Vitamins and Melanoma
Abstract
:1. Introduction
2. Vitamin A
3. Vitamin D
4. Vitamina E (Tocopherol)
5. Vitamin K
6. Vitamin C
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Eggermont, A.M.; Spatz, A.; Robert, C. Cutaneous melanoma. Lancet 2014, 383, 816–827. [Google Scholar] [CrossRef]
- Rastrelli, M.; Alaibac, M.; Stramare, R.; Chiarion Sileni, V.; Montesco, M.C.; Vecchiato, A.; Campana, L.G.; Rossi, C.R. Melanoma M (Zero): Diagnosis and therapy. ISRN Dermatol. 2013, 2013, 616170. [Google Scholar] [CrossRef] [PubMed]
- Currado, M.; Edwards, B.; Shin, H. Cancer Incidence in Five Continents; IARC Scientific Publications: Lyon, France, 2007. [Google Scholar]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer 2005, 41, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Abeni, D.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur. J. Cancer 2005, 41, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Sera, F.; Cattaruzzan, M.S.; Pasquini, P.; Zanetti, R.; Masini, C.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer 2005, 41, 2040–2059. [Google Scholar] [CrossRef] [PubMed]
- Degos, L. All-trans-retinoic acid treatment and retinoic acid receptor alpha gene rearrangement in acute promyelocytic leukemia: A model for differentiation therapy. Int. J. Cell Cloning. 1992, 10, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Frampton, R.J.; Omond, S.A.; Eisman, J.A. Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 metabolites. Cancer Res. 1983, 43, 4443–4447. [Google Scholar] [PubMed]
- Colston, K.W.; Berger, U.; Coombes, R.C. Possible role for vitamin D in controlling breast cancer cell proliferation. Lancet 1989, 333, 188–191. [Google Scholar] [CrossRef]
- Welsh, J. Vitamin D and prevention of breast cancer. Acta Pharmacol. Sin. 2007, 28, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Kanai, K.; Kikuchi, E.; Mikami, S.; Suzuki, E.; Uchida, Y.; Kodaira, K.; Miyajima, A.; Ohigashi, T.; Nakashima, J.; Oya, M. Vitamin E succinate induced apoptosis and enhanced chemosensitivity to paclitaxel in human bladder cancer cells in vitro and in vivo. Cancer Sci. 2010, 101, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, S.; Hitomi, M.; Yoshiji, H.; Nonomura, T.; Tsujimoto, T.; Mitoro, A.; Akahane, T.; Ogawa, M.; Nakai, S.; Deguchi, A.; et al. Vitamins K2, K3 and K5 exert in vivo antitumor effects on hepatocellular carcinoma by regulating the expression of G1 phase-related cell cycle molecules. Int. J. Oncol. 2005, 27, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Satyamoorthy, K.; Herlyn, M.; Rosdahl, I. All-trans retinoic acid (atRA) differentially induces apoptosis in matched primary and metastatic melanoma cells—A speculation on damage effect of atRA via mitochondrial dysfunction and cell cycle redistribution. Carcinogenesis 2003, 24, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J.; Rech, M.; Moeini, M.; Meese, E.; Tilgen, W.; Seifer, M. In vitro comparison of the vitamin D endocrine system in 1,25(OH)2D3-responsive and -resistant melanoma cells. Cancer Biol. Ther. 2007, 6, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.N.; Edwards-Prasad, J. Effects of tocopherol (vitamin E) acid succinate on morphological alterations and growth inhibition in melanoma cells in culture. Cancer Res. 1982, 42, 550–555. [Google Scholar] [PubMed]
