Progress in Biological Research and Treatment of Pseudomyxoma Peritonei
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Progress in Biological Research
3.1. Overview of Common Molecular Mutations
3.2. Molecular Subtypes
3.3. Mucin
3.4. Epithelial–Mesenchymal Transition (EMT)
3.5. Intestinal Flora
4. Treatment
4.1. CRS-HIPEC
4.2. Maximum Tumor Debulking (MTD)-HIPEC
4.3. Early Postoperative Intraperitoneal Chemotherapy (EPIC)
4.4. Hyperthermic Intrathoracic Chemotherapy (HITHOC)
4.5. Neoadjuvant Chemotherapy
4.6. Systemic Chemotherapy
4.7. Palliative Chemotherapy
4.8. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC)
5. Potential Treatment Strategies
5.1. Mucolytic Therapy
5.2. Antiangiogenic Therapy
5.3. Anti-Inflammatory Therapy
5.4. Antibacterial Therapy
5.5. Immunotoxin Therapy
5.6. Targeted Hypoxia Therapy
5.7. Immune Checkpoint Inhibitor Therapy
5.8. Target Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway Therapy
5.9. Target Immunosuppressive Factors
6. Current Research Limitations
7. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A2AR | A2A-adenosine receptor |
AP1 | Activating protein 1 |
APC | APC regulator of WNT signaling pathway |
ATF1 | Activating transcription factor 1 |
cAMP | Cyclic adenosine monophosphate |
CC | Completeness of the cytoreduction |
CCRS | Complete cytoreduction surgery |
CDH1/2 | Cadherin 1/2 |
CLDN3/4 | Claudin 3/4 |
CREB | cAMP responsive element binding protein |
CRS | Cytoreductive surgery |
DCR | Disease control rate |
DFS | Disease-free survival |
dMMR | Mismatch repair deficiency |
DPAM | Disseminated peritoneal adenomucinosis |
EMT | Epithelial–mesenchymal transition |
EpCAM | Epithelial cell adhesion molecule |
EPIC | Early postoperative intraperitoneal chemotherapy |
ESRP1 | Epithelial splicing regulatory protein 1 |
FGF2 | Fibroblast growth factor 2 |
FN1 | Fibronectin 1 |
GM-CSF | Granulocyte macrophage colony-stimulating factor |
GNAS | Guanine nucleotide-binding protein alpha subunit |
HIF-1 | Hypoxia-inducible factor 1 |
HIPEC | Hyperthermic intraperitoneal chemotherapy |
HITHOC | Hyperthermic intrathoracic chemotherapy |
IL-1β/9/13 | Interleukin 1 beta/9/13 |
KLRF1/G1 | Killer cell lectin-like receptor F1/G1 |
KRAS | Kirsten rat sarcoma viral oncogene homologue |
MMR | Mismatch repair |
MAPK | Mitogen-activated protein kinase |
MTD | Maximum tumor debulking |
MUC | Mucin |
NAC | N-acetyl cysteine |
NF-kB | Nuclear factor kappa B |
OS | Overall survival |
PCI | Peritoneal cancer index |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed cell death ligand 1 |
PFS | Progression-free survival |
PIGF | Placental growth factor |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
PIPAC | Pressurized intraperitoneal aerosol chemotherapy |
PKA | Protein kinase A |
PMCA | Peritoneal mucinous carcinomatosis |
PMCA-S | Peritoneal mucinous carcinomatosis with signet ring cells |
PMP | Pseudomyxoma peritonei |
PSOGI | Peritoneal Surface Oncology Group International |
RAR-α | Retinoic acid receptor alpha |
sFLT1 | Soluble Fms-like tyrosine1 |
SMAD4 | SMAD family member 4 |
SPINK1 | Serine peptidase inhibitor Kazal type 1 |
STAT3 | Signal transducer and activator of transcription 3 |
TNF-α | Tumor necrosis factor alpha |
TRA | T-cell receptor alpha locus |
TRBC1 | T-cell receptor beta constant 1 |
VEGFA/B | Vascular endothelial growth factor A/B |
VIM | Vimentin |
References
- Carr, N.J.; Cecil, T.D.; Mohamed, F.; Sobin, L.H.; Sugarbaker, P.H.; González-Moreno, S.; Taflampas, P.; Chapman, S.; Moran, B.J. A Consensus for Classification and Pathologic Reporting of Pseudomyxoma Peritonei and Associated Appendiceal Neoplasia: The Results of the Peritoneal Surface Oncology Group International (PSOGI) Modified Delphi Process. Am. J. Surg. Pathol. 2016, 40, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Patrick-Brown, T.D.J.H.; Carr, N.J.; Swanson, D.M.; Larsen, S.; Mohamed, F.; Flatmark, K. Estimating the Prevalence of Pseudomyxoma Peritonei in Europe Using a Novel Statistical Method. Ann. Surg. Oncol. 2020, 28, 252–257. [Google Scholar] [CrossRef]
- Rizvi, S.A.; Syed, W.; Shergill, R. Approach to pseudomyxoma peritonei. World J. Gastrointest. Surg. 2018, 10, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Chandramohan, A.; Moran, B. Pseudomyxoma peritonei: Natural history and treatment. Int. J. Hyperth. 2017, 33, 511–519. [Google Scholar] [CrossRef]
- Smeenk, R.M.; van Velthuysen, M.L.; Verwaal, V.J.; Zoetmulder, F.A. Appendiceal neoplasms and pseudomyxoma peritonei: A population based study. Eur. J. Surg. Oncol. 2008, 34, 196–201. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, M.; Xu, R.; Kokudo, N.; Tang, W. Pseudomyxoma peritonei as an intractable disease and its preoperative assessment to help improve prognosis after surgery: A review of the literature. Intractable Rare Dis. Res. 2012, 1, 115–121. [Google Scholar] [CrossRef]
- de Bree, E.; Witkamp, A.; Van De Vijver, M.; Zoetmulde, F. Unusual origins of Pseudomyxoma peritonei. J. Surg. Oncol. 2000, 75, 270–274. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, X.; Zhu, Z. Pseudomyxoma Peritonei Originating from Transverse Colon Mucinous Adenocarcinoma: A Case Report and Literature Review. Gastroenterol. Res. Pr. 2020, 2020, 5826214. [Google Scholar] [CrossRef]
- Kataoka, A.; Ito, K.; Takemura, N.; Inagaki, F.; Mihara, F.; Gohda, Y.; Kiyomatsu, T.; Yamada, K.; Kojima, N.; Igari, T.; et al. Immunohistochemical staining as supportive diagnostic tool for pseudomyxoma peritonei arising from intraductal papillary mucinous neoplasm: A report of two cases and literature review. Pancreatology 2020, 20, 1226–1233. [Google Scholar] [CrossRef]
- Young, R.H.; Gilks, C.B.; Scully, R.E. Mucinous tumors of the appendix associated with mucinous tumors of the ovary and pseudomyxoma peritonei. A clinicopathological analysis of 22 cases supporting an origin in the appendix. Am. J. Surg. Pathol. 1991, 15, 415–429. [Google Scholar] [CrossRef]
- Overman, M.J.; Fournier, K.; Hu, C.Y.; Eng, C.; Taggart, M.; Royal, R.; Mansfield, P.; Chang, G.J. Improving the AJCC/TNM staging for adenocarcinomas of the appendix: The prognostic impact of histological grade. Ann. Surg. 2013, 257, 1072–1078. [Google Scholar] [CrossRef]
- Bradley, R.F.; Stewart, J.H., 4th; Russell, G.B.; Levine, E.A.; Geisinger, K.R. Pseudomyxoma peritonei of appendiceal origin: A clinicopathologic analysis of 101 patients uniformly treated at a single institution, with literature review. Am. J. Surg. Pathol. 2006, 30, 551–559. [Google Scholar] [CrossRef]
- Lin, Y.L.; Xu, D.Z.; Li, X.B.; Yan, F.C.; Xu, H.B.; Peng, Z.; Li, Y. Consensuses and controversies on pseudomyxoma peritonei: A review of the published consensus statements and guidelines. Orphanet. J. Rare Dis. 2021, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Loungnarath, R.; Causeret, S.; Bossard, N. Cytoreductive surgery with intraperitoneal chemohyperthermia for the treatment of pseudomyxoma peritonei: A prospective study. Dis. Colon. Rectum. 2005, 48, 1372–1379. [Google Scholar] [CrossRef]
