The Role of Regional Therapies for in-Transit Melanoma in the Era of Improved Systemic Options
Abstract
:1. Introduction
2. Treatments for IT Melanoma
Local therapies | Surgical excision to clear margins |
Intralesional injection (BCG, IFN, IL-2, oncolytic viruses) | |
Local ablation therapy | |
Topical imiquimod | |
Radiation therapy | |
Regional therapies | Isolated limb perfusion with melphalan |
Isolated limb infusion with melphalan | |
Systemic therapies | Immunotherapies |
Small molecule inhibitors | |
Chemotherapies |
Local Therapies | Regional Therapies | Systemic Therapies | |
---|---|---|---|
Systemic Toxicity | ↓↓↓ | ↓↓ | ↑↑ |
Local Toxicity | ↑ | ↑↑ | ↓↓ |
Technical Feasibility | ↑↑↑ | ↓↓ | ↑↑ |
Repeat Potential | ↑↑↑ | ↑ | ↑ |
3. Surgery
4. Lesional Therapies
5. Oncolytic Virus-Based Vaccines
6. Radiation
7. Regional Therapy
8. Systemic Therapy
Treatment | OR | CR | PFS | OS |
---|---|---|---|---|
Novel vaccines | ||||
T-VEC | 26% | 16% | Median 18.9 months | |
PV-10 | 51% | 26% | ||
Regional therapies | ||||
ILP | 81%–90% | 50%–82% | Median 6–26 months | Median 24–51 months |
ILI | 43%–84% | 30%–44% | Median 31–53 months | |
Systemic therapies | ||||
BRAF | 48%–81% | 1%–6% | Median 5.3–6.9 months | Median 13.6 months |
55% (1 year) | ||||
Ipilimumab | 11%–29% | 1.50% | Median 2.9 months | Median 10.1 months 47%–53% (1 year) |
PD-1 | 26%–52% | Median 5.5 months 42.1% (1 year) | Median 8.2 months 69%–73% (1 year) |
9. Conclusions and Future Directions
Acknowledgments
Conflicts of Interest
References
- SEER Cancer Statistics Factsheets: Melanoma of the Skin. National Cancer Institute: Bethesda, MD, USA. Available online: http://seer.cancer.gov/statfacts/html/melan.html (accessed on 4 August 2014).
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. Melanoma of the Skin. In American Joint Committee on Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010; p. 325. [Google Scholar]
- Read, R.L.; Haydu, L.; Saw, R.P.; Quinn, M.J.; Shannon, K.; Spillane, A.J.; Stretch, J.R.; Scolyer, R.A.; Thompson, J.F. In-transit Melanoma Metastases: Incidence, Prognosis, and the Role of Lymphadenectomy. Ann. Surg. Oncol. 2015, 22, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Ross, M.I.; Johnson, M.M.; Schacherer, C.W.; McClain, D.M.; Mansfield, P.F.; Lee, J.E.; Cormier, J.N.; Gershenwald, J.E. Predictors and natural history of in-transit melanoma after sentinel lymphadenectomy. Ann. Surg. Oncol. 2005, 12, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.C.; Wanek, L.A.; Essner, R.; Faries, M.B.; Foshag, L.J.; Morton, D.L. Sentinel lymphadenectomy does not increase the incidence of in-transit metastases in primary melanoma. J. Clin. Oncol. 2005, 23, 4764–4770. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.; Tyler, D. In-transit melanoma metastasesncidence, prognosis, and the role of lymphadenectomy. Ann. Surg. Oncol. 2015, 22, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, L.; Beckmann, I.; Thoms, K.M.; Mitteldorf, C.; Bertsch, H.P.; Neumann, C. Factors predicting the risk of in-transit recurrence after sentinel lymphonodectomy in patients with cutaneous malignant melanoma. Ann. Surg. Oncol. 2006, 13, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Stucky, C.C.; Gray, R.J.; Dueck, A.C.; Wasif, N.; Laman, S.D.; Sekulic, A.; Pockaj, B.A. Risk factors associated with local and in-transit recurrence of cutaneous melanoma. Am. J. Surg. 2010, 200, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.E.; Tabler, B.L.; Dunki-Jacobs, E.M.; Callender, G.G.; Scoggins, C.R.; Martin, R.C., 2nd; Quillo, A.R.; Stromberg, A.J.; McMasters, K.M. Clinicopathologic and survival differences between upper and lower extremity melanomas. Am. Surg. 2012, 78, 779–787. [Google Scholar] [PubMed]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.D.; Tyler, D.; Johnson, J.L.; DeMatos, P.; Seigler, H.F. Analysis of prognosis and disease progression after local recurrence of melanoma. Cancer 2000, 88, 1063–1071. [Google Scholar] [CrossRef]
- Suojarvi, N.J.; Jahkola, T.A.; Virolainen, S.; Ilmonen, S.K.; Hernberg, M.M. Outcome following local recurrence or in-transit metastases in cutaneous melanoma. Melanoma Res. 2012, 22, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Zager, J.S.; Puleo, C.A.; Sondak, V.K. What is the significance of the in transit or interval sentinel node in melanoma? Ann. Surg. Oncol. 2011, 18, 3232–3234. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Melanoma (Version 4.2014). Available online: http://www.nccn.org/professionals/physician_gls/pdf/melanoma.pdf (accessed on 1 March 2015).
