expression as predictor of recurrence in tamoxifen treated breast cancer. Sci. Rep. 2020, 10, 1451. [Google Scholar] [CrossRef]
- Wei, T.; Bi, G.; Bian, Y.; Ruan, S.; Yuan, G.; Xie, H.; Zhao, M.; Shen, R.; Zhu, Y.; Wang, Q.; et al. The Significance of Secreted Phosphoprotein 1 in Multiple Human Cancers. Front. Mol. Biosci. 2020, 7, 565383. [Google Scholar] [CrossRef]
- Hu, P.; Kinyamu, H.K.; Wang, L.; Martin, J.; Archer, T.K.; Teng, C. Estrogen induces estrogen-related receptor alpha gene expression and chromatin structural changes in estrogen receptor (ER)-positive and ER-negative breast cancer cells. J. Biol. Chem. 2008, 283, 6752–6763. [Google Scholar] [CrossRef]
- Stein, R.A.; Chang, C.Y.; Kazmin, D.A.; Way, J.; Schroeder, T.; Wergin, M.; Dewhirst, M.W.; McDonnell, D.P. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer. Cancer Res. 2008, 68, 8805–8812. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, B.K. Metabolic switching of estrogen-related receptor alpha in breast cancer aggression. FEBS J. 2023, 290, 1473–1476. [Google Scholar] [CrossRef]
- Misawa, A.; Inoue, S. Estrogen-Related Receptors in Breast Cancer and Prostate Cancer. Front. Endocrinol. 2015, 6, 83. [Google Scholar] [CrossRef]
- Fradet, A.; Sorel, H.; Bouazza, L.; Goehrig, D.; Dépalle, B.; Bellahcène, A.; Castronovo, V.; Follet, H.; Descotes, F.; Aubin, J.E.; et al. Dual function of ERRα in breast cancer and bone metastasis formation: Implication of VEGF and osteoprotegerin. Cancer Res. 2011, 71, 5728–5738. [Google Scholar] [CrossRef]
- Giguère, V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr. Rev. 2008, 29, 677–696. [Google Scholar] [CrossRef]
- Vanacker, J.M.; Pettersson, K.; Gustafsson, J.A.; Laudet, V. Transcriptional targets shared by estrogen receptor-related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. EMBO J. 1999, 18, 4270–4279. [Google Scholar] [CrossRef]
- Yevshin, I.; Sharipov, R.; Kolmykov, S.; Kondrakhin, Y.; Kolpakov, F. GTRD: A database on gene transcription regulation-2019 update. Nucleic Acids Res. 2019, 47, D100–D105. [Google Scholar] [CrossRef]
- Yevshin, I.; Sharipov, R.; Valeev, T.; Kel, A.; Kolpakov, F. GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 2017, 45, D61–D67. [Google Scholar] [CrossRef]
- Vanacker, J.M.; Delmarre, C.; Guo, X.; Laudet, V. Activation of the osteopontin promoter by the orphan nuclear receptor estrogen receptor related alpha. Cell Growth Differ. 1998, 9, 1007–1014. [Google Scholar]
- Zirngibl, R.A.; Chan, J.S.; Aubin, J.E. Estrogen receptor-related receptor alpha (ERRalpha) regulates osteopontin expression through a non-canonical ERRalpha response element in a cell context-dependent manner. J. Mol. Endocrinol. 2008, 40, 61–73. [Google Scholar] [CrossRef]
- Liska, O.; Bohár, B.; Hidas, A.; Korcsmáros, T.; Papp, B.; Fazekas, D.; Ari, E. TFLink: An integrated gateway to access transcription factor-target gene interactions for multiple species. Database 2022, 2022, baac083. [Google Scholar] [CrossRef]
- Norbury, J.W.; Schimmerling, W.; Slaba, T.C.; Azzam, E.I.; Badavi, F.F.; Baiocco, G.; Benton, E.; Bindi, V.; Blakely, E.A.; Blattnig, S.R.; et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sci. Space Res. 2016, 8, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Crowe, A.R.; Yue, W. Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc. 2019, 9, e3465. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, Z.; Gladwell, W.; Teng, C.T. Estrogen stimulates estrogen-related receptor alpha gene expression through conserved hormone response elements. Endocrinology 2003, 144, 4894–4904. [Google Scholar] [CrossRef] [PubMed]
- Cvoro, A.; Paruthiyil, S.; Jones, J.O.; Tzagarakis-Foster, C.; Clegg, N.J.; Tatomer, D.; Medina, R.T.; Tagliaferri, M.; Schaufele, F.; Scanlan, T.S.; et al. Selective activation of estrogen receptor-beta transcriptional pathways by an herbal extract. Endocrinology 2007, 148, 538–547. [Google Scholar] [CrossRef]
- Han, H.; Cho, J.W.; Lee, C.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. [Google Scholar] [CrossRef]
- Nichol, D.; Christian, M.; Steel, J.H.; White, R.; Parker, M.G. RIP140 expression is stimulated by estrogen-related receptor alpha during adipogenesis. J. Biol. Chem. 2006, 281, 32140–32147. [Google Scholar] [CrossRef]
- Park, E.; Gong, E.Y.; Romanelli, M.G.; Lee, K. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells. Biochem. Biophys. Res. Commun. 2012, 421, 532–537. [Google Scholar] [CrossRef]