- Panarelli, N.C.; Yantiss, R.K. Mucinous neoplasms of the appendix and peritoneum. Arch. Pathol. Lab. Med. 2011, 135, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Ronnett, B.M.; Zahn, C.M.; Kurman, R.J.; Kass, M.E.; Sugarbaker, P.H.; Shmookler, B.M. Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to “pseudomyxoma peritonei”. Am. J. Surg. Pathol. 1995, 19, 1390–1408. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Spratt, J.S.; Adcock, R.A.; Muskovin, M.; Sherrill, W.; McKeown, J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res. 1980, 40, 256–260. [Google Scholar]
- Chua, T.C.; Moran, B.J.; Sugarbaker, P.H.; Levine, E.A.; Glehen, O.; Gilly, F.N.; Baratti, D.; Deraco, M.; Elias, D.; Sardi, A.; et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J. Clin. Oncol. 2012, 30, 2449–2456. [Google Scholar] [CrossRef]
- Kusamura, S.; Barretta, F.; Yonemura, Y.; Sugarbaker, P.H.; Moran, B.J.; Levine, E.A.; Goere, D.; Baratti, D.; Nizri, E.; Morris, D.L.; et al. The Role of Hyperthermic Intraperitoneal Chemotherapy in Pseudomyxoma Peritonei After Cytoreductive Surgery. JAMA Surg. 2021, 156, e206363. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Liu, Y. Report on the 9(th) International Congress on Peritoneal Surface Malignancies. Cancer Biol. Med. 2014, 11, 281–284. [Google Scholar]
- Moran, B.; Baratti, D.; Yan, T.D.; Kusamura, S.; Deraco, M. Consensus statement on the loco-regional treatment of appendiceal mucinous neoplasms with peritoneal dissemination (pseudomyxoma peritonei). J. Surg. Oncol. 2008, 98, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Mercier, F.; Dagbert, F.; Pocard, M.; Goere, D.; Quenet, F.; Wernert, R.; Dumont, F.; Brigand, C.; Passot, G.; Glehen, O.; et al. Recurrence of pseudomyxoma peritonei after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. BJS Open 2019, 3, 195–202. [Google Scholar] [CrossRef]
- Farquharson, A.L.; Pranesh, N.; Witham, G.; Swindell, R.; Taylor, M.B.; Renehan, A.G.; Rout, S.; Wilson, M.S.; O’Dwyer, S.T.; Saunders, M.P. A phase II study evaluating the use of concurrent mitomycin C and capecitabine in patients with advanced unresectable pseudomyxoma peritonei. Br. J. Cancer 2008, 99, 591–596. [Google Scholar] [CrossRef]
- Hiraide, S.; Komine, K.; Sato, Y.; Ouchi, K.; Imai, H.; Saijo, K.; Takahashi, M.; Takahashi, S.; Shirota, H.; Takahashi, M.; et al. Efficacy of modified FOLFOX6 chemotherapy for patients with unresectable pseudomyxoma peritonei. Int. J. Clin. Oncol. 2020, 25, 774–781. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Maggi, C.; Fanetti, G.; Iacovelli, R.; Di Bartolomeo, M.; Ricchini, F.; Deraco, M.; Perrone, F.; Baratti, D.; Kusamura, S.; et al. FOLFOX-4 chemotherapy for patients with unresectable or relapsed peritoneal pseudomyxoma. Oncologist 2014, 19, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.; Brandl, A.; Wakama, S.; Sako, S.; Ishibashi, H.; Mizumoto, A.; Takao, N.; Noguchi, K.; Motoi, S.; Ichinose, M.; et al. Neoadjuvant Intraperitoneal Chemotherapy in Patients with Pseudomyxoma Peritonei-A Novel Treatment Approach. Cancers 2020, 12, 2212. [Google Scholar] [CrossRef]
- Raimondi, A.; Corallo, S.; Niger, M.; Antista, M.; Randon, G.; Morano, F.; Milione, M.; Kusamura, S.; Baratti, D.; Guaglio, M.; et al. Metronomic Capecitabine with Cyclophosphamide Regimen in Unresectable or Relapsed Pseudomyxoma Peritonei. Clin. Color. Cancer 2019, 18, e179–e190. [Google Scholar] [CrossRef]
- Alakus, H.; Babicky, M.L.; Ghosh, P.; Yost, S.; Jepsen, K.; Dai, Y.; Arias, A.; Samuels, M.L.; Mose, E.S.; Schwab, R.B.; et al. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, E.M.; Feldman, R.; Mapow, B.L.; Mackovick, L.T.; Ward, K.M.; Morano, W.F.; Rubin, R.R.; Bowne, W.B. Appendix-derived Pseudomyxoma Peritonei (PMP): Molecular Profiling Toward Treatment of a Rare Malignancy. Am. J. Clin. Oncol. 2018, 41, 777–783. [Google Scholar] [CrossRef]
- Noguchi, R.; Yano, H.; Gohda, Y.; Suda, R.; Igari, T.; Ohta, Y.; Yamashita, N.; Yamaguchi, K.; Terakado, Y.; Ikenoue, T.; et al. Molecular profiles of high-grade and low-grade pseudomyxoma peritonei. Cancer Med. 2015, 4, 1809–1816. [Google Scholar] [CrossRef]
- Nummela, P.; Saarinen, L.; Thiel, A.; Jarvinen, P.; Lehtonen, R.; Lepisto, A.; Jarvinen, H.; Aaltonen, L.A.; Hautaniemi, S.; Ristimaki, A. Genomic profile of pseudomyxoma peritonei analyzed using next-generation sequencing and immunohistochemistry. Int. J. Cancer 2015, 136, E282–E289. [Google Scholar] [CrossRef] [PubMed]
- Pengelly, R.J.; Rowaiye, B.; Pickard, K.; Moran, B.; Dayal, S.; Tapper, W.; Mirnezami, A.; Cecil, T.; Mohamed, F.; Carr, N.; et al. Analysis of Mutation and Loss of Heterozygosity by Whole-Exome Sequencing Yields Insights into Pseudomyxoma Peritonei. J. Mol. Diagn. 2018, 20, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Perrone, F.; Mennitto, A.; Gleeson, E.M.; Milione, M.; Tamborini, E.; Busico, A.; Settanni, G.; Berenato, R.; Caporale, M.; et al. Toward the molecular dissection of peritoneal pseudomyxoma. Ann. Oncol. 2016, 27, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, L.; Nummela, P.; Thiel, A.; Lehtonen, R.; Jarvinen, P.; Jarvinen, H.; Aaltonen, L.A.; Lepisto, A.; Hautaniemi, S.; Ristimaki, A. Multiple components of PKA and TGF-beta pathways are mutated in pseudomyxoma peritonei. PLoS ONE 2017, 12, e0174898. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; Davison, J.M.; Choudry, H.A.; Pingpank, J.F.; Ahrendt, S.A.; Holtzman, M.P.; Zureikat, A.H.; Zeh, H.J.; Ramalingam, L.; Mantha, G.; et al. GNAS is frequently mutated in both low-grade and high-grade disseminated appendiceal mucinous neoplasms but does not affect survival. Hum. Pathol. 2014, 45, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Sio, T.T.; Mansfield, A.S.; Grotz, T.E.; Graham, R.P.; Molina, J.R.; Que, F.G.; Miller, R.C. Concurrent MCL1 and JUN amplification in pseudomyxoma peritonei: A comprehensive genetic profiling and survival analysis. J. Hum. Genet. 2014, 59, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Dilly, A.K.; Song, X.; Zeh, H.J.; Guo, Z.S.; Lee, Y.J.; Bartlett, D.L.; Choudry, H.A. Mitogen-activated protein kinase inhibition reduces mucin 2 production and mucinous tumor growth. Transl. Res. 2015, 166, 344–354. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef]
- Shetty, S.; Thomas, P.; Ramanan, B.; Sharma, P.; Govindarajan, V.; Loggie, B. Kras mutations and p53 overexpression in pseudomyxoma peritonei: Association with phenotype and prognosis. J. Surg. Res. 2013, 180, 97–103. [Google Scholar] [CrossRef]
- Lin, Y.L.; Ma, R.; Li, Y. The biological basis and function of GNAS mutation in pseudomyxoma peritonei: A review. J. Cancer Res. Clin. Oncol. 2020, 146, 2179–2188. [Google Scholar] [CrossRef]
- Nishikawa, G.; Sekine, S.; Ogawa, R.; Matsubara, A.; Mori, T.; Taniguchi, H.; Kushima, R.; Hiraoka, N.; Tsuta, K.; Tsuda, H.; et al. Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms. Br. J. Cancer 2013, 108, 951–958. [Google Scholar] [CrossRef]