- Abbott, A.M.; Zager, J.S. Locoregional therapies in melanoma. Surg. Clin. N. Am. 2014, 94, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Gimbel, M.I.; Delman, K.A.; Zager, J.S. Therapy for unresectable recurrent and in-transit extremity melanoma. Cancer Control 2008, 15, 225–232. [Google Scholar] [PubMed]
- Hayes, A.J.; Clark, M.A.; Harries, M.; Thomas, J.M. Management of in-transit metastases from cutaneous malignant melanoma. Br. J. Surg. 2004, 91, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Addition of Ipilimumab (MDX-010) To Isolated Limb Infusion (ILI) with Standard Melphalan and Dactinomycin in the Treatment of Advanced Unresectable Melanoma of The Extremity. National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT01323517 (accessed on 5 March 2015).
- MDX-010 Antibody, MDX-1379 Melanoma Vaccine, or MDX-010/MDX-1379 Combination Treatment for Patients With Unresectable or Metastatic Melanoma. National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT00094653 (accessed on 5 March 2015).
- Grotz, T.E.; Mansfield, A.S.; Kottschade, L.A.; Erickson, L.A.; Otley, C.C.; Markovic, S.N.; Jakub, J.W. In-transit melanoma: An individualized approach. Oncology 2011, 25, 1340–1348. [Google Scholar] [PubMed]
- Thomas, J.M.; Clark, M.A. Selective lymphadenectomy in sentinel node-positive patients may increase the risk of local/in-transit recurrence in malignant melanoma. Eur. J. Surg. Oncol. 2004, 30, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Estourgie, S.H.; Nieweg, O.E.; Kroon, B.B. High incidence of in-transit metastases after sentinel node biopsy in patients with melanoma. Br. J. Surg. 2004, 91, 1370–1371. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.L.; Thompson, J.F.; Cochran, A.J.; Mozzillo, N.; Nieweg, O.E.; Roses, D.F.; Hoekstra, H.J.; Karakousis, C.P.; Puleo, C.A.; Coventry, B.J.; et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N. Engl. J. Med. 2014, 370, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Van Poll, D.; Thompson, J.F.; Colman, M.H.; McKinnon, J.G.; Saw, R.P.; Stretch, J.R.; Scolyer, R.A.; Uren, R.F. A sentinel node biopsy does not increase the incidence of in-transit metastasis in patients with primary cutaneous melanoma. Ann. Surg. Oncol. 2005, 12, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Fincher, T.R.; McCarty, T.M.; Fisher, T.L.; Preskitt, J.T.; Lieberman, Z.H.; Stephens, J.F.; O’Brien, J.C.; Kuhn, J.A. Patterns of recurrence after sentinel lymph node biopsy for cutaneous melanoma. Am. J. Surg. 2003, 186, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; Speicher, P.; Sharma, K.; Seigler, H.; Salama, A.; Mosca, P.; Tyler, D.S. Efficacy of repeat sentinel lymph node biopsy in patients who develop recurrent melanoma. J. Am. Coll. Surg. 2014, 218, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.A.; Hsueh, E.C.; Essner, R.; Foshag, L.J.; Wanek, L.A.; Morton, D.L. Is sentinel lymph node mapping indicated for isolated local and in-transit recurrent melanoma? Ann. Surg. 2003, 238, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Multicenter Selective Lymphadenectomy Trial II (MSLT-II). National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT00297895 (accessed on 5 June 2015).