- Asgari, M.M.; Brasky, T.M.; White, E. Association of Vitamin A and Carotenoid Intake with Melanoma Risk in a Large Prospective Cohort. J. Investig. Dermatol. 2012, 132, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, F.; Bolhassani, A.; Khavari, A.; Bathaie, S.Z.; Naji, T.; Bidgoli, S.A. Retinoids and their biological effects against cancer. Int. Immunopharmacol. 2014, 18, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Connolly, R.M.; Nguyen, N.K.; Sukumar, S. Molecular pathways: Current role and future directions of the retinoic acid pathway in cancer prevention and treatment. Clin. Cancer Res. 2013, 19, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Bushue, N.; Wan, Y.J. Retinoid pathway and cancer therapeutics. Adv. Drug. Deliv. Rev. 2010, 62, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.H.; Guads, L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 2011, 6, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, V.; Lotan, R. Stimulation of sialyltransferase activity of melanoma cells by retinoic acid. Exp. Cell Res. 1983, 149, 237–245. [Google Scholar] [CrossRef]
- Ying, M.; Wang, S.; Sang, Y.; Sun, P.; Lal, B.; Goodwin, C.R.; Guerrero Cazares, H.; Quinones-Hinojosa, A.; Laterra, J.; Xia, S. Regulation of glioblastoma stem cells by retinoic acid: Role for Notch pathway inhibition. Oncogene 2011, 30, 3454–3467. [Google Scholar] [CrossRef] [PubMed]
- Niles, R.M. Recent advances in the use of vitamin A (retinoids) in the prevention and treatment of cancer. Nutrition 2000, 16, 1084–1089. [Google Scholar] [CrossRef]
- Lotan, R.; Neumann, G.; Lotan, D. Relationships among retinoid structure, inhibition of growth, and cellular retinoic acid-binding protein in cultured S91 melanoma cells. Cancer Res. 1980, 40, 1097–1102. [Google Scholar] [PubMed]
- Lotan, R.; Giotta, G.; Nork, E.; Nicolson, G.L. Characterization of the inhibitory effects of retinoids on the in vitro growth of two malignant murine melanomas. J. Nat. Cancer Inst. 1978, 60, 1035–1041. [Google Scholar] [PubMed]
- Meyskens, F.L.; Salmon, S.E. Inhibition of human melanoma colony formation by retinoids. Cancer Res. 1979, 39, 4055–4057. [Google Scholar] [PubMed]
- Ludwig, K.W.; Lowey, B.; Niles, R.M. Retinoic acid increases cyclic AMP-dependent protein kinase activity in murine melanoma cells. J. Biol. Chem. 1980, 255, 5999–6002. [Google Scholar] [PubMed]
- Wood, W.R.; Seftor, E.A.; Lotan, D.; Nakajima, M.; Misiorowski, R.L.; Seftor, R.E.; Lotan, R.; Hendrix, M.J. Retinoic acid inhibits human melanoma tumor cell invasion. Anticancer Res. 1990, 10, 423–432. [Google Scholar] [PubMed]
- Yongshan, Y.; DeBauche, D.M.; Stanley, W.S. Epidermal growth factor receptor expression in a retinoic acid-treated human melanoma cell line. Cancer Genet. Cytogenet. 1990, 46, 261–269. [Google Scholar] [CrossRef]
- Cilenti, L.; Toniato, E.; Ruggiero, P.; Fusco, C.; Farina, A.R.; Tiberio, A.; Hayday, A.C.; Bulino, A.; Frati, L.; Martinotti, S. Transcriptional modulation of the human intercellular adhesion molecule gene I (ICAM-1) by retinoic acid in melanoma cells. Exp. Cell Res. 1995, 218, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Ray, S.; Chattopadhyay, N.; Biswas, N.; Chatterjee, A. Effect of retinoic acid on integrin receptors of B16F10 melanoma cells. J. Exp. Clin. Cancer Res. 2000, 19, 81–87. [Google Scholar] [PubMed]