- Flatmark, K.; Torgunrud, A.; Fleten, K.G.; Davidson, B.; Juul, H.V.; Mensali, N.; Lund-Andersen, C.; Inderberg, E.M. Peptide vaccine targeting mutated GNAS: A potential novel treatment for pseudomyxoma peritonei. J. Immunother. Cancer 2021, 9, e003109. [Google Scholar] [CrossRef]
- Liao, X.; Vavinskaya, V.; Sun, K.; Hao, Y.; Li, X.; Valasek, M.; Xu, R.; Polydorides, A.D.; Houldsworth, J.; Harpaz, N. Mutation profile of high-grade appendiceal mucinous neoplasm. Histopathology 2020, 76, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Matson, D.R.; Xu, J.; Huffman, L.; Barroilhet, L.; Accola, M.; Rehrauer, W.M.; Weisman, P. KRAS and GNAS Co-Mutation in Metastatic Low-Grade Appendiceal Mucinous Neoplasm (LAMN) to the Ovaries: A Practical Role for Next-Generation Sequencing. Am. J. Case Rep. 2017, 18, 558–562. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Berenato, R.; Maggi, C.; Caporale, M.; Milione, M.; Perrone, F.; Tamborini, E.; Baratti, D.; Kusamura, S.; Mariani, L.; et al. GNAS mutations as prognostic biomarker in patients with relapsed peritoneal pseudomyxoma receiving metronomic capecitabine and bevacizumab: A clinical and translational study. J. Transl. Med. 2016, 14, 125. [Google Scholar] [CrossRef]
- Yanai, Y.; Saito, T.; Hayashi, T.; Akazawa, Y.; Yatagai, N.; Tsuyama, S.; Tomita, S.; Hirai, S.; Ogura, K.; Matsumoto, T.; et al. Molecular and clinicopathological features of appendiceal mucinous neoplasms. Virchows Arch. Int. J. Pathol. 2021, 478, 413–426. [Google Scholar] [CrossRef]
- Liu, X.; Mody, K.; de Abreu, F.B.; Pipas, J.M.; Peterson, J.D.; Gallagher, T.L.; Suriawinata, A.A.; Ripple, G.H.; Hourdequin, K.C.; Smith, K.D.; et al. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations. Clin. Chem. 2014, 60, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Lung, M.S.; Mitchell, C.A.; Doyle, M.A.; Lynch, A.C.; Gorringe, K.L.; Bowtell, D.D.L.; Australian Ovarian Cancer Study Group; Campbell, I.G.; Trainer, A.H. Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with pseudomyxoma peritonei. BMC Cancer 2020, 20, 369. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, R.; Xiu, J.; Johnston, C.; Goldberg, R.M.; Philip, P.A.; Seeber, A.; Naseem, M.; Lo, J.H.; Arai, H.; Battaglin, F.; et al. Molecular Profiling of Appendiceal Adenocarcinoma and Comparison with Right-sided and Left-sided Colorectal Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3096–3103. [Google Scholar] [CrossRef]
- Zhu, X.; Salhab, M.; Tomaszewicz, K.; Meng, X.; Mathew, C.; Bathini, V.; Switzer, B.; Walter, O.; Cosar, E.F.; Wang, X.; et al. Heterogeneous mutational profile and prognosis conferred by TP53 mutations in appendiceal mucinous neoplasms. Hum. Pathol. 2019, 85, 260–269. [Google Scholar] [CrossRef]
- Ang, C.S.; Shen, J.P.; Hardy-Abeloos, C.J.; Huang, J.K.; Ross, J.S.; Miller, V.A.; Jacobs, M.T.; Chen, I.L.; Xu, D.; Ali, S.M.; et al. Genomic Landscape of Appendiceal Neoplasms. JCO Precis. Oncol. 2018, 2, PO.17.00302. [Google Scholar] [CrossRef]
- Yan, F.; Lin, Y.; Zhou, Q.; Chang, H.; Li, Y. Pathological prognostic factors of pseudomyxoma peritonei: Comprehensive clinicopathological analysis of 155 cases. Hum. Pathol. 2020, 97, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Moaven, O.; Su, J.; Jin, G.; Votanopoulos, K.I.; Shen, P.; Mangieri, C.; O’Neill, S.S.; Perry, K.C.; Levine, E.A.; Miller, L.D. Clinical Implications of Genetic Signatures in Appendiceal Cancer Patients with Incomplete Cytoreduction/HIPEC. Ann. Surg. Oncol. 2020, 27, 5016–5023. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Jin, G.; Votanopoulos, K.I.; Craddock, L.; Shen, P.; Chou, J.W.; Qasem, S.; O’Neill, S.S.; Perry, K.C.; Miller, L.D.; et al. Prognostic Molecular Classification of Appendiceal Mucinous Neoplasms Treated with Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann. Surg. Oncol. 2020, 27, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Corfield, A.P. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim. et Biophys. Acta 2015, 1850, 236–252. [Google Scholar] [CrossRef]
- Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874–885. [Google Scholar] [CrossRef]
- Dhanisha, S.S.; Guruvayoorappan, C.; Drishya, S.; Abeesh, P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit. Rev. Oncol. /Hematol. 2018, 122, 98–122. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.; Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.C. Mucins and the Microbiome. Annu. Rev. Biochem. 2020, 89, 769–793. [Google Scholar] [CrossRef]
- O’Connell, J.T.; Hacker, C.M.; Barsky, S.H. MUC2 is a molecular marker for pseudomyxoma peritonei. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. 2002, 15, 958–972. [Google Scholar] [CrossRef]
- Van Seuningen, I.; Pigny, P.; Perrais, M.; Porchet, N.; Aubert, J.P. Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Front. Biosci. A J. Virtual Libr. 2001, 6, D1216–D1234. [Google Scholar]
- Lin, Y.L.; Li, Y. The Biological Synthesis and the Function of Mucin 2 in Pseudomyxoma Peritonei. Cancer Manag. Res. 2021, 13, 7909–7917. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, J.T.; Tomlinson, J.S.; Roberts, A.A.; McGonigle, K.F.; Barsky, S.H. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am. J. Pathol. 2002, 161, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Pillai, K.; Akhter, J.; Mekkawy, A.; Chua, T.C.; Morris, D.L. Physical and chemical characteristics of mucin secreted by pseudomyxoma peritonei (PMP). Int. J. Med. Sci. 2017, 14, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Mall, A.S.; Lotz, Z.; Tyler, M.; Goldberg, P.; Rodrigues, J.; Kahn, D.; Chirwa, N.; Govender, D. Immunohistochemical and biochemical characterization of mucin in pseudomyxoma peritonei: A case study. Case Rep. Gastroenterol. 2011, 5, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Brabletz, S.; Schuhwerk, H.; Brabletz, T.; Stemmler, M.P. Dynamic EMT: A multi-tool for tumor progression. EMBO J. 2021, 40, e108647. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol. Res. Pract. 2015, 211, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, C.; Li, M.; An, J.; Zhou, W.; Guo, J.; Xiao, Y. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death Dis. 2022, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Loret, N.; Denys, H.; Tummers, P.; Berx, G. The Role of Epithelial-to-Mesenchymal Plasticity in Ovarian Cancer Progression and Therapy Resistance. Cancers 2019, 11, 838. [Google Scholar] [CrossRef]
- Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020, 30, 764–776. [Google Scholar] [CrossRef]