- Sloot, S.; Rashid, O.M.; Zager, J.S. Intralesional therapy for metastatic melanoma. Expert Opin. Pharmacother. 2014, 15, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Testori, A.; Faries, M.B.; Thompson, J.F.; Pennacchioli, E.; Deroose, J.P.; van Geel, A.N.; Verhoef, C.; Verrecchia, F.; Soteldo, J. Local and intralesional therapy of in-transit melanoma metastases. J. Surg. Oncol. 2011, 104, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Schon, M.P.; Schon, M. Imiquimod: Mode of action. Br. J. Dermatol. 2007, 157, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Naylor, M.F.; Crowson, N.; Kuwahara, R.; Teague, K.; Garcia, C.; Mackinnis, C.; Haque, R.; Odom, C.; Jankey, C.; Cornelison, R.L. Treatment of lentigo maligna with topical imiquimod. Br. J. Dermatol. 2003, 149, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.M.; Russell-Jones, R.; Barlow, R.J. Topical imiquimod immunotherapy in the management of lentigo maligna. Clin. Exp. Dermatol. 2004, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Bong, A.B.; Bonnekoh, B.; Franke, I.; Schon, M.; Ulrich, J.; Gollnick, H. Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 2002, 205, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Kidner, T.B.; Morton, D.L.; Lee, D.J.; Hoban, M.; Foshag, L.J.; Turner, R.R.; Faries, M.B. Combined intralesional Bacille Calmette-Guerin (BCG) and topical imiquimod for in-transit melanoma. J. Immunother. 2012, 35, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.; Ho, V.C. Pooled analysis of the efficacy of bacille Calmette-Guerin (BCG) immunotherapy in malignant melanoma. J. Dermatol. Surg. Oncol. 1993, 19, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Von Wussow, P.; Block, B.; Hartmann, F.; Deicher, H. Intralesional interferon-alpha therapy in advanced malignant melanoma. Cancer 1988, 61, 1071–1074. [Google Scholar] [CrossRef]
- Hassan, S.; Petrella, T.M.; Zhang, T.; Kamel-Reid, S.; Nordio, F.; Baccarelli, A.; Sade, S.; Naert, K.; Habeeb, A.A.; Ghazarian, D.; et al. Pathologic Complete Response to Intralesional Interleukin-2 Therapy Associated with Improved Survival in Melanoma Patients with in-Transit Disease. Ann. Surg. Oncol. 2015, 22, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Byers, B.A.; Temple-Oberle, C.F.; Hurdle, V.; McKinnon, J.G. Treatment of in-transit melanoma with intra-lesional interleukin-2, a systematic review. J. Surg. Oncol. 2014, 110, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Temple-Oberle, C.F.; Byers, B.A.; Hurdle, V.; Fyfe, A.; McKinnon, J.G. Intra-lesional interleukin-2 therapy for in transit melanoma. J. Surg. Oncol. 2014, 109, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.I. Intralesional therapy with PV-10 (Rose Bengal) for in-transit melanoma. J. Surg. Oncol. 2014, 109, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Toomey, P.; Kodumudi, K.; Weber, A.; Kuhn, L.; Moore, E.; Sarnaik, A.A.; Pilon-Thomas, S. Intralesional injection of rose bengal induces a systemic tumor-specific immune response in murine models of melanoma and breast cancer. PLoS ONE 2013, 8, e68561. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Watanabe, H.; Naito, M.; Aoyama, H.; Nakagawa, Y.; Fujimoto, N. Induction of thyroid tumors in (C57BL/6N × C3H/N)F1 mice by oral administration of 9-3′,4′,5′,6′-tetrachloro-o-carboxy phenyl-6-hydroxy-2,4,5,7-tetraiodo-3-isoxanthone sodium (Food Red 105, rose bengal B). J. Natl. Cancer Inst. 1986, 77, 277–281. [Google Scholar] [PubMed]
- Thompson, J.F.; Hersey, P.; Wachter, E. Chemoablation of metastatic melanoma using intralesional Rose Bengal. Melanoma Res. 2008, 18, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Foote, M.C.; Burmeister, B.H.; Thomas, J.; Mark Smithers, B. A novel treatment for metastatic melanoma with intralesional rose bengal and radiotherapy: A case series. Melanoma Res. 2010, 20, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Agarwala, S.S.; Smithers, B.M.; Ross, M.I.; Scoggins, C.R.; Coventry, B.J.; Neuhaus, S.J.; Minor, D.R.; Singer, J.M.; Wachter, E.A. Phase 2 Study of Intralesional PV-10 in Refractory Metastatic Melanoma. Ann. Surg. Oncol. 2015, 22, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, D.L.; Liu, Z.; Sathaiah, M.; Ravindranathan, R.; Guo, Z.; He, Y.; Guo, Z.S. Oncolytic viruses as therapeutic cancer vaccines. Mol. Cancer 2013, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.; Alla, V.; Meier, C.; Nettelbeck, D.M.; Herchenroder, O.; Putzer, B.M. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2014, 5, 5893–5907. [Google Scholar] [PubMed]
- Jiang, G.; Yang, C.S.; Xu, D.; Sun, C.; Zheng, J.N.; Lei, T.C.; Liu, Y.Q. Potent anti-tumour activity of a novel conditionally replicating adenovirus for melanoma via inhibition of migration and invasion. Br. J. Cancer 2014, 110, 2496–2505. [Google Scholar] [CrossRef] [PubMed]
- Kyula, J.N.; Khan, A.A.; Mansfield, D.; Karapanagiotou, E.M.; McLaughlin, M.; Roulstone, V.; Zaidi, S.; Pencavel, T.; Touchefeu, Y.; Seth, R. Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-alpha signaling. Oncogene 2014, 33, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Adamina, M.; Rosenthal, R.; Weber, W.P.; Frey, D.M.; Viehl, C.T.; Bolli, M.; Huegli, R.W.; Jacob, A.L.; Heberer, M.; Oertli, D. Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol. Ther. 2010, 18, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Zajac, P.; Oertli, D.; Marti, W.; Adamina, M.; Bolli, M.; Guller, U.; Noppen, C.; Padovan, E.; Schultz-Thater, E.; Heberer, M. Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Hum. Gene Ther. 2003, 14, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.H.; Moon, A.; Burke, J.; Ribas, A.; Stephenson, J.; Breitbach, C.J.; Daneshmand, M.; De Silva, N.; Parato, K.; Diallo, J.S.; et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol. Ther. 2011, 19, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- A Study of Recombinant Vaccinia Virus to Treat Malignant Melanoma. National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT00429312 (accessed on 5 March 2015).