- Sorg, O.; Tran, C.; Saurat, J.H. Cutaneous vitamins A and E in the context of ultraviolet- or chemically-induced oxidative stress. Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, L.; Bianchi, A.; Arnaboldi, A.; Ravetto, C.; Bianchi, L.; Pizzala, R.; Andreoni, L.; Santagati, G.; Bermond, P. Chemoprevention of indirect and direct chemical carcinogenesis by carotenoids as oxygen radical quenchers. Ann. NY Acad. Sci. 1988, 534, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Andersson, E.; Rosdahl, I.; Torma, H.; Vahlquist, A. Ultraviolet irradiation depletes cellular retinol and alters the metabolism of retinoic acid in cultured human keratinocytes and melanocytes. Melanoma Res. 1999, 9, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Le Marchand, L.; Saltzman, B.S.; Hankin, J.H.; Wilkens, L.R.; Franke, A.A.; Morris, S.J.; Kolonel, L.N. Sun exposure, diet, and melanoma in Hawaii Caucasians. Am. J. Epidemiol. 2006, 164, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Millen, A.E.; Tucker, M.A.; Hartge, P.; Halpern, A.; Elder, D.E.; Guerry, D.; Holly, E.A.; Sagebiel, R.W.; Potischman, N. Diet and melanoma in a case-control study. Cancer Epidemiol. Biomark. 2004, 13, 1042–1051. [Google Scholar]
- Naldi, L.; Gallus, S.; Tavani, A.; Imberti, G.L.; la Vecchia, C. Risk of melanoma and vitamin A, coffee and alcohol: A case-control study from Italy. Eur. J. Cancer Prev. 2004, 13, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Pellacani, G.; Malagoli, C.; Bassissi, S.; Sieri, S.; Bonvicini, F.; Krogh, V.; Seidenari, S. A population-based case-control study of diet and melanoma risk in northern Italy. Public Health Nutr. 2005, 8, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Druesne-Pecollo, N.; Latino-Martel, P.; Norat, T.; Barrandon, E.; Bertrais, S.; Galan, P.; Hercberg, S. Beta-carotene supplementation and cancer risk: A systematic review and meta-analysis of randomized controlled trials. Int. J. Cancer 2010, 127, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Chu, R.X.; Liu, H. Vitamin A intake and risk of melanoma: A meta-analysis. PLoS ONE 2014, 9, e102527. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Boniol, M.; Haukka, J.; Byrnes, G.; Cox, B.; Sneyd, M.J.; Mullie, P.; Autier, P. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int. J. Cancer 2011, 128, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D: A millennium perspective. J. Cell Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef] [PubMed]
- De Luca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004, 80, S1689–S1696. [Google Scholar]
- Carlberg, C.; Seuter, S. The vitamin D receptor. Dermatol. Clin. 2007, 25, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicka, J.; Piotrowska, A.; Żmijewski, M.A. The renaissance of vitamin D. Acta Biochim. Pol. 2014, 61, 679–686. [Google Scholar] [PubMed]
- Kerry, D.M.; Dwivedi, P.P.; Hahn, C.N.; Morris, H.A.; Omdahl, J.L.; May, B.K. Transcriptional synergism between vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase (CYP24) promoter. J. Biol. Chem. 1996, 271, 29715–29721. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Tavera-Mendoza, L.E.; Laperriere, D.; Libby, E.; MacLeod, N.B.; Nagai, Y.; Bourdeau, V.; Konstorum, A.; Lallemant, B.; Zhang, R. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol. Endocrinol. 2005, 19, 2685–2695. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.M.; Binderup, L.; Hamberg, K.J.; Carlberg, C. Vitamin D and cancer: Effects of 1,25(OH)2D3 and its analogs on growth control and tumorigenesis. Front. Biosci. 2001, 6, D820–D848. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J. Will analogs of 1,25-dihydroxyvitamin D3 (calcitriol) open a new era in cancer therapy? Onkologie 2001, 24, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The photobiology of vitamin D and its consequences for humans. Ann. N. Y. Acad. Sci. 1985, 453, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The cutaneous photosynthesis of previtamin D3: A unique photoendocrine system. J. Investig. Dermatol. 1981, 77, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holick, M.F. Sunlight and vitamin D: A global perspective for health. Dermatoendocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [PubMed]