- Batlle, E.; Sancho, E.; Francí, C.; Domínguez, D.; Monfar, M.; Baulida, J.; García De Herreros, A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2000, 2, 84–89. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Eger, A.; Aigner, K.; Sondereggek, S.; Dampier, B.; Oehler, S.; Schreiber, M.; Berx, G.; Cano, A.; Beug, H.; Foisner, R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005, 24, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Mani, S.A.; Donaher, J.L.; Ramaswamy, S.; Itzykson, R.A.; Come, C.; Savagner, P.; Gitelman, I.; Richardson, A.; Weinberg, R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004, 117, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Bibi, R.; Pranesh, N.; Saunders, M.P.; Wilson, M.S.; O’Dwyer, S.T.; Stern, P.L.; Renehan, A.G. A specific cadherin phenotype may characterise the disseminating yet non-metastatic behaviour of pseudomyxoma peritonei. Br. J. Cancer 2006, 95, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.W.; Jun, S.Y.; Kim, K.R. Prognostic significance of single isolated cells with decreased E-cadherin expression in pseudomyxoma peritonei. Pathol. Int. 2014, 64, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Hong, J.; Du, W.; Lin, Y.W.; Ren, L.L.; Wang, Y.C.; Su, W.Y.; Wang, J.L.; Cui, Y.; Wang, Z.H.; et al. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J. Biol. Chem. 2012, 287, 5819–5832. [Google Scholar] [CrossRef]
- Garrett, W.S. Cancer and the microbiota. Science 2015, 348, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human Gut Microbiota and Gastrointestinal Cancer. Genom. Proteom. Bioinform. 2018, 16, 33–49. [Google Scholar] [CrossRef]
- Weng, M.T.; Chiu, Y.T.; Wei, P.Y.; Chiang, C.W.; Fang, H.L.; Wei, S.C. Microbiota and gastrointestinal cancer. J. Formos. Med. Assoc. 2019, 118 (Suppl. S1), S32–S41. [Google Scholar] [CrossRef]
- Semino-Mora, C.; Liu, H.; McAvoy, T.; Nieroda, C.; Studeman, K.; Sardi, A.; Dubois, A. Pseudomyxoma peritonei: Is disease progression related to microbial agents? A study of bacteria, MUC2 AND MUC5AC expression in disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. Ann. Surg. Oncol. 2008, 15, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Gilbreath, J.J.; Semino-Mora, C.; Friedline, C.J.; Liu, H.; Bodi, K.L.; McAvoy, T.J.; Francis, J.; Nieroda, C.; Sardi, A.; Dubois, A.; et al. A core microbiome associated with the peritoneal tumors of pseudomyxoma peritonei. Orphanet. J. Rare Dis. 2013, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.S.; Merrell, D.S.; Lei, H.; Sardi, A.; McAvoy, T.; Testerman, T.L. A Novel Member of Chitinophagaceae Isolated from a Human Peritoneal Tumor. Genome Announc. 2015, 3, e01297-15. [Google Scholar] [CrossRef] [PubMed]
- Villarejo-Campos, P.; García-Arranz, M.; Qian, S.; Jiménez de Los Galanes, S.; Domínguez-Prieto, V.; Vélez-Pinto, J.F.; Guijo Castellano, I.; Jiménez-Fuertes, M.; Guadalajara, H.; García-Olmo, D. Under the Hood: Understanding the Features of Mucin in Pseudomyxoma Peritonei. J. Clin. Med. 2023, 12, 4007. [Google Scholar] [CrossRef] [PubMed]
- Dohrman, A.; Miyata, S.; Gallup, M.; Li, J.D.; Chapelin, C.; Coste, A.; Escudier, E.; Nadel, J.; Basbaum, C. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. et Biophys. Acta 1998, 1406, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Semino-Mora, C.; Testerman, T.L.; Liu, H.; Whitmire, J.M.; Studeman, K.; Jia, Y.; McAvoy, T.J.; Francis, J.; Nieroda, C.; Sardi, A.; et al. Antibiotic treatment decreases microbial burden associated with pseudomyxoma peritonei and affects beta-catenin distribution. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 3966–3976. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, Y.; Honda, K.; Idogawa, M.; Ino, Y.; Ono, M.; Tsuchida, A.; Aoki, T.; Hirohashi, S.; Yamada, T. E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res. 2005, 65, 8836–8845. [Google Scholar] [CrossRef] [PubMed]
- Glehen, O.; Mohamed, F.; Sugarbaker, P.H. Incomplete cytoreduction in 174 patients with peritoneal carcinomatosis from appendiceal malignancy. Ann. Surg. 2004, 240, 278–285. [Google Scholar] [CrossRef]
- Järvinen, P.; Järvinen, H.J.; Lepistö, A. Survival of patients with pseudomyxoma peritonei treated by serial debulking. Color. Dis. Off. J. Assoc. Coloproctol. Great Br. Irel. 2010, 12, 868–872. [Google Scholar] [CrossRef]
- Govaerts, K.; Lurvink, R.J.; De Hingh, I.; Van der Speeten, K.; Villeneuve, L.; Kusamura, S.; Kepenekian, V.; Deraco, M.; Glehen, O.; Moran, B.J.; et al. Appendiceal tumours and pseudomyxoma peritonei: Literature review with PSOGI/EURACAN clinical practice guidelines for diagnosis and treatment. Eur. J. Surg. Oncol. 2021, 47, 11–35. [Google Scholar] [CrossRef]
- Kusamura, S.; González-Moreno, S.; Nizri, E.; Baratti, D.; Guadagni, S.; Guaglio, M.; Battaglia, L.; Deraco, M. Learning Curve, Training Program, and Monitorization of Surgical Performance of Peritoneal Surface Malignancies Centers. Surg. Oncol. Clin. N. Am. 2018, 27, 507–517. [Google Scholar] [CrossRef]
- Kusamura, S.; Moran, B.J.; Sugarbaker, P.H.; Levine, E.A.; Elias, D.; Baratti, D.; Morris, D.L.; Sardi, A.; Glehen, O.; Deraco, M.; et al. Multicentre study of the learning curve and surgical performance of cytoreductive surgery with intraperitoneal chemotherapy for pseudomyxoma peritonei. Br. J. Surg. 2014, 101, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H. Peritonectomy procedures. Surg. Oncol. Clin. N. Am. 2003, 12, 703–727. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, P.; Sugarbaker, P.H. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat. Res. 1996, 82, 359–374. [Google Scholar] [PubMed]
- Sugarbaker, P.H. Cytoreductive surgery and perioperative intraperitoneal chemotherapy as a curative approach to pseudomyxoma peritonei syndrome. Tumori 2001, 87, S3–S5. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.; Chandrakumaran, K.; Dayal, S.; Mohamed, F.; Cecil, T.D.; Moran, B.J. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1000 patients with perforated appendiceal epithelial tumours. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2016, 42, 1035–1041. [Google Scholar] [CrossRef]
- Flessner, M.F. The transport barrier in intraperitoneal therapy. Am. J. Physiol. Ren. Physiol. 2005, 288, F433–F442. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, P.; Sugarbaker, P.H. Peritoneal-plasma barrier. Cancer Treat. Res. 1996, 82, 53–63. [Google Scholar]
- Cavaliere, R.; Ciocatto, E.C.; Giovanella, B.C.; Heidelberger, C.; Johnson, R.O.; Margottini, M.; Mondovi, B.; Moricca, G.; Rossi-Fanelli, A. Selective heat sensitivity of cancer cells. Biochemical and clinical studies. Cancer 1967, 20, 1351–1381. [Google Scholar] [CrossRef]
- Sticca, R.P.; Dach, B.W. Rationale for hyperthermia with intraoperative intraperitoneal chemotherapy agents. Surg. Oncol. Clin. N. Am. 2003, 12, 689–701. [Google Scholar] [CrossRef]
- Dudar, T.E.; Jain, R.K. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res. 1984, 44, 605–612. [Google Scholar] [PubMed]
- Overgaard, J. Effect of hyperthermia on malignant cells in vivo. A review and a hypothesis. Cancer 1977, 39, 2637–2646. [Google Scholar] [CrossRef]
- Jacquet, P.; Averbach, A.; Stuart, O.A.; Chang, D.; Sugarbaker, P.H. Hyperthermic intraperitoneal doxorubicin: Pharmacokinetics, metabolism, and tissue distribution in a rat model. Cancer Chemother. Pharmacol. 1998, 41, 147–154. [Google Scholar] [CrossRef] [PubMed]