- Rajalin, A.M.; Pollock, H.; Aarnisalo, P. ERRalpha regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2010, 396, 477–482. [Google Scholar] [CrossRef]
- Kabuto, M.; Akiba, S.; Stevens, R.G.; Neriishi, K.; Land, C.E. A prospective study of estradiol and breast cancer in Japanese women. Cancer Epidemiol. Biomark. Prev. 2000, 9, 575–579. [Google Scholar]
- Key, T.J. Serum oestradiol and breast cancer risk. Endocr. Relat. Cancer 1999, 6, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.J.; Cologne, J.B.; Sharp, G.B.; Eguchi, H.; Stevens, R.G.; Izumi, S.; Kim, Y.M.; Berrington de González, A.; Ohishi, W.; Nakachi, K. Bioavailable serum estradiol may alter radiation risk of postmenopausal breast cancer: A nested case-control study. Int. J. Radiat. Biol. 2018, 94, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.J.; Neriishi, K.; Cologne, J.; Eguchi, H.; Hayashi, T.; Geyer, S.; Izumi, S.; Nishi, N.; Land, C.; Stevens, R.G.; et al. Associations of ionizing radiation and breast cancer-related serum hormone and growth factor levels in cancer-free female A-bomb survivors. Radiat. Res. 2011, 176, 678–687. [Google Scholar] [CrossRef]
- Wang, C.; Mayer, J.A.; Mazumdar, A.; Fertuck, K.; Kim, H.; Brown, M.; Brown, P.H. Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol. Endocrinol. 2011, 25, 1527–1538. [Google Scholar] [CrossRef]
- Casimiro, M.C.; Wang, C.; Li, Z.; Di Sante, G.; Willmart, N.E.; Addya, S.; Chen, L.; Liu, Y.; Lisanti, M.P.; Pestell, R.G. Cyclin D1 determines estrogen signaling in the mammary gland in vivo. Mol. Endocrinol. 2013, 27, 1415–1428. [Google Scholar] [CrossRef]
- Kilker, R.L.; Hartl, M.W.; Rutherford, T.M.; Planas-Silva, M.D. Cyclin D1 expression is dependent on estrogen receptor function in tamoxifen-resistant breast cancer cells. J. Steroid. Biochem. Mol. Biol. 2004, 92, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Schwaid, A.G.; Wang, X.; Wang, X.; Chen, S.; Chu, Q.; Saghatelian, A.; Wan, Y. Ligand Activation of ERRα by Cholesterol Mediates Statin and Bisphosphonate Effects. Cell. Metab. 2016, 23, 479–491. [Google Scholar] [CrossRef]
- Giguère, V. To ERR in the estrogen pathway. Trends Endocrinol. Metab. 2002, 13, 220–225. [Google Scholar] [CrossRef]
- Singhal, H.; Bautista, D.S.; Tonkin, K.S.; O’Malley, F.P.; Tuck, A.B.; Chambers, A.F.; Harris, J.F. Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin. Cancer Res. 1997, 3, 605–611. [Google Scholar]
- Castello, L.M.; Raineri, D.; Salmi, L.; Clemente, N.; Vaschetto, R.; Quaglia, M.; Garzaro, M.; Gentilli, S.; Navalesi, P.; Cantaluppi, V.; et al. Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators. Inflamm. 2017, 2017, 4049098. [Google Scholar] [CrossRef]
- Chang, C.Y.; Kazmin, D.; Jasper, J.S.; Kunder, R.; Zuercher, W.J.; McDonnell, D.P. The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 2011, 20, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Safi, R.; Liu, X.; Baldi, R.; Liu, W.; Liu, J.; Locasale, J.W.; Chang, C.Y.; McDonnell, D.P. Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Rep. 2019, 27, 3587–3601.e4. [Google Scholar] [CrossRef] [PubMed]
- Ascione, L.; Castellano, G.; Curigliano, G.; Zagami, P. Endocrine therapy for early breast cancer in the era of oral selective estrogen receptor degraders: Challenges and future perspectives. Curr. Opin. Oncol. 2024, 36, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, G.; Re, M.D.; Gol, L.S.; Bengala, C.; Danesi, R.; Fogli, S. Pharmacological insights on novel oral selective estrogen receptor degraders in breast cancer. Eur. J. Pharmacol. 2024, 969, 176424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, K.; Angdisen, J.; Ma, J.; Datta, K.; Fornace, A.J., Jr.; Suman, S. Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis. Cancers 2024, 16, 3954. https://doi.org/10.3390/cancers16233954
Kumar K, Angdisen J, Ma J, Datta K, Fornace AJ Jr., Suman S. Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis. Cancers. 2024; 16(23):3954. https://doi.org/10.3390/cancers16233954
Chicago/Turabian StyleKumar, Kamendra, Jerry Angdisen, Jinwenrui Ma, Kamal Datta, Albert J. Fornace, Jr., and Shubhankar Suman. 2024. "Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis" Cancers 16, no. 23: 3954. https://doi.org/10.3390/cancers16233954
APA StyleKumar, K., Angdisen, J., Ma, J., Datta, K., Fornace, A. J., Jr., & Suman, S. (2024). Simulated Galactic Cosmic Radiation Exposure-Induced Mammary Tumorigenesis in ApcMin/+ Mice Coincides with Activation of ERα-ERRα-SPP1 Signaling Axis. Cancers, 16(23), 3954. https://doi.org/10.3390/cancers16233954