- Mason, R.S.; Reichrath, J. Sunlight vitamin D and skin cancer. Anticancer Agents Med. Chem. 2013, 13, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Berwick, M.; Erdei, E.O. Vitamin D and melanoma incidence and mortality. Pigment Cell Melanoma Res. 2013, 26, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D. Vitamin D and cancer: Current dilemmas and future research needs. Am. J. Clin. Nutr. 2008, 88, 565S–569S. [Google Scholar] [PubMed]
- Peterlik, M.; Grant, W.B.; Cross, H.S. Calcium, vitamin D and cancer. Anticancer Res. 2009, 29, 3687–3698. [Google Scholar] [PubMed]
- Egan, K.M. Vitamin D and melanoma. Ann. Epidemiol. 2009, 19, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, M.A.; Moses, A.M. Skin cancer meets vitamin D: The way forward for dermatology and public health. J. Am. Acad. Dermatol. 2009, 61, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Godar, D.E.; Landry, R.J.; Lucas, A.D. Increased UVA exposures and decreased cutaneous Vitamin D(3) levels may be responsible for the increasing incidence of melanoma. Med. Hypotheses 2009, 72, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Newton-Bishop, J.A.; Beswick, S.; Randerson-Moor, J.; Chang, Y.M.; Affleck, P.; Elliott, F.; Chan, M.; Leake, S.; Karpavicius, B.; Haynes, S.; et al. Serum 25-hydroxyvitamin D3 levels are associated with breslow thickness at presentation and survival from melanoma. J. Clin. Oncol. 2009, 27, 5439–5444. [Google Scholar] [CrossRef] [PubMed]
- Ogbah, Z.; Visa, L.; Badenas, C.; Ríos, J.; Puig-Butille, J.A.; Bonifaci, N.; Guino, E.; Auge, J.M.; Kolm, I.; Carrera, C.; et al. Serum 25-hydroxyvitamin D3 levels and vitamin D receptor variants in melanoma patients from the Mediterranean area of Barcelona: 25-hydroxyvitamin D3 levels and VDR variants in melanoma patients from Barcelona. BMC Med. Genet. 2013, 14, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, J.E.; Hutchinson, P.E. Vitamin D and systemic cancer: Is this relevant to malignant melanoma? J. Dermatol. 2002, 147, 197–213. [Google Scholar] [CrossRef]
- Gandini, S.; Raimondi, S.; Gnagnarella, P.; Dore, J.F.; Maisonneuve, P.; Testori, A. Vitamin D and skin cancer: A meta-analysis. Eur. J. Cancer 2009, 45, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.E.; Osborne, J.E.; Pringle, J.H. Higher serum 25-hydroxy vitamin D3 levels at presentation are associated with improved survival from melanoma, but there is no evidence that later prevailing levels are protective. J. Clin. Oncol. 2010, 28, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Nurnberg, B.; Graber, S.; Gartner, B.; Geisel, J.; Pfohler, C.; Schadendorf, D.; Tilgen, W.; Reichrath, J. Reduced serum 25-hydroxyvitamin D levels in stage IV melanoma patients. Anticancer Res. 2009, 29, 3669–3674. [Google Scholar] [PubMed]
- Saw, R.P.; Armstrong, B.K.; Mason, R.S.; Morton, R.L.; Shannon, K.F.; Spillane, A.J.; Stretch, J.R.; Thompson, J.F. Adjuvant therapy with high dose vitamin D following primary treatment of melanoma at high risk of recurrence: A placebo controlled randomised phase II trial (ANZMTG 02.09 Mel-D). BMC Cancer 2014, 14, 780. [Google Scholar] [CrossRef] [PubMed]