- de Bree, E.; Tsiftsis, D.D. Principles of perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis. In Advances in Peritoneal Surface Oncology; Springer: Berlin/Heidelberg, Germany, 2007; Volume 169, pp. 39–51. [Google Scholar]
- El-Kareh, A.W.; Secomb, T.W. A theoretical model for intraperitoneal delivery of cisplatin and the effect of hyperthermia on drug penetration distance. Neoplasia 2004, 6, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Moreno, S.; Gonzalez-Bayon, L.A.; Ortega-Perez, G. Hyperthermic intraperitoneal chemotherapy: Rationale and technique. World J. Gastrointest. Oncol. 2010, 2, 68–75. [Google Scholar] [CrossRef]
- Elias, D.; Bonnay, M.; Puizillou, J.M.; Antoun, S.; Demirdjian, S.; El, O.A.; Pignon, J.P.; Drouard-Troalen, L.; Ouellet, J.F.; Ducreux, M. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: Pharmacokinetics and tissue distribution. Ann. Oncol. 2002, 13, 267–272. [Google Scholar] [CrossRef]
- Stewart, J.H.; Shen, P.; Russell, G.; Fenstermaker, J.; McWilliams, L.; Coldrun, F.M.; Levine, K.E.; Jones, B.T.; Levine, E.A. A phase I trial of oxaliplatin for intraperitoneal hyperthermic chemoperfusion for the treatment of peritoneal surface dissemination from colorectal and appendiceal cancers. Ann. Surg. Oncol. 2008, 15, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Turaga, K.; Levine, E.; Barone, R.; Sticca, R.; Petrelli, N.; Lambert, L.; Nash, G.; Morse, M.; Adbel-Misih, R.; Alexander, H.R.; et al. Consensus guidelines from The American Society of Peritoneal Surface Malignancies on standardizing the delivery of hyperthermic intraperitoneal chemotherapy (HIPEC) in colorectal cancer patients in the United States. Ann. Surg. Oncol. 2014, 21, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Levine, E.A.; Votanopoulos, K.I.; Shen, P.; Russell, G.; Fenstermaker, J.; Mansfield, P.; Bartlett, D.; Stewart, J.H. A Multicenter Randomized Trial to Evaluate Hematologic Toxicities after Hyperthermic Intraperitoneal Chemotherapy with Oxaliplatin or Mitomycin in Patients with Appendiceal Tumors. J. Am. Coll Surg. 2018, 226, 434–443. [Google Scholar] [CrossRef]
- de Bree, E.; Tsiftsis, D.D. Experimental and pharmacokinetic studies in intraperitoneal chemotherapy: From laboratory bench to bedside. In Advances in Peritoneal Surface Oncology; Springer: Berlin/Heidelberg, Germany, 2007; Volume 169, pp. 53–73. [Google Scholar]
- Van der Speeten, K.; Stuart, O.A.; Chang, D.; Mahteme, H.; Sugarbaker, P.H. Changes induced by surgical and clinical factors in the pharmacology of intraperitoneal mitomycin C in 145 patients with peritoneal carcinomatosis. Cancer Chemother. Pharmacol. 2011, 68, 147–156. [Google Scholar] [CrossRef]
- Benhaim, L.; Faron, M.; Gelli, M.; Sourrouille, I.; Honoré, C.; Delhorme, J.B.; Elias, D.; Goere, D. Survival after complete cytoreductive surgery and HIPEC for extensive pseudomyxoma peritonei. Surg. Oncol. 2019, 29, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Delhorme, J.B.; Elias, D.; Varatharajah, S.; Benhaim, L.; Dumont, F.; Honore, C.; Goere, D. Can a Benefit be Expected from Surgical Debulking of Unresectable Pseudomyxoma Peritonei? Ann. Surg. Oncol. 2016, 23, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.; Mohamed, F.; Yadegarfar, G.; Youssef, H.; Moran, B.J. Prospective longitudinal study of quality of life following cytoreductive surgery and intraperitoneal chemotherapy for pseudomyxoma peritonei. Eur. J. Surg. Oncol. 2010, 36, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Chua, T.C.; Liauw, W.; Zhao, J.; Morris, D.L. Comparative analysis of perioperative intraperitoneal chemotherapy regimen in appendiceal and colorectal peritoneal carcinomatosis. Int. J. Clin. Oncol. 2013, 18, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Alzahrani, N.A.; Liauw, W.; Soudy, H.; Alzahrani, A.M.; Morris, D.L. Early postoperative intraperitoneal chemotherapy is associated with survival benefit for appendiceal adenocarcinoma with peritoneal dissemination. Eur. J. Surg. Oncol. 2017, 43, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.Y.; McConnell, Y.J.; Rivard, J.D.; Temple, W.J.; Mack, L.A. Hyperthermic intraperitoneal chemotherapy + early postoperative intraperitoneal chemotherapy versus hyperthermic intraperitoneal chemotherapy alone: Assessment of survival outcomes for colorectal and high-grade appendiceal peritoneal carcinomatosis. Am. J. Surg. 2015, 210, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.H.; Ong, W.S.; Chia, C.S.; Tham, C.K.; Soo, K.C.; Teo, M.C. Does early post-operative intraperitoneal chemotherapy (EPIC) for patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) make a difference? Int. J. Hyperth. 2016, 32, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Pestieau, S.R.; Esquivel, J.; Sugarbaker, P.H. Pleural extension of mucinous tumor in patients with pseudomyxoma peritonei syndrome. Ann. Surg. Oncol. 2000, 7, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.K.; Somasundaram, M.; Ravakhah, K.; Hassan, C. Pseudomyxoma peritonei with intrathoracic extension: A rare disease with rarer presentation from low-grade mucinous adenocarcinoma of the appendix. BMJ Case Rep. 2016, 2016, bcr2015211076. [Google Scholar] [CrossRef]
- Zoetmulder, F.A.; Sugarbaker, P.H. Patterns of failure following treatment of pseudomyxoma peritonei of appendiceal origin. Eur. J. Cancer 1996, 32A, 1727–1733. [Google Scholar] [CrossRef]
- Senthil, M.; Harrison, L.E. Simultaneous bicavitary hyperthermic chemoperfusion in the management of pseudomyxoma peritonei with synchronous pleural extension. Arch. Surg. 2009, 144, 970–972. [Google Scholar] [PubMed]
- Saladino, E.; Famulari, C.; La Monaca, E.; Fortugno, A.; Fleres, F.; Macrì, A. Cytoreductive surgery plus bicavitary chemohyperthermia as treatment of pseudomixoma peritonei with pleural extension. A case report and review of the literature. Ann. Ital. Di Chir. 2014, 85, 372–376. [Google Scholar]
- Ashraf-Kashani, N.; Bell, J. Haemodynamic changes during hyperthermic intra-thoracic chemotherapy for pseudomyxoma peritonei. Int. J. Hyperth. 2017, 33, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.J.; Dodwell, D.; McGale, P.; Holt, F.; Duane, F.; Mannu, G.; Darby, S.C.; Taylor, C.W. Adjuvant and neoadjuvant breast cancer treatments: A systematic review of their effects on mortality. Cancer Treat. Rev. 2022, 105, 102375. [Google Scholar] [CrossRef] [PubMed]