- Monoclonal Antibody and Vaccine Therapy in Treating Patients With Stage III or Stage IV Melanoma That Has Been Removed During Surgery. National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT00025181 (accessed on 5 March 2015).
- Kaufman, H.L.; Collichio, F.A.; Amatruda, T.; Senzer, N.N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Ye, Y.; Li, A.; et al. Primary overall survival (OS) from OPTiM, a randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J. Clin. Oncol. 2014, 32, abstr9008a. [Google Scholar]
- Andtbacka, R.H.; Collichio, F.A.; Amatruda, T.; Senzer, N.N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Doleman, S.; Ye, Y.; et al. OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J. Clin. Oncol. 2013, 31, abstrLBA9008. [Google Scholar]
- Andtbacka, R.H.I.; Ross, M.I.; Delman, K.; Dirk Noyes, R.; Zager, J.S.; Hsueh, E.; Ollola, D.W.; Amatruda, T.; Chen, L.; VanderWalde, A.; et al. Responses of injected and uninjected lesions to intralesional Talimogene Laherparepvec (T-VEC) in the OPTiM study and the contribution of surgery to response. Ann. Surg. Oncol. 2014, 21, abstr52. [Google Scholar]
- Ipilimumab With or Without Talimogene Laherparepvec in Unresected Melanoma. National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT01740297 (accessed on 5 March 2015).
- Guadagnolo, B.A.; Prieto, V.; Weber, R.; Ross, M.I.; Zagars, G.K. The role of adjuvant radiotherapy in the local management of desmoplastic melanoma. Cancer 2014, 120, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Ballo, M.T.; Strom, E.A.; Zagars, G.K.; Bedikian, A.Y.; Prieto, V.G.; Mansfield, P.F.; Lee, J.E.; Gershenwald, J.E.; Ross, M.I. Adjuvant irradiation for axillary metastases from malignant melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 964–972. [Google Scholar] [CrossRef]
- Testori, A.; Rutkowski, P.; Marsden, J.; Bastholt, L.; Chiarion-Sileni, V.; Hauschild, A.; Eggermont, A.M. Surgery and radiotherapy in the treatment of cutaneous melanoma. Ann. Oncol. 2009, 20, VI22–VI29. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, W.M.; Shaw, C.; Amdur, R.J.; Kirwan, J.; Morris, C.G.; Werning, J.W. Surgery and adjuvant radiotherapy for cutaneous melanoma considered high-risk for local-regional recurrence. Am. J. Otolaryngol. 2013, 34, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Seegenschmiedt, M.H.; Keilholz, L.; Altendorf-Hofmann, A.; Pieritz, A.; Urban, A.; Schell, H.; Hohenberger, W.; Sauer, R. Long term results following radiation therapy of locally recurrent and metastatic malignant melanoma. Hautarzt 1999, 50, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Seegenschmiedt, M.H.; Keilholz, L.; Altendorf-Hofmann, A.; Urban, A.; Schell, H.; Hohenberger, W.; Sauer, R. Palliative radiotherapy for recurrent and metastatic malignant melanoma: Prognostic factors for tumor response and long-term outcome: A 20-year experience. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 607–618. [Google Scholar] [CrossRef]
- Olivier, K.R.; Schild, S.E.; Morris, C.G.; Brown, P.D.; Markovic, S.N. A higher radiotherapy dose is associated with more durable palliation and longer survival in patients with metastatic melanoma. Cancer 2007, 110, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- Farges, O.; Fuks, D.; Boleslawski, E.; Le Treut, Y.P.; Castaing, D.; Laurent, A.; Ducerf, C.; Rivoire, M.; Bachellier, P.; Chiche, L.; et al. Influence of surgical margins on outcome in patients with intrahepatic cholangiocarcinoma: A multicenter study by the AFC-IHCC-2009 study group. Ann. Surg. 2011, 254, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.T.; Marquez, C.M.; Holland, J.M.; Vetto, J.T. Prevention of local recurrence after surgical debulking of nodal and subcutaneous melanoma deposits by hypofractionated radiation. Ann. Surg. Oncol. 2000, 7, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Creech, O., Jr.; Krementz, E.T. Regional perfusion in melanoma of limbs. JAMA 1964, 188, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Alexander, H.R., Jr.; Fraker, D.L.; Bartlett, D.L. Isolated limb perfusion for malignant melanoma. Semin. Surg. Oncol. 1996, 12, 416–428. [Google Scholar] [CrossRef]
- Rossi, C.R.; Foletto, M.; Pilati, P.; Mocellin, S.; Lise, M. Isolated limb perfusion in locally advanced cutaneous melanoma. Semin. Oncol. 2002, 29, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; Petersen, R.P.; Yoo, J.; McMahon, N.; Aloia, T.; Petros, W.; Sanders, G.; Cheng, T.Y.; Pruitt, S.K.; Seigler, H.; et al. Isolated limb infusion for in-transit malignant melanoma of the extremity: A well-tolerated but less effective alternative to hyperthermic isolated limb perfusion. Ann. Surg. Oncol. 2008, 15, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- McDermott, P.; Lawson, D.S.; Walczak, R., Jr.; Tyler, D.; Shearer, I.R. An isolated limb infusion technique: A guide for the perfusionist. J. Extra Corpor. Technol. 2005, 37, 396–399. [Google Scholar] [PubMed]