- Major, J.M.; Kiruthu, C.; Weinstein, S.J.; Horst, R.L.; Snyder, K.; Virtamo, J.; Albanes, D. Pre-diagnostic circulating vitamin D and risk of melanoma in men. PLoS ONE 2009, 7, e35112. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Filho, R.S.; Oliveira, D.A.; Martinho, V.A.; Antoneli, C.B.; Marcussi, L.A.; Ferreira, C.E. Serum level of vitamin D3 in cutaneous melanoma. Einstein 2014, 12, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Seifert, M.; Rech, M.; Meineke, V.; Tilgen, W.; Reichrath, J. Differential biological effects of 1,25-dihydroxy Vitamin D3 on melanoma cell lines in vitro. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Sertznig, P.; Seifert, M.; Tilgen, W.; Reichrath, J. Activation of vitamin D receptor (VDR)—and peroxisome proliferator-activated receptor (PPAR)-signaling pathways through 1,25(OH) (2)D(3) in melanoma cell lines and other skin-derived cell lines. Dermatoendocrinol 2009, 1, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Zeljic, K.; Kandolf-Sekulovic, L.; Supic, G.; Pejovic, J.; Novakovic, M.; Mijuskovic, Z.; Magic, Z. Melanoma risk is associated with vitamin D receptor gene polymorphisms. Melanoma Res. 2014, 24, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Z.; Yang, B.H.; Yu, G.H.; Liu, S.Z.; Yuan, Z.Y. Polymorphisms in the vitamin D receptor (VDR) genes and skin cancer risk in European population: A meta-analysis. Arch. Dermatol. Res. 2014, 306, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Asgari, M.M.; Maruti, S.S.; Kushi, L.H.; White, E. A cohort study of vitamin D intake and melanoma risk. J. Investig. Dermatol. 2009, 129, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.Y.; Fu, T.; Leblanc, E.; Manson, J.E.; Feldman, D.; Linos, E.; Vitolins, M.Z.; Zeitouni, N.C.; Larson, J.; Stefanick, M.L. Calcium plus vitamin D supplementation and the risk of nonmelanoma and melanoma skin cancer: Post hoc analyses of the women’s health initiative randomized controlled trial. J. Clin. Oncol. 2011, 29, 3078–3084. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Malagoli, C.; Fiorentini, C.; Longo, C.; Crespi, C.M.; Albertini, G.; Ricci, C.; Lanzoni, A.; Reggiani, M.; Virgili, A.; et al. Inverse association between dietary vitamin D and risk of cutaneous melanoma in a northern Italy population. Nutr. Cancer 2011, 63, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohe, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar] [PubMed]
- Meyskens, F.J. Micronutrients. In Cancer: Principles and Practice of Oncology, 5th ed.; DeVita, V.T., Jr., Hellman, S., Rosenberg, S.A., Eds.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1997; pp. 573–578. [Google Scholar]
- Funasaka, Y.; Komoto, M.; Ichihashi, M. Depigmenting effect of alpha-tocopheryl ferulate on normal human melanocytes. Pigment Cell Res. 2000, 8, 170–174. [Google Scholar] [CrossRef]
- Kamei, Y.; Otsuka, Y.; Abe, K. Comparison of the inhibitory effects of vitamin E analogues on melanogenesis in mouse B16 melanoma cells. Cytotechnology 2009, 59, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.; Yu, W.; Sanders, B.G. Vitamin E: Mechanisms of Action as Tumor Cell Growth Inhibitors. In Cancer and Nutrition; Prasad, K.N., Cole, W.C., Eds.; IOS Press: Washington, DC, USA, 1998; pp. 37–53. [Google Scholar]
- Pussinen, P.J.; Lindner, H.; Glatter, O.; Reicher, H.; Kostner, G.M.; Wintersperger, A.; Malle, E.; Sattler, W. Lipoprotein-associated alpha-tocoph-eryl-succinate inhibits cell growth and induces apoptosis in human MCF-7 and HBL-100 breast cancer cells. Biochim. Biophys. Acta 2000, 1485, 129–144. [Google Scholar] [CrossRef]