- Baratti, D.; Kusamura, S.; Nonaka, D.; Cabras, A.D.; Laterza, B.; Deraco, M. Pseudomyxoma peritonei: Biological features are the dominant prognostic determinants after complete cytoreduction and hyperthermic intraperitoneal chemotherapy. Ann. Surg. 2009, 249, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Blackham, A.U.; Swett, K.; Eng, C.; Sirintrapun, J.; Bergman, S.; Geisinger, K.R.; Votanopoulos, K.; Stewart, J.H.; Shen, P.; Levine, E.A. Perioperative systemic chemotherapy for appendiceal mucinous carcinoma peritonei treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J. Surg. Oncol. 2014, 109, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Cummins, K.A.; Russell, G.B.; Votanopoulos, K.I.; Shen, P.; Stewart, J.H.; Levine, E.A. Peritoneal dissemination from high-grade appendiceal cancer treated with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). J. Gastrointest. Oncol. 2016, 7, 3–9. [Google Scholar] [PubMed]
- Milovanov, V.; Sardi, A.; Ledakis, P.; Aydin, N.; Nieroda, C.; Sittig, M.; Nunez, M.; Gushchin, V. Systemic chemotherapy (SC) before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) in patients with peritoneal mucinous carcinomatosis of appendiceal origin (PMCA). Eur. J. Surg. Oncol. 2015, 41, 707–712. [Google Scholar] [CrossRef]
- Schomas, D.A.; Miller, R.C.; Donohue, J.H.; Gill, S.; Thurmes, P.J.; Haddock, M.G.; Quevedo, J.F.; Gunderson, L.L. Intraperitoneal treatment for peritoneal mucinous carcinomatosis of appendiceal origin after operative management: Long-term follow-up of the Mayo Clinic experience. Ann. Surg. 2009, 249, 588–595. [Google Scholar] [CrossRef]
- Choe, J.H.; Overman, M.J.; Fournier, K.F.; Royal, R.E.; Ohinata, A.; Rafeeq, S.; Beaty, K.; Phillips, J.K.; Wolff, R.A.; Mansfield, P.F.; et al. Improved Survival with Anti-VEGF Therapy in the Treatment of Unresectable Appendiceal Epithelial Neoplasms. Ann. Surg. Oncol. 2015, 22, 2578–2584. [Google Scholar] [CrossRef] [PubMed]
- Solaß, W.; Hetzel, A.; Nadiradze, G.; Sagynaliev, E.; Reymond, M.A. Description of a novel approach for intraperitoneal drug delivery and the related device. Surg. Endosc. 2012, 26, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Alyami, M.; Hübner, M.; Grass, F.; Bakrin, N.; Villeneuve, L.; Laplace, N.; Passot, G.; Glehen, O.; Kepenekian, V. Pressurised intraperitoneal aerosol chemotherapy: Rationale, evidence, and potential indications. Lancet Oncol. 2019, 20, e368–e377. [Google Scholar] [CrossRef] [PubMed]
- Davigo, A.; Passot, G.; Vassal, O.; Bost, M.; Tavernier, C.; Decullier, E.; Bakrin, N.; Alyami, M.; Bonnet, J.M.; Louzier, V.; et al. PIPAC versus HIPEC: Cisplatin spatial distribution and diffusion in a swine model. Int. J. Hyperth. 2020, 37, 144–150. [Google Scholar] [CrossRef]
- Badgwell, B. Is PIPAC a New Summit for Peritoneal Disease Treatment or are we Lost in the Snowstorm? Ann. Surg. Oncol. 2022, 29, 13–14. [Google Scholar] [CrossRef]
- Lurvink, R.J.; Rovers, K.P.; Nienhuijs, S.W.; Creemers, G.J.; Burger, J.W.A.; de Hingh, I.H.J. Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin (PIPAC-OX) in patients with colorectal peritoneal metastases-a systematic review. J. Gastrointest. Oncol. 2021, 12, S242–S258. [Google Scholar] [CrossRef] [PubMed]
- Solass, W.; Kerb, R.; Mürdter, T.; Giger-Pabst, U.; Strumberg, D.; Tempfer, C.; Zieren, J.; Schwab, M.; Reymond, M.A. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: First evidence for efficacy. Ann. Surg. Oncol. 2014, 21, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Solass, W.; Herbette, A.; Schwarz, T.; Hetzel, A.; Sun, J.S.; Dutreix, M.; Reymond, M.A. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination with capnoperitoneum: Proof of concept. Surg. Endosc. 2012, 26, 847–852. [Google Scholar] [CrossRef]
- Tempfer, C.B.; Solass, W.; Buerkle, B.; Reymond, M.A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in a woman with pseudomyxoma peritonei: A case report. Gynecol. Oncol. Rep. 2014, 10, 32–35. [Google Scholar] [CrossRef]
- Mieda, R.; Aso, C.; Nishikawa, K.; Saito, S.; Goto, F. Transient hyperglycemia following intra-peritoneal irrigation with 5% glucose in a patient with pseudomyxoma peritonei. Jpn. J. Anesthesiol. 2007, 56, 959–961. [Google Scholar]
- Roy, W.J.; Jr Thomas, B.L.; Horowitz, I.R. Acute hyperglycemia following intraperitoneal irrigation with 10% dextrose in a patient with pseudomyxoma peritonei. Gynecol. Oncol. 1997, 65, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Shirasawa, Y.; Orita, H.; Ishida, K.; Morimoto, Y.; Matsumoto, M.; Sakabe, T. Critical alkalosis following intraperitoneal irrigation with sodium bicarbonate in a patient with pseudomyxoma peritonei. J. Anesth. 2008, 22, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Liauw, W.; Morris, D.L. Depletion of mucin in mucin-producing human gastrointestinal carcinoma: Results from in vitro and in vivo studies with bromelain and N-acetylcysteine. Oncotarget 2015, 6, 33329–33344. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Masoumi-Moghaddam, S.; Ehteda, A.; Morris, D.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: Significance of combination therapy. J. Exp. Clin. Cancer Res. 2014, 33, 92. [Google Scholar] [PubMed]
- Pillai, K.; Akhter, J.; Chua, T.C.; Morris, D.L. A formulation for in situ lysis of mucin secreted in pseudomyxoma peritonei. Int. J. Cancer 2014, 134, 478–486. [Google Scholar] [CrossRef]
- Valle, S.J.; Akhter, J.; Mekkawy, A.H.; Lodh, S.; Pillai, K.; Badar, S.; Glenn, D.; Power, M.; Liauw, W.; Morris, D.L. A novel treatment of bromelain and acetylcysteine (BromAc) in patients with peritoneal mucinous tumours: A phase I first in man study. Eur. J. Surg. Oncol. 2021, 47, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.D.; Buttle, D.J.; Barrett, A.J. The cysteine proteinases of the pineapple plant. Biochem. J. 1990, 266, 869–875. [Google Scholar] [PubMed]
- Rubin, B.K. Mucolytics, expectorants, and mucokinetic medications. Respir. Care 2007, 52, 859–865. [Google Scholar] [PubMed]
- Turner, J.; Jones, C.E. Regulation of mucin expression in respiratory diseases. Biochem. Soc. Trans. 2009, 37, 877–881. [Google Scholar] [CrossRef]
- Mekkawy, A.H.; Breakeit, M.; Pillai, K.; Badar, S.; Akhter, J.; Valle, S.J.; Morris, D.L. Intraperitoneal BromAc(®) Does Not Interfere with the Healing of Colon Anastomosis. Cancers 2023, 15, 3321. [Google Scholar] [CrossRef]
- Andersson, Y.; Fleten, K.G.; Abrahamsen, T.W.; Reed, W.; Davidson, B.; Flatmark, K. Anti-Angiogenic Treatment in Pseudomyxoma Peritonei-Still a Strong Preclinical Rationale. Cancers 2021, 13, 2819. [Google Scholar] [CrossRef] [PubMed]
- Dohan, A.; Lousquy, R.; Eveno, C.; Goere, D.; Broqueres-You, D.; Kaci, R.; Lehmann-Che, J.; Launay, J.M.; Soyer, P.; Bonnin, P.; et al. Orthotopic animal model of pseudomyxoma peritonei: An in vivo model to test anti-angiogenic drug effects. Am. J. Pathol. 2014, 184, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Thai, P.; Loukoianov, A.; Wachi, S.; Wu, R. Regulation of airway mucin gene expression. Annu. Rev. Physiol. 2008, 70, 405–429. [Google Scholar] [CrossRef] [PubMed]
- Choudry, H.A.; Mavanur, A.; O’Malley, M.E.; Zeh, H.J.; Guo, Z.; Bartlett, D.L. Chronic anti-inflammatory drug therapy inhibits gel-forming mucin production in a murine xenograft model of human pseudomyxoma peritonei. Ann. Surg. Oncol. 2012, 19, 1402–1409. [Google Scholar] [CrossRef]