- Cheng, T.Y.; Grubbs, E.; Abdul-Wahab, O.; Leu, S.Y.; Hung, C.F.; Petros, W.; Aloia, T.; Fedrau, R.; Pruitt, S.; Colvin, M.; et al. Marked variability of melphalan plasma drug levels during regional hyperthermic isolated limb perfusion. Am. J. Surg. 2003, 186, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.S.; Wu, Z.Y.; Siebert, G.A.; Anissimov, Y.G.; Thompson, J.F.; Smithers, B.M. Pharmacokinetics and pharmacodynamics of melphalan in isolated limb infusion for recurrent localized limb malignancy. Melanoma Res. 2001, 11, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M.; Huismans, A.; Waugh, R.C.; Kam, P.C.; Thompson, J.F. Isolated limb infusion: Technical aspects. J. Surg. Oncol. 2014, 109, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M. Treatment of locally advanced melanoma by isolated limb infusion with cytotoxic drugs. J. Skin Cancer 2011, 2011, 106573. [Google Scholar] [CrossRef] [PubMed]
- Lidsky, M.E.; Speicher, P.J.; Jiang, B.; Tsutsui, M.; Tyler, D.S. Isolated limb infusion as a model to test new agents to treat metastatic melanoma. J. Surg. Oncol. 2014, 109, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Defty, C.L.; Marsden, J.R. Melphalan in regional chemotherapy for locally recurrent metastatic melanoma. Curr. Top. Med. Chem. 2012, 12, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Deroose, J.P.; Eggermont, A.M.; van Geel, A.N.; de Wilt, J.H.; Burger, J.W.; Verhoef, C. 20 years experience of TNF-based isolated limb perfusion for in-transit melanoma metastases: TNF dose matters. Ann. Surg. Oncol. 2012, 19, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.R.; Pasquali, S.; Mocellin, S.; Vecchiato, A.; Campana, L.G.; Pilati, P.; Zanon, A.; Nitti, D. Long-term results of melphalan-based isolated limb perfusion with or without low-dose TNF for in-transit melanoma metastases. Ann. Surg. Oncol. 2010, 17, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Lienard, D.; Eggermont, A.M.; Koops, H.S.; Kroon, B.; Towse, G.; Hiemstra, S.; Schmitz, P.; Clarke, J.; Steinmann, G.; Rosenkaimer, F.; et al. Isolated limb perfusion with tumour necrosis factor-alpha and melphalan with or without interferon-gamma for the treatment of in-transit melanoma metastases: A multicentre randomized phase II study. Melanoma Res. 1999, 9, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Kam, P.C.; Thompson, J.F. Isolated limb infusion with melphalan and actinomycin D in melanoma patients: Factors predictive of acute regional toxicity. Expert Opin. Drug Metab. Toxicol. 2010, 6, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; McMahon, N.; Sanders, G.; Augustine, C.K.; Selim, M.A.; Peterson, B.; Norris, R.; Peters, W.P.; Ross, M.I.; Tyler, D.S. A phase 1 study of systemic ADH-1 in combination with melphalan via isolated limb infusion in patients with locally advanced in-transit malignant melanoma. Cancer 2009, 115, 4766–4774. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; Riboh, J.C.; Augustine, C.K.; Zager, J.S.; Hochwald, S.N.; Grobmyer, S.R.; Peterson, B.; Royal, R.; Ross, M.I.; Tyler, D.S. Prospective multicenter phase II trial of systemic ADH-1 in combination with melphalan via isolated limb infusion in patients with advanced extremity melanoma. J. Clin. Oncol. 2011, 29, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; Speicher, P.; Augustine, C.K.; Dolber, P.C.; Peterson, B.L.; Sharma, K.; Mosca, P.J.; Royal, R.; Ross, M.; Zager, J.S.; et al. A multicenter phase I dose escalation trial to evaluate safety and tolerability of intra-arterial temozolomide for patients with advanced extremity melanoma using normothermic isolated limb infusion. Ann. Surg. Oncol. 2015, 22, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Raymond, A.K.; Beasley, G.M.; Broadwater, G.; Augustine, C.K.; Padussis, J.C.; Turley, R.; Peterson, B.; Seigler, H.; Pruitt, S.K.; Tyler, D.S. Current trends in regional therapy for melanoma: Lessons learned from 225 regional chemotherapy treatments between 1995 and 2010 at a single institution. J. Am. Coll. Surg. 2011, 213, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, R.; Mattsson, J.; Lindner, P. Long-term follow-up of 163 consecutive patients treated with isolated limb perfusion for in-transit metastases of malignant melanoma. Int. J. Hyperth. 