- Yu, W.; Israel, K.; Liao, Q.Y.; Aldaz, C.M.; Sanders, B.G.; Kline, K. Vitamin E succinate (VES) induces Fas sensitivity in human breast cancer cells: Role for Mr 43,000 Fas in VES-triggered apoptosis. Cancer Res. 1999, 59, 953–961. [Google Scholar] [PubMed]
- Tesarik, J.; Garrigosa, L.; Mendoza, C. Estradiol modulates breast cancer cell apoptosis: A novel nongenomic steroid action relevant to carcinogenesis. Steroids 1999, 64, 22–27. [Google Scholar] [CrossRef]
- Kline, K. Evidence for role of transforming growth factor-beta in RRR-alpha-tocopheryl succinate-induced apoptosis of human MDA-MB-435 breast cancer cells. Nutr. Cancer 1997, 27, 267–278. [Google Scholar]
- Zhao, B.; Yu, W.; Qian, M.; Simmons-Menchaca, M.; Brown, P.; Birrer, M.J.; Sanders, B.G.; Kline, K. Involvement of activator protein-1 (AP-1) in induction of apoptosis by vitamin E succinate in human breast cancer cells. Mol. Carcinog. 1997, 19, 180–190. [Google Scholar] [CrossRef]
- Gunawardena, K.; Murray, D.K.; Meikle, A.W. Vitamin E and other antioxidants inhibit human prostate cancer cells through apoptosis. Prostate 2000, 44, 287–295. [Google Scholar] [CrossRef]
- Israel, K.; Yu, W.; Sanders, B.G.; Kline, K. Vitamin E succinate induces apoptosis in human prostate cancer cells: Role for Fas in vitamin E succinate-triggered apoptosis. Nutr. Cancer 2000, 36, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Madesh, M.; Benard, O.; Balasubramanian, K.A. Apoptotic process in the monkey small intestinal epithelium: Possible role of oxidative stress. Free Radic. Biol. Med. 1999, 26, 431–438. [Google Scholar] [CrossRef]
- Andres, D.; Alvarez, A.M.; Diez-Fernandez, C.; Zaragoza, A.; Cascales, M. HSP70 induction by cyclosporine A in cultured rat hepatocytes: Effect of vitamin E succinate. J. Hepatol. 2000, 33, 570–579. [Google Scholar] [CrossRef]
- Elattar, T.M.; Virji, A.S. Biphasic action of vitamin E on the growth of human oral squamous carcinoma cells. Anticancer Res. 1999, 19, 365–368. [Google Scholar] [PubMed]
- Roberg, K.; Ollinger, K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am. J. Pathol. 1998, 152, 1151–1156. [Google Scholar] [PubMed]
- Neuzil, J.; Svensson, I.; Weber, T.; Weber, C.; Brunk, U.T. Alpha-tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilisation. FEBS Lett. 1999, 445, 295–300. [Google Scholar] [CrossRef]
- Yu, W.; Sanders, B.G.; Kline, K. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest. Nutr. Cancer 1997, 27, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Kralova, J.; Yu, W.; Bose, H.R.; Dvorak, M.; Sanders, B.G.; Kline, K. c-Jun involvement in vitamin E succinate induced apoptosis of reticuloendotheliosis virus transformed avian lymphoid cells. Oncogene 1997, 15, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Malafa, M.P.; Neitzel, L.T. Vitamin E succinate promotes breast cancer dormancy. J. Surg. Res. 2000, 93, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ottino, P.; Duncan, J.R. Effect of vitamin E and indomethacin treatment on adenylate cyclase activity, PGE2 and cAMP levels in murine melanoma cells. Prostaglandins Leukot. Essent. Fat. Acids 1997, 56, 143–149. [Google Scholar] [CrossRef]
- Ottino, P.; Duncan, J.R. Effect of alpha-tocopherol succinate on free radical and lipid peroxidation levels in BL6 melanoma cells. Free Radic. Biol. Med. 1997, 22, 1145–1151. [Google Scholar] [CrossRef]