- Khamzina, Y.; King, M.C.; Nieroda, C.; Merrell, D.S.; Sardi, A.; Gushchin, V. The Role of Microorganisms in Appendiceal Pseudomyxoma Peritonei: A Review. Curr. Oncol. 2022, 29, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- Merrell, D.S.; McAvoy, T.J.; King, M.C.; Sittig, M.; Millar, E.V.; Nieroda, C.; Metcalf, J.L.; Blum, F.C.; Testerman, T.L.; Sardi, A. Pre- and post-operative antibiotics in conjunction with cytoreductive surgery and heated intraperitoneal chemotherapy (HIPEC) should be considered for pseudomyxoma peritonei (PMP) treatment. Eur. J. Surg. Oncol. 2019, 45, 1723–1726. [Google Scholar] [CrossRef] [PubMed]
- Blythman, H.E.; Casellas, P.; Gros, O.; Gros, P.; Jansen, F.K.; Paolucci, F.; Pau, B.; Vidal, H. Immunotoxins: Hybrid molecules of monoclonal antibodies and a toxin subunit specifically kill tumour cells. Nature 1981, 290, 145–146. [Google Scholar] [CrossRef] [PubMed]
- Went, P.; Vasei, M.; Bubendorf, L.; Terracciano, L.; Tornillo, L.; Riede, U.; Kononen, J.; Simon, R.; Sauter, G.; Baeuerle, P.A. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br. J. Cancer 2006, 94, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Andersson, Y.; Juell, S.; Fodstad, O. Downregulation of the antiapoptotic MCL-1 protein and apoptosis in MA-11 breast cancer cells induced by an anti-epidermal growth factor receptor-Pseudomonas exotoxin a immunotoxin. Int. J. Cancer 2004, 112, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Antignani, A.; FitzGerald, D. Immunotoxins: The Role of the Toxin. Toxins 2013, 5, 1486–1502. [Google Scholar] [CrossRef]
- Flatmark, K.; Guldvik, I.J.; Svensson, H.; Fleten, K.G.; Florenes, V.A.; Reed, W.; Giercksky, K.E.; Fodstad, O.; Andersson, Y. Immunotoxin targeting EpCAM effectively inhibits peritoneal tumor growth in experimental models of mucinous peritoneal surface malignancies. Int. J. Cancer 2013, 133, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Froysnes, I.S.; Andersson, Y.; Larsen, S.G.; Davidson, B.; Oien, J.T.; Julsrud, L.; Fodstad, O.; Dueland, S.; Flatmark, K. ImmunoPeCa trial: Long-term outcome following intraperitoneal MOC31PE immunotoxin treatment in colorectal peritoneal metastasis. Eur. J. Surg. Oncol. 2021, 47, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Froysnes, I.S.; Andersson, Y.; Larsen, S.G.; Davidson, B.; Oien, J.T.; Olsen, K.H.; Giercksky, K.E.; Julsrud, L.; Fodstad, O.; Dueland, S.; et al. Novel Treatment with Intraperitoneal MOC31PE Immunotoxin in Colorectal Peritoneal Metastasis: Results From the ImmunoPeCa Phase 1 Trial. Ann. Surg. Oncol. 2017, 24, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Yang, F.; Shao, C.; Wei, K.; Xie, M.; Shen, H.; Shu, Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019, 18, 157. [Google Scholar] [CrossRef]
- Masoud, G.N.; Li, W. HIF-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin B 2015, 5, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Zimna, A.; Kurpisz, M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed. Res. Int. 2015, 2015, 549412. [Google Scholar] [CrossRef]
- Ma, Z.; Xiang, X.; Li, S.; Xie, P.; Gong, Q.; Goh, B.C.; Wang, L. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin Cancer Biol. 2022, 80, 379–390. [Google Scholar] [CrossRef]
- Xia, Y.; Choi, H.K.; Lee, K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem. 2012, 49, 24–40. [Google Scholar] [CrossRef]
- Polosukhin, V.V.; Cates, J.M.; Lawson, W.E.; Milstone, A.P.; Matafonov, A.G.; Massion, P.P.; Lee, J.W.; Randell, S.H.; Blackwell, T.S. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium. J. Pathol. 2011, 224, 203–211. [Google Scholar] [CrossRef]
- Zhou, X.; Tu, J.; Li, Q.; Kolosov, V.P.; Perelman, J.M. Hypoxia induces mucin expression and secretion in human bronchial epithelial cells. Transl. Res. J. Lab. Clin. Med. 2012, 160, 419–427. [Google Scholar] [CrossRef]
- Valenzuela-Molina, F.; Bura, F.I.; Vázquez-Borrego, M.C.; Granados-Rodríguez, M.; Rufián-Andujar, B.; Rufián-Peña, S.; Casado-Adam, Á.; Sánchez-Hidalgo, J.M.; Rodríguez-Ortiz, L.; Ortega-Salas, R.; et al. Intraoperative oxygen tension and redox homeostasis in Pseudomyxoma peritonei: A short case series. Front. Oncol. 2023, 13, 1076500. [Google Scholar] [CrossRef] [PubMed]
- Dilly, A.K.; Lee, Y.J.; Zeh, H.J.; Guo, Z.S.; Bartlett, D.L.; Choudry, H.A. Targeting hypoxia-mediated mucin 2 production as a therapeutic strategy for mucinous tumors. Transl. Res. 2016, 169, 19–30.e1. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, X.; Xu, L.; Li, Y.; Zeng, C. Current insight into the regulation of PD-L1 in cancer. Exp. Hematol. Oncol. 2022, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, M.W.; Muroyama, Y.; Drake, C.G.; Sharpe, A.H. Inhibitors of the PD-1 Pathway in Tumor Therapy. J. Immunol. 2018, 200, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Song, Y.; Liu, D. Recent development in clinical applications of PD-1 and PD-L1 antibodies for cancer immunotherapy. J. Hematol. Oncol. 2017, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Kusamura, S.; Busico, A.; Conca, E.; Capone, I.; Agnelli, L.; Lorenzini, D.; Brich, S.; Angelini, M.; Volpi, C.C.; Trupia, D.V.; et al. A2AR Expression and Immunosuppressive Environment Independent of KRAS and GNAS Mutations in Pseudomyxoma Peritonei. Biomedicines 2023, 11, 2049. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer 2018, 17, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, L.; Jiang, X.; Li, Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J. Hematol. Oncol. 2019, 12, 54. [Google Scholar] [CrossRef]
- Li, X.; Liu, G.; Wu, W. Recent advances in Lynch syndrome. Exp. Hematol. Oncol. 2021, 10, 37. [Google Scholar] [CrossRef]
- Li, J.D.; Feng, W.; Gallup, M.; Kim, J.H.; Gum, J.; Kim, Y.; Basbaum, C. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA 1998, 95, 5718–5723. [Google Scholar] [CrossRef] [PubMed]
- Perrais, M.; Pigny, P.; Copin, M.-C.; Aubert, J.-P.; Van Seuningen, I. Induction of MUC2 and MUC5AC Mucins by Factors of the Epidermal Growth Factor (EGF) Family Is Mediated by EGF Receptor/Ras/Raf/Extracellular Signal-regulated Kinase Cascade and Sp1*. J. Biol. Chem. 2002, 277, 32258–32267. [Google Scholar] [CrossRef]
- Kuracha, M.R.; Thomas, P.; Loggie, B.W.; Govindarajan, V. Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies. PLoS ONE 2017, 12, e0179510. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Borrego, M.C.; Granados-Rodríguez, M.; Bura, F.I.; Martínez-López, A.; Rufián-Andújar, B.; Valenzuela-Molina, F.; Rodríguez-Ortiz, L.; Haro-Yuste, S.; Moreno-Serrano, A.; Ortega-Salas, R.; et al. Antitumor effect of a small-molecule inhibitor of KRAS(G12D) in xenograft models of mucinous appendicular neoplasms. Exp. Hematol. Oncol. 2023, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.L.; Shen, K.Y.; Tien, C.Y.; Chen, Y.A.; Liu, S.J. Recent progress in GM-CSF-based cancer immunotherapy. Immunotherapy 2017, 9, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724. [Google Scholar] [CrossRef]