2013, 29, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Olofsson Bagge, R.; Mattsson, J.; Hafstrom, L. Regional hyperthermic perfusion with melphalan after surgery for recurrent malignant melanoma of the extremities—Long-term follow-up of a randomised trial. Int. J. Hyperth. 2014, 30, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M.; Moncrieff, M.; Kam, P.C.; Thompson, J.F. Outcomes following isolated limb infusion for melanoma. A 14-year experience. Ann. Surg. Oncol. 2008, 15, 3003–3013. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M.; Lin, D.Y.; Kam, P.C.; Thompson, J.F. Safety and efficacy of isolated limb infusion with cytotoxic drugs in elderly patients with advanced locoregional melanoma. Ann. Surg. 2009, 249, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Beasley, G.M.; Caudle, A.; Petersen, R.P.; McMahon, N.S.; Padussis, J.; Mosca, P.J.; Zager, J.S.; Hochwald, S.N.; Grobmyer, S.R.; Delman, K.A.; et al. A multi-institutional experience of isolated limb infusion: Defining response and toxicity in the U.S. J. Am. Coll. Surg. 2009, 208, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Deroose, J.P.; Grunhagen, D.J.; van Geel, A.N.; de Wilt, J.H.; Eggermont, A.M.; Verhoef, C. Long-term outcome of isolated limb perfusion with tumour necrosis factor-α for patients with melanoma in-transit metastases. Br. J. Surg. 2011, 98, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, H.J.; Veerman, K.; van Ginkel, R.J. Isolated limb perfusion for in-transit melanoma metastases: Melphalan or TNF-melphalan perfusion? J. Surg. Oncol. 2014, 109, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Cornett, W.R.; McCall, L.M.; Petersen, R.P.; Ross, M.I.; Briele, H.A.; Noyes, R.D.; Sussman, J.J.; Kraybill, W.G.; Kane, J.M., 3rd; Alexander, H.R.; et al. Randomized multicenter trial of hyperthermic isolated limb perfusion with melphalan alone compared with melphalan plus tumor necrosis factor: American College of Surgeons Oncology Group Trial Z0020. J. Clin. Oncol. 2006, 24, 4196–4201. [Google Scholar] [CrossRef] [PubMed]
- Alexander, H.R., Jr.; Fraker, D.L.; Bartlett, D.L.; Libutti, S.K.; Steinberg, S.M.; Soriano, P.; Beresnev, T. Analysis of factors influencing outcome in patients with in-transit malignant melanoma undergoing isolated limb perfusion using modern treatment parameters. J. Clin. Oncol. 2010, 28, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.P.; Thomas, J.; Suffolk, J.; Beller, E.; Smithers, B.M. Isolated limb infusion for malignant melanoma: Predictors of response and outcome. Ann. Surg. Oncol. 2009, 16, 3463–3472. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, F.; Giacomini, P.; Rossi, C.R.; Santinami, M.; Anza, M.; Garinei, R.; Perri, P.; Botti, C.; di Angelo, P.; Sofra, C.; et al. Prognostic factors influencing tumor response, locoregional control and survival, in melanoma patients with multiple limb in-transit metastases treated with TNFalpha-based isolated limb perfusion. In Vivo 2009, 23, 347–352. [Google Scholar] [PubMed]
- Klaase, J.M.; Kroon, B.B.; van Geel, A.N.; Eggermont, A.M.; Franklin, H.R.; Hart, A.A. Prognostic factors for tumor response and limb recurrence-free interval in patients with advanced melanoma of the limbs treated with regional isolated perfusion with melphalan. Surgery 1994, 115, 39–45. [Google Scholar] [PubMed]
- Muilenburg, D.J.; Beasley, G.M.; Thompson, Z.J.; Lee, J.H.; Tyler, D.S.; Zager, J.S. Burden of disease predicts response to isolated limb infusion with melphalan and actinomycin D in melanoma. Ann. Surg. Oncol. 2015, 22, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Beasley, G.; Turley, R.; Raymond, A.K.; Broadwater, G.; Peterson, B.; Mosca, P.; Tyler, D. Patterns of recurrence following complete response to regional chemotherapy for in-transit melanoma. Ann. Surg. Oncol. 2012, 19, 2563–2571. [Google Scholar] [CrossRef] [PubMed]
- Lidsky, M.E.; Turley, R.S.; Beasley, G.M.; Sharma, K.; Tyler, D.S. Predicting disease progression after regional therapy for in-transit melanoma. JAMA Surg. 2013, 148, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.Y.; Deneve, J.L.; Beasley, G.M.; Marzban, S.S.; Chen, Y.A.; Rawal, B.; Grobmyer, S.R.; Hochwald, S.N.; Tyler, D.S.; Zager, J.S. A multi-institutional experience of repeat regional chemotherapy for recurrent melanoma of extremities. Ann. Surg. Oncol. 2012, 19, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Chen, Y.A.; Fisher, K.J.; Beasley, G.M.; Tyler, D.S.; Zager, J.S. Resection of residual disease after isolated limb infusion (ILI) is equivalent to a complete response after ILI-alone in advanced extremity melanoma. Ann. Surg. Oncol. 2014, 21, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Wieberdink, J.; Benckhuysen, C.; Braat, R.P.; van Slooten, E.A.; Olthuis, G.A. Dosimetry in isolation perfusion of the limbs by assessment of perfused tissue volume and grading of toxic tissue reactions. Eur. J. Cancer Clin. Oncol. 1982, 18, 905–910. [Google Scholar] [CrossRef]