- Ottino, P.; Duncan, J.R. The role of adenylate cyclase, cAMP and PGE2 in the in vitro growth regulation of murine melanoma cells by vitamin E. Prostaglandins Leukot. Essent. Fat. Acids 1996, 54, 375–383. [Google Scholar] [CrossRef]
- Prasad, K.N.; Hernandez, C.; Edwards-Prasad, J.; Nelson, J.; Borus, T.; Robinson, W.A. Modification of the effect of tamoxifen, cisplatin, DTIC, and interferon-alpha 2b on human melanoma cells in culture by a mixture of vitamins. Nutr. Cancer 1994, 22, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Shklar, G. The selective cytotoxic effect of carotenoids and alpha-tocopherol on human cancer cell lines in vitro. J. Oral. Maxillofac. Surg. 1992, 50, 367–374. [Google Scholar] [CrossRef]
- Prasad, K.N.; Cohrs, R.J.; Sharma, O.K. Decreased expressions of c-myc and H-ras oncogenes in vitamin E succinate induced morphologically differentiated murine B-16 melanoma cells in culture. Biochem. Cell Biol. 1990, 68, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Malafa, M.P.; Fokum, F.D.; Mowlavi, A.; Abusief, M.; King, M. Vitamin E inhibits melanoma growth in mice. Surgery 2002, 131, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lamson, D.W.; Plaza, S.M. The anticancer effects of vitamin K. Altern. Med. Rev. 2003, 8, 303–318. [Google Scholar] [PubMed]
- Mitchell, J.S.; Simon-Reuss, I. Combination of some effects of x-radiation and a synthetic vitamin K substitute. Nature 1947, 160, 98–99. [Google Scholar] [CrossRef]
- Prasad, K.N.; Edwards-Prasad, J.; Sakamoto, A. Vitamin K3 (menadione) inhibits the growth of mammalian tumor cells in culture. Life Sci. 1981, 29, 1387–1392. [Google Scholar] [CrossRef]
- Chlebowski, R.T.; Akman, S.A.; Block, J.B. Vitamin K in the treatment of cancer. Cancer Treat. Rev. 1985, 12, 49–63. [Google Scholar] [CrossRef]
- Noto, V.; Taper, H.S.; Jiang, Y.H.; Janssens, J.; Bonte, J.; de Loecker, W. Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. I. Synergism of combined vitamin C and K3 action. Cancer 1989, 63, 901–906. [Google Scholar] [CrossRef]
- Ngo, E.O.; Sun, T.P.; Chang, J.Y.; Wang, C.C.; Chi, K.H.; Cheng, A.L.; Nutter, L.M. Menadioneinduced DNA damage in a human tumor cell line. Biochem. Pharmacol. 1991, 42, 1961–1968. [Google Scholar] [CrossRef]
- Wu, F.Y.; Chang, N.T.; Chen, W.J.; Juan, C.C. Vitamin K3-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cells. Oncogene 1993, 8, 2237–2244. [Google Scholar] [PubMed]
- Su, W.C.; Sun, T.P.; Wu, F.Y. The in vitro and in vivo cytotoxicity of menadione (vitamin K3) against rat transplantable hepatoma induced by 3′-methyl-4-dimethyl- aminoazobenzene. Gaoxiong Yi Xue Ke Xue Za Zhi 1991, 7, 454–459. [Google Scholar] [PubMed]
- Gold, J. In vivo synergy of vitamin K3 and methotrexate in tumor-bearing animals. Cancer Treat. Rep. 1986, 70, 1433–1435. [Google Scholar] [PubMed]
- Wang, Z.; Wang, M.; Finn, F.; Carr, B.I. The growth inhibitory effects of vitamins K and their actions on gene expression. Hepatology 1995, 22, 876–882. [Google Scholar] [PubMed]
- Nutter, L.M.; Cheng, A.L.; Hung, H.L.; Hsieh, R.K.; Ngo, E.O.; Liu, T.W. Menadione: Spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem. Pharmacol. 1991, 41, 1283–1292. [Google Scholar] [CrossRef]
- Waxman, S.; Bruckner, H. The enhancement of 5-fluorouracil anti-metabolic activity by leucovorin, menadione and alpha-tocopherol. Eur. J. Cancer Clin. Oncol. 1982, 18, 685–692. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liao, W.C.; Chang, H.M. Comparison of antitumor activity of vitamins K1, K2 and K3 on human tumor cells by two (MTT and SRB) cell viability assays. Life Sci. 1993, 52, 1797–1804. [Google Scholar] [CrossRef]