- Khanna, S.; Graef, S.; Mussai, F.; Thomas, A.; Wali, N.; Yenidunya, B.G.; Yuan, C.; Morrow, B.; Zhang, J.; Korangy, F.; et al. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 2859–2872. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, S.M.; Sitkovsky, M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr. Opin. Pharmacol. 2016, 29, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.L.; O’Dwyer, S.T.; Stern, P.L.; Renehan, A.G. Global gene expression in pseudomyxoma peritonei, with parallel development of two immortalized cell lines. Oncotarget 2015, 6, 10786–10800. [Google Scholar] [CrossRef]
- Noguchi, R.; Yoshimatsu, Y.; Sin, Y.; Ono, T.; Tsuchiya, R.; Yoshida, H.; Kiyono, T.; Yonemura, Y.; Kondo, T. Establishment and Characterization of NCC-PMP1-C1: A Novel Patient-Derived Cell Line of Metastatic Pseudomyxoma Peritonei. J. Pers. Med. 2022, 12, 258. [Google Scholar] [CrossRef]
- Noguchi, R.; Yoshimatsu, Y.; Sin, Y.; Ono, T.; Tsuchiya, R.; Yoshida, H.; Kiyono, T.; Yonemura, Y.; Kondo, T. Establishment and characterization of NCC-PMP2-C1: A novel patient-derived cell line of pseudomyxoma peritonei with signet ring cells. Hum. Cell 2024, 37, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Depommier, C.; Derrien, M.; Everard, A.; de Vos, W.M. Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 625–637. [Google Scholar] [CrossRef] [PubMed]
- García-Olmo, D.; Olmedillas-López, S.; Cortés-Guiral, D.; Villarejo, P.; López Rojo, I.; Guadalajara, H.; García Gómez-Heras, S.; García-Arranz, M. The role of mucin cell-free DNA detection as a new marker for the study of acellular pseudomyxoma peritonei of appendicular origin by liquid biopsy. Ther. Adv. Med. Oncol. 2020, 12, 1758835920928233. [Google Scholar] [CrossRef] [PubMed]
Ronnett (1995) [16] | PSOGI (2016) [1] | 8th Edition AJCC Staging System (2017) [17] |
---|---|---|
NA | Acellular mucin (AM) Peritoneal lesions concentrated on or away from organ surfaces; composed of a large amount of mucin; without neoplastic epithelial cells | M1a |
Disseminated peritoneal adenomucinosis (DPAM) Peritoneal lesions composed of abundant extracellular mucin and less focal mucinous epithelium; low cellular atypia; mitotic activity; with or without appendiceal mucinous adenoma | Low-grade mucinous carcinoma peritonei (LMCP)/Disseminated peritoneal adenomucinosis (DPAM) Peritoneal lesions show few low-grade epithelial cells (<20% of tumor volume); arranged in a single layer; mild cellular atypia; rare mitoses | M1b. G1 Well-differentiated |
Peritoneal mucinous carcinomatosis (PMCA)/with intermediate feature (PMCA-I) Abundant epithelial cells in peritoneal lesions consistent with the architectural and cytological features of carcinoma; with or without primary mucinous adenocarcinoma/well-differentiated peritoneal mucinous carcinomatosis | High-grade mucinous carcinoma peritonei (HMCP)/peritoneal mucinous carcinomatosis (PMCA) Peritoneal lesions show abundant epithelial cells (>20% of tumor volume); high-grade histological features; infiltration of surrounding tissues; peripheral angiolymphatic and nerve invasion; cribriform growth Subclassification:
| M1b. G2 or G3 Moderately or poorly differentiated |
NA | High-grade mucinous carcinoma peritonei with signet ring cells (HMCP-S)/Peritoneal mucinous carcinomatosis with signet ring cells (PMCA-S) High-grade histology of peritoneal lesions with signet-ring cell component (signet-ring cells ≥10%) | M1b. G3 Poorly differentiated; PMCA-S |
Contraindication | Description | PSOGI Expert Consensus Rate |
---|---|---|
Absolute | Retraction due to mesenteric involvement | 64.3% |
Extensive involvement of the small bowel serosa, unable to preserve 1.5–2 m of small bowel without tumor invasion | 58.9% | |
Relative | PCI > 20 with aggressive histology (e.g., mucinous adenocarcinoma with signet ring cells, goblet cell carcinoid, and high-grade PMP with signet ring cells) | 87.5% |
Massive involvement of the liver hilum | 87.5% | |
Age > 75 years old | 85.7% | |
Extensive Infiltration of the pancreatic surface | 82.1% | |
Requires complete gastrectomy | 80.4% | |
Ureteral obstruction | 64.3% |
HIPEC Regimens (PSOGI Expert Consensus Rate) | Dose | Time | Intraperitoneal Component | Intravenous Component |
---|---|---|---|---|
Dutch High-Dose Mitomycin C Regimen: “Triple Dosing Regimen” (42.9%) [113] | 35 mg/m2 | 90 min | Mitomycin C was added to 1.5% peritoneal dialysis solution at an initial dose of 17.5 mg/m2, followed by 8.8 mg/m2 after 30 min and 8.8 mg/m2 after 60 min | NA |
Glehen Medium-Dose Oxaliplatin Regimen (28.6%) [110] | 360 mg/m2 | 30 min | Add oxaliplatin to 2 L/m2 5% dextrose solution and maintain intraperitoneal chemotherapy for 30 min | 1 h before intraperitoneal chemotherapy, 5-fluorouracil 400 mg/m2 and leucovorin 20 mg/m2 were separately added to 250 mL of normal saline for rapid intravenous infusion |
American Society of Peritoneal Surface Malignancy Low-Dose Mitomycin C Regimen: “Concentration-Based Regimen” (14.3%) [111] | 40 mg/3L | 90 min | Add mitomycin C to 1.5% peritoneal dialysis solution, the initial dose is 30 mg/3 L, and then add 10 mg after 60 min | NA |
PMI Basingstoke IP Chemotherapy Regimen: “Body Surface Area-Based” (10.7%) [92] | 10 mg/m2 | 60 min | Add mitomycin C to 0.9% sodium chloride solution at 42 °C. Reduce the dose by 33% for obesity (BMI > 40), severe abdominal distension, and severe chemotherapy in the past 3 months | NA |
Elias High-Dose Oxaliplatin Regimen (8.9%) [109] | 460 mg/m2 | 30 min | Add oxaliplatin to 2 L/m2 5% dextrose solution and maintain intraperitoneal chemotherapy for 30 min | 1 h before intraperitoneal chemotherapy, 5-fluorouracil 400 mg/m2 and leucovorin 20 mg/m2 were separately added to 250 mL of normal saline for rapid intravenous infusion |
Wake Forest University Oxaliplatin Regimen (1.8%) [110] | 200 mg/m2 | 120 min | Add oxaliplatin to 5% dextrose solution and maintain intraperitoneal chemotherapy for 120 min | NA |
Sugarbaker Regimen (1.8%) [114] | 15 mg/m2 | 90 min | Add 15 mg/m2 of mitomycin C and doxorubicin to 2 L 1.5% dextrose peritoneal dialysis solution and maintain intraperitoneal chemotherapy for 90 min | At the same time of intraperitoneal chemotherapy, 5-fluorouracil 400 mg/m2 and leucovorin 20 mg/m2 were separately added to 250 mL of normal saline for rapid intravenous infusion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, G.; Wu, W. Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers 2024, 16, 1406. https://doi.org/10.3390/cancers16071406
Li X, Liu G, Wu W. Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers. 2024; 16(7):1406. https://doi.org/10.3390/cancers16071406
Chicago/Turabian StyleLi, Xi, Guodong Liu, and Wei Wu. 2024. "Progress in Biological Research and Treatment of Pseudomyxoma Peritonei" Cancers 16, no. 7: 1406. https://doi.org/10.3390/cancers16071406
APA StyleLi, X., Liu, G., & Wu, W. (2024). Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers, 16(7), 1406. https://doi.org/10.3390/cancers16071406