Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review
Abstract
:1. Introduction
2. Tackling Movements in Photon Therapy
2.2. Population-Based Margins
2.3. Individualised Margins
3. Tackling Movements in Proton Therapy
Tracking and Gating
4. Robust Planning
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Sonke, J.J.; Belderbos, J. Adaptive radiotherapy for lung cancer. Semin. Radiat. Oncol. 2010, 20, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.J.; Pantarotto, J.R. Treatment of metastatic liver tumors using stereotactic ablative radiotherapy. World J. Radiol. 2014, 6, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Sonke, J.J.; Rossi, M.; Wolthaus, J.; van Herk, M.; Damen, E.; Belderbos, J. Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Seppenwoolde, Y.; Shirato, H.; Kitamura, K.; Shimizu, S.; van Herk, M.; Lebesque, J.V.; Miyasaka, K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 822–834. [Google Scholar] [CrossRef]
- Bosmans, G.; van Baardwijk, A.; Dekker, A.; Ollers, M.; Wanders, S.; Boersma, L.; Lambin, P.; de Ruysscher, D. Time trends in nodal volumes and motion during radiotherapy for patients with stage III non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Bosmans, G.; van Baardwijk, A.; Dekker, A.; Ollers, M.; Boersma, L.; Minken, A.; Lambin, P.; de Ruysscher, D. Intra-patient variability of tumor volume and tumor motion during conventionally fractionated radiotherapy for locally advanced non-small-cell lung cancer: A prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Pantarotto, J.R.; Piet, A.H.; Vincent, A.; van Sörnsen de Koste, J.R.; Senan, S. Motion analysis of 100 mediastinal lymph nodes: Potential pitfalls in treatment planning and adaptive strategies. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Schaake, E.E.; Rossi, M.M.; Buikhuisen, W.A.; Burgers, J.A.; Smit, A.A.; Belderbos, J.S.; Sonke, J.J. Differential motion between mediastinal lymph nodes and primary tumor in radically irradiated lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Van Elmpt, W.; Öllers, M.; Lambin, P.; de Ruysscher, D. Should patient setup in lung cancer be based on the primary tumor? An analysis of tumor coverage and normal tissue dose using repeated positron emission tomography/computed tomography imaging. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Engelsman, M.; Schwarz, M.; Dong, L. Physics controversies in proton therapy. Semin. Radiat. Oncol. 2013, 23, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Engelsman, M.; Kooy, H.M. Target volume dose considerations in proton beam treatment planning for lung tumors. Med. Phys. 2005, 32, 3549–3557. [Google Scholar] [CrossRef] [PubMed]
- Widesott, L.; Amichetti, M.; Schwarz, M. Proton therapy in lung cancer: Clinical outcomes and technical issues. A systematic review. Radiother. Oncol. 2008, 86, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Mc Gowan, S.E.; Burnet, N.G.; Lomax, A.J. Treatment planning optimisation in proton therapy. Br. J. Radiol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Schippers, J.M.; Lomax, A.J. Emerging technologies in proton therapy. Acta Oncol. 2011, 50, 838–850. [Google Scholar] [CrossRef] [PubMed]
- De Laney, T.F. Proton therapy in the clinic. Front. Radiat. Ther. Oncol. 2011, 43, 465–485. [Google Scholar]
- De Ruysscher, D.; Faivre-Finn, C.; Nestle, U.; Hurkmans, C.W.; le Péchoux, C.; Price, A.; Senan, S. European Organisation for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J. Clin. Oncol. 2010, 28, 5301–5310. [Google Scholar] [CrossRef] [PubMed]
- Sonke, J.J.; Zijp, L.; Remeijer, P.; van Herk, M. Respiratory correlated cone beam CT. Med. Phys. 2005, 32, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Wolthaus, J.W.; Schneider, C.; Sonke, J.J.; van Herk, M.; Belderbos, J.S.; Rossi, M.M.; Lebesque, J.V.; Damen, E.M. Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1560–1571. [Google Scholar] [CrossRef] [PubMed]
- Kruis, M.F.; van de Kamer, J.B.; Belderbos, J.S.; Sonke, J.J.; van Herk, M. 4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan. Phys. Med. Biol. 2014, 59, 5517–5529. [Google Scholar] [CrossRef] [PubMed]
- Van Herk, M.; Remeijer, P.; Rasch, C.; Lebesque, J.V. The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 1121–1135. [Google Scholar] [CrossRef]
- Shih, H.A.; Jiang, S.B.; Aljarrah, K.M.; Doppke, K.P.; Choi, N.C. Internal target volume determined with expansion margins beyond composite gross tumor volume in three-dimensional conformal radiotherapy for lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 613–622. [Google Scholar] [CrossRef]
- Engelsman, M.; Damen, E.M.; de Jaeger, K.; van Ingen, K.M.; Mijnheer, B.J. The effect of breathing and set-up errors on the cumulative dose to a lung tumor. Radiother. Oncol. 2001, 60, 95–105. [Google Scholar] [CrossRef]