- Klaase, J.M.; Kroon, B.B.; Benckhuijsen, C.; van Geel, A.N.; Albus-Lutter, C.E.; Wieberdink, J. Results of regional isolation perfusion with cytostatics in patients with soft tissue tumors of the extremities. Cancer 1989, 64, 616–621. [Google Scholar] [CrossRef]
- Kroon, H.M.; Moncrieff, M.; Kam, P.C.; Thompson, J.F. Factors predictive of acute regional toxicity after isolated limb infusion with melphalan and actinomycin D in melanoma patients. Ann. Surg. Oncol. 2009, 16, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.S.; Speicher, P.J.; Thomas, S.; Mosca, P.J.; Abernethy, A.P.; Tyler, D.S. Quality of Life After Isolated Limb Infusion for In-Transit Melanoma of the Extremity. Ann. Surg. Oncol. 2014. [CrossRef] [PubMed]
- Pace, M.; Gattai, R.; Matteini, M.; Mascitelli, E.M.; Bechi, P. Toxicity and morbility after isolated lower limb perfusion in 242 chemo-hyperthermal treatments for cutaneous melanoma: The experience of the Tuscan Reference Centre. J. Exp. Clin. Cancer Res. 2008, 27, 67. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M.; Lin, D.Y.; Kam, P.C.; Thompson, J.F. Major amputation for irresectable extremity melanoma after failure of isolated limb infusion. Ann. Surg. Oncol. 2009, 16, 1543–1547. [Google Scholar] [CrossRef] [PubMed]
- Creagan, E.T.; Dalton, R.J.; Ahmann, D.L.; Jung, S.H.; Morton, R.F.; Langdon, R.M., Jr.; Kugler, J.; Rodrigue, L.J. Randomized, surgical adjuvant clinical trial of recombinant interferon alfa-2a in selected patients with malignant melanoma. J. Clin. Oncol. 1995, 13, 2776–2783. [Google Scholar] [PubMed]
- Kirkwood, J.M.; Ibrahim, J.G.; Sosman, J.A.; Sondak, V.K.; Agarwala, S.S.; Ernstoff, M.S.; Rao, U. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: Results of intergroup trial E1694/S9512/C509801. J. Clin. Oncol. 2001, 19, 2370–2380. [Google Scholar] [PubMed]
- Chiarion-Sileni, V.; Del Bianco, P.; Romanini, A.; Guida, M.; Paccagnella, A.; Dalla Palma, M.; Naglieri, E.; Ridolfi, R.; Silvestri, B.; Michiara, M.; et al. Tolerability of intensified intravenous interferon alfa-2b versus the ECOG 1684 schedule as adjuvant therapy for stage III melanoma: A randomized phase III Italian Melanoma Inter-group trial (IMI-Mel.A.) [ISRCTN75125874]. BMC Cancer 2006, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Atkins, M.B.; Hsu, J.; Lee, S.; Cohen, G.I.; Flaherty, L.E.; Sosman, J.A.; Sondak, V.K.; Kirkwood, J.M. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): A trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2008, 26, 5748–5754. [Google Scholar] [PubMed]
- Sharma, A.; Shah, S.R.; Illum, H.; Dowell, J. Vemurafenib: Targeted inhibition of mutated BRAF for treatment of advanced melanoma and its potential in other malignancies. Drugs 2012, 72, 2207–2222. [Google Scholar] [CrossRef] [PubMed]
- Khoja, L.; Hogg, D. Dabrafenib in the treatment of metastatic or unresectable melanoma. Expert Rev. Anticancer Ther. 2015, 15, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.; Lebbe, C.; Hodi, F.S.; Maio, M.; Weber, J.S.; Wolchok, J.D.; Thompson, J.A.; Balch, C.M. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treat. Rev. 2014, 40, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Hauschild, A.; Grob, J.J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H., Jr.; Kaempgen, E.; et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380, 358–365. [Google Scholar] [CrossRef]
- Solit, D.B.; Rosen, N. Resistance to BRAF inhibition in melanomas. N. Engl. J. Med. 2011, 364, 772–774. [Google Scholar] [CrossRef] [PubMed]
- Gilmartin, A.G.; Bleam, M.R.; Groy, A.; Moss, K.G.; Minthorn, E.A.; Kulkarni, S.G.; Rominger, C.M.; Erskine, S.; Fisher, K.E.; Yang, J.; et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 2011, 17, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Flaherty, K.T.; Weber, J.S.; Infante, J.R.; Kim, K.B.; Kefford, R.F.; Hamid, O.; Schuchter, L.; Cebon, J.; Sharfman, W.H.; et al. Combined BRAF (Dabrafenib) and MEK inhibition (Trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J. Clin. Oncol. 2014, 32, 3697–3704. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Bouchaab, H.; Zimmerman, S.; Bucher, M.; Gaide, O.; Letovanec, I.; Homicsko, K.; Michielin, O. Dramatic response of vemurafenib-induced cutaneous lesions upon switch to dual BRAF/MEK inhibition in a metastatic melanoma patient. Melanoma Res. 2014, 24, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015. [CrossRef]