- Ishibashi, M.; Arai, M.; Tanaka, S.; Onda, K.; Hirano, T. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro. Biol. Pharm. Bull. 2012, 35, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Stebbins, J.L.; Dewing, A.; Qi, J.; Pellecchia, M.; Ronai, Z.A. Inhibition of Siah2 ubiquitin ligase by vitamin K3 (menadione) attenuates hypoxia and MAPK signaling and blocks melanoma tumorigenesis. Pigment Cell Melanoma Res. 2009, 22, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, B.; Powell, M.B. Hypoxia, melanocytes and melanoma—Survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res. 2009, 22, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Meier, F.; Schittek, B.; Busch, S.; Garbe, C.; Smalley, K.; Satyamoorthy, K.; Li, G.; Herlyn, M. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front. Biosci. 2005, 10, 2986–3001. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bergami, P.; Fitchman, B.; Ronai, Z. Understanding signaling cascades in melanoma. Photochem. Photobiol. 2008, 84, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Qi, J.; Ronai, Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol. Cancer Res. 2009, 7, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Espey, M.G.; Krishna, M.C.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA 2005, 102, 13604–13609. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levine, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105–11109. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Martin, S.M.; Levine, M.; Wagner, B.A.; Buettner, G.R.; Wang, S.H.; Taghiyev, A.F.; Du, C.; Knudson, C.M.; Cullen, J.J. Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer. Clin. Cancer Res. 2010, 16, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levine, M. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 8749–8754. [Google Scholar] [CrossRef] [PubMed]
- Bram, S.; Froussard, P.; Guichard, M.; Jasmin, C.; Augery, Y.; Sinoussi-Barre, F.; Wray, W. Vitamin C preferential toxicity for malignant melanoma cells. Nature 1980, 284, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Meadows, G.G.; Pierson, H.F.; Abdallah, R.M. Ascorbate in the treatment of experimental transplanted melanoma. Am. J. Clin. Nutr. 1991, 54, 1284S–1291S. [Google Scholar] [PubMed]
- Cha, J.; Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int. J. Oncol. 2013, 42, 55–64. [Google Scholar] [PubMed]
- Schleich, T.; Rodemeister, S.; Venturelli, S.; Sinnberg, T.; Garbe, C.; Busch, C. Decreased plasma ascorbate levels in stage IV melanoma patients. Metab. Nutr. Oncol. 2013, 1, e2–e6. [Google Scholar] [CrossRef]
- Venturelli, S.; Sonnberg, T.W.; Berger, A.; Noor, S.; Levesque, M.P.; Böcker, A.; Niessner, H.; Lauer, U.M.; Bitzer, M.; Garbe, C.; et al. Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front. Oncol. 2014, 4, 227. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, I.; Caroppo, F.; Alaibac, M. Vitamins and Melanoma. Cancers 2015, 7, 1371-1387. https://doi.org/10.3390/cancers7030841
Russo I, Caroppo F, Alaibac M. Vitamins and Melanoma. Cancers. 2015; 7(3):1371-1387. https://doi.org/10.3390/cancers7030841
Chicago/Turabian StyleRusso, Irene, Francesca Caroppo, and Mauro Alaibac. 2015. "Vitamins and Melanoma" Cancers 7, no. 3: 1371-1387. https://doi.org/10.3390/cancers7030841
APA StyleRusso, I., Caroppo, F., & Alaibac, M. (2015). Vitamins and Melanoma. Cancers, 7(3), 1371-1387. https://doi.org/10.3390/cancers7030841