- Wanet, M.; Sterpin, E.; Janssens, G.; Delor, A.; Lee, J.A.; Geets, X. Validation of the mid-position strategy for lung tumors in helical TomoTherapy. Radiother. Oncol. 2014, 110, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Suit, H.; DeLaney, T.; Goldberg, S.; Paganetti, H.; Clasie, B.; Gerweck, L.; Niemierko, A.; Hall, E.; Flanz, J.; Hallman, J.; et al. Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients. Radiother. Oncol. 2010, 95, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Albertini, F.; Hug, E.B.; Lomax, A.J. Is it necessary to plan with safety margins for actively scanned proton therapy? Phys. Med. Biol. 2011, 56, 4399–4413. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Zhang, X.; Chang, J.Y.; Wang, H.; Wei, X.; Liao, Z.; Komaki, R.; Cox, J.D.; Balter, P.A.; Liu, H.; et al. 4D Proton treatment planning strategy for mobile lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Rietzel, E.; Bert, C. Respiratory motion management in particle therapy. Med. Phys. 2010, 37, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Engelsman, M.; Rietzel, E.; Kooy, H.M. Four-dimensional proton treatment planning for lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Knopf, A.-C.; Boye, D.; Lomax, A.; Mori, S. Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion. Phys. Med. Biol. 2013, 58, 6079–6094. [Google Scholar] [CrossRef] [PubMed]
- Bert, C.; Durante, M. Motion in radiotherapy: Particle therapy. Phys. Med. Biol. 2011, 56, R113–R144. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.M.; Brett, R.; Sharp, G.; Safai, S.; Jiang, S.; Flanz, J.; Kooy, H. A respiratory-gated treatment system for proton therapy. Med. Phys. 2007, 34, 3273–3278. [Google Scholar] [CrossRef] [PubMed]
- Seco, J.; Robertson, D.; Trofimov, A.; Paganetti, H. Breathing interplay effects during proton beam scanning: Simulation and statistical analysis. Phys. Med. Biol. 2009, 54, N283–N294. [Google Scholar] [CrossRef] [PubMed]
- Bernatowicz, K.; Lomax, A.J.; Knopf, A. Comparative study of layered and volumetric rescanning for different scanning speeds of proton beam in liver patients. Phys. Med. Biol. 2013, 58, 7905–7920. [Google Scholar] [CrossRef] [PubMed]
- Zenklusen, S.M.; Pedroni, E.; Meer, D. A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI. Phys. Med. Biol. 2010, 55, 5103–5121. [Google Scholar] [CrossRef] [PubMed]
- Knopf, A.-C.; Hong, T.S.; Lomax, A. Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics. Phys. Med. Biol. 2011, 56, 7257–7271. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Suchowerska, N.; McKenzie, D.R.; Jackson, M. Intrafractional motion during proton beam scanning. Phys. Med. Biol. 2005, 50, 4853–4862. [Google Scholar] [CrossRef] [PubMed]
- Grözinger, S.O.; Rietzel, E.; Li, Q.; Bert, C.; Haberer, T.; Kraft, G. Simulations to design an online motion compensation system for scanned particle beams. Phys. Med. Biol. 2006, 51, 3517–3531. [Google Scholar] [CrossRef] [PubMed]
- Dowdell, S.; Grassberger, C.; Paganetti, H. Four-dimensional Monte Carlo simulations demonstrating how the extent of intensity—Modulation impacts motion effects in proton therapy lung treatments. Med. Phys. 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Knopf, A.; Tanner, C.; Lomax, A.J. Online image guided tumour tracking with scanned proton beams: a comprehensive simulation study. Phys. Med. Biol. 2014, 59, 7793–7817. [Google Scholar] [CrossRef] [PubMed]
- Bert, C.; Gemmel, A.; Saito, N.; Rietzel, E. Gated irradiation with scanned particle beams. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1270–1275. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, M.; Orecchia, R.; Baroni, G. Real-time tumour tracking in particle therapy: Technological developments and future perspectives. Lancet Oncol. 2012, 13, e383–e391. [Google Scholar] [CrossRef]
- Chang, J.Y.; Li, H.; Zhu, X.R.; Liao, Z.; Zhao, L.; Liu, A.; Li, Y.; Sahoo, N.; Poenisch, F.; Gomez, D.R.; et al. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Newhauser, W.; Fontenot, J.; Koch, N.; Dong, L.; Lee, A.; Zheng, Y.; Waters, L.; Mohan, R. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Phys. Med. Biol. 2007, 52, 2937–2952. [Google Scholar] [CrossRef] [PubMed]
- Giebeler, A.; Fontenot, J.; Balter, P.; Ciangaru, G.; Zhu, R.; Newhauser, W. Dose perturbations from implanted helical gold markers in proton therapy of prostate cancer. J. Appl. Clin. Med. Phys. 2009. [Google Scholar] [CrossRef]
- Crijns, S.P.; Raaymakers, B.W.; Lagendijk, J.J. Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy. Phys. Med. Biol. 2011, 56, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Knopf, A.C.; Lomax, A. In vivo proton range verification: A review. Phys. Med. Biol. 2013, 58, R131–R160. [Google Scholar] [CrossRef] [PubMed]