- Seremet, T.; Lienard, D.; Suppa, M.; Trepant, A.L.; Rorive, S.; Woff, E.; Cuylits, N.; Jansen, Y.; Schreuer, M.; Del Marmol, V.; et al. Successful (neo)adjuvant BRAF-targeted therapy in a patient with locally advanced BRAF V600E mutant melanoma. Melanoma Res. 2015, 25, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Dossett, L.A.; Kudchadkar, R.R.; Zager, J.S. BRAF and MEK inhibition in melanoma. Expert Opin. Drug Saf. 2015, 14, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Long, G.V. Dabrafenib and trametinib, alone and in combination for BRAF-mutant metastatic melanoma. Clin. Cancer Res. 2014, 20, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; del Vecchio, M.; Ascierto, P.A.; Krajsova, I.; Schachter, J.; Neyns, B.; Espinosa, E.; Garbe, C.; Sileni, V.C.; Gogas, H.; et al. Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: An open-label, multicentre, safety study. Lancet Oncol. 2014, 15, 436–444. [Google Scholar] [CrossRef]
- Gabriel, E.M.; Lattime, E.C. Anti-CTL-associated antigen 4, are regulatory T cells a target? Clin. Cancer Res. 2007, 13, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Maio, M.; Grob, J.J.; Aamdal, S.; Bondarenko, I.; Robert, C.; Thomas, L.; Garbe, C.; Chiarion-Sileni, V.; Testori, A.; Chen, T.T.; et al. Five-Year Survival Rates for Treatment-Naive Patients With Advanced Melanoma Who Received Ipilimumab Plus Dacarbazine in a Phase III Trial. J. Clin. Oncol. 2015. [CrossRef]
- Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.F.; Testori, A.; Grob, J.J.; et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 2011, 364, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Sarnaik, A.A.; Yu, B.; Yu, D.; Morelli, D.; Hall, M.; Bogle, D.; Yan, L.; Targan, S.; Solomon, J.; Nichol, G.; et al. Extended dose ipilimumab with a peptide vaccine: Immune correlates associated with clinical benefit in patients with resected high-risk stage IIIc/IV melanoma. Clin. Cancer Res. 2011, 17, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Kefford, R.; Marshall, M.A.; Punt, C.J.; Haanen, J.B.; Marmol, M.; Garbe, C.; Gogas, H.; Schachter, J.; Linette, G.; et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 2013, 31, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Wiater, K.; Switaj, T.; Mackiewicz, J.; Kalinka-Warzocha, E.; Wojtukiewicz, M.; Szambora, P.; Falkowski, S.; Rogowski, W.; Mackiewicz, A.; Rutkowski, P. Efficacy and safety of ipilimumab therapy in patients with metastatic melanoma: A retrospective multicenter analysis. Contemp. Oncol. 2013, 17, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 2013, 369, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Ribas, A.; Wolchok, J.D.; Hodi, F.S.; Hamid, O.; Kefford, R.; Weber, J.S.; Joshua, A.M.; Hwu, W.J.; Gangadhar, T.C.; et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet 2014, 384, 1109–1117. [Google Scholar] [CrossRef]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.S.; Beasley, G.M.; Speicher, P.J.; Mosca, P.J.; Morse, M.A.; Hanks, B.; Salama, A.; Tyler, D.S. Immunotherapy following regional chemotherapy treatment of advanced extremity melanoma. Ann. Surg. Oncol. 2014, 21, 2525–2531. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Ipilimumab or High-Dose Interferon Alfa-2b in Treating Patients With High-Risk Stage III-IV Melanoma That Has Been Removed by Surgery; National Library of Medicine: Bethesda, MD, USA, 2015. Available online: http://clinicaltrials.gov/show/NCT01274338 (accessed on 5 March 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, E.; Skitzki, J. The Role of Regional Therapies for in-Transit Melanoma in the Era of Improved Systemic Options. Cancers 2015, 7, 1154-1177. https://doi.org/10.3390/cancers7030830
Gabriel E, Skitzki J. The Role of Regional Therapies for in-Transit Melanoma in the Era of Improved Systemic Options. Cancers. 2015; 7(3):1154-1177. https://doi.org/10.3390/cancers7030830
Chicago/Turabian StyleGabriel, Emmanuel, and Joseph Skitzki. 2015. "The Role of Regional Therapies for in-Transit Melanoma in the Era of Improved Systemic Options" Cancers 7, no. 3: 1154-1177. https://doi.org/10.3390/cancers7030830
APA StyleGabriel, E., & Skitzki, J. (2015). The Role of Regional Therapies for in-Transit Melanoma in the Era of Improved Systemic Options. Cancers, 7(3), 1154-1177. https://doi.org/10.3390/cancers7030830