- Smeets, J.; Roellinghoff, F.; Prieels, D.; Stichelbaut, F.; Benilov, A.; Busca, P.; Fiorini, C.; Peloso, R.; Basilavecchia, M.; Frizzi, T.; et al. Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Phys. Med. Biol. 2012, 57, 3371–3405. [Google Scholar] [CrossRef] [PubMed]
- Bom, V.; Joulaeizadeh, L.; Beekman, F. Real-time prompt γ monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit. Phys. Med. Biol. 2012, 57, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Schätti, A.; Zakova, M.; Meer, D.; Lomax, A.J. The effectiveness of combined gating and re-scanning for treating mobile targets with proton spot scanning. An experimental and simulation-based investigation. Phys. Med .Biol. 2014, 59, 3813–3828. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, T.; Miyamoto, N.; Shimizu, S.; Fujii, Y.; Umezawa, M.; Takao, S.; Nihongi, H.; Toramatsu, C.; Sutherland, K.; Suzuki, R.; et al. Integration of a real-time tumor monitoring system into gated proton spot-scanning beam therapy: An initial phantom study using patient tumor trajectory data. Med. Phys. 2013. [Google Scholar] [CrossRef] [PubMed]
- Tsunashima, Y.; Vedam, S.; Dong, L.; Umezawa, M.; Balter, P.; Mohan, R. The precision of respiratory-gated delivery of synchrotron-based pulsed beam proton therapy. Phys. Med. Biol. 2010, 55, 7633–7647. [Google Scholar] [CrossRef] [PubMed]
- Hoogeman, M.; Prévost, J.B.; Nuyttens, J.; Pöll, J.; Levendag, P.; Heijmen, B. Clinical accuracy of the respiratory tumor tracking system of the cyberknife: Assessment by analysis of log files. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Keall, P.J.; Cattell, H.; Pokhrel, D.; Dieterich, S.; Wong, K.H.; Murphy, M.J.; Vedam, S.S.; Wijesooriya, K.; Mohan, R. Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Depuydt, T.; Poels, K.; Verellen, D.; Engels, B.; Collen, C.; Buleteanu, M.; van den Begin, R.; Boussaer, M.; Duchateau, M.; Gevaert, T.; et al. Treating patients with real-time tumor tracking using the Vero gimbaled linac system: Implementation and first review. Radiother. Oncol. 2014, 112, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Unkelbach, J.; Trofimov, A.; Madden, T.; Kooy, H.; Bortfeld, T.; Craft, D. Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys. Med. Biol. 2012, 57, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, D.; Wilkens, J.J.; Oelfke, U. Worst case optimization: A method to account for uncertainties in the optimization of intensity modulated proton therapy. Phys. Med. Biol. 2008, 53, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, A.; Forsgren, A.; Hårdemark, B. Minimax optimization for handling range and setup uncertainties in proton therapy. Med. Phys. 2011, 38, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Paganetti, H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 2012, 57, R99–R117. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Ziegenhein, P.; Jiang, S.B. GPU-based high-performance computing for radiation therapy. Phys. Med. Biol. 2014, 59, R151–R182. [Google Scholar] [CrossRef] [PubMed]
- Souris, K.; Lee, J.A.; Sterpin, E. Intel Xeon Phi implementation of a fast multi-purpose Monte Carlo simulation for proton therapy. Phys. Med. Biol. 2014. [Google Scholar] [CrossRef]
- Sterpin, E.; Janssens, G.; de Xivry, O.J.; Goossens, S.; Wanet, M.; Lee, J.A.; Bol, V.; Vynckier, S.; Gregoire, V.; Geets, X. Helical tomotherapy for SIB and hypo-fractionated treatments in lung carcinomas: A 4D Monte Carlo treatment planning study. Radiother. Oncol 2012, 104, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Reynaert, N.; van der Marck, S.; Schaart, D.R.; van der Zee, W.; van Vliet-Vroegindeweij, C.; Tomsej, M.; Jansen, J.; Heijmen, B.; Coghe, M.; de Wagter, C. Monte Carlo treatment planning for photon and electron beams. Radiat. Phys. Chem. 2007, 76, 643–686. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Ruysscher, D.; Sterpin, E.; Haustermans, K.; Depuydt, T. Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review. Cancers 2015, 7, 1143-1153. https://doi.org/10.3390/cancers7030829
De Ruysscher D, Sterpin E, Haustermans K, Depuydt T. Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review. Cancers. 2015; 7(3):1143-1153. https://doi.org/10.3390/cancers7030829
Chicago/Turabian StyleDe Ruysscher, Dirk, Edmond Sterpin, Karin Haustermans, and Tom Depuydt. 2015. "Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review" Cancers 7, no. 3: 1143-1153. https://doi.org/10.3390/cancers7030829
APA StyleDe Ruysscher, D., Sterpin, E., Haustermans, K., & Depuydt, T. (2015). Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review. Cancers, 7(3), 1143-1153. https://doi.org/10.3390/cancers7030829