Study of the Hydrogen Evolution Reaction Using Ionic Liquid/Cobalt Porphyrin Systems as Electro and Photoelectrocatalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallographic Characterization
2.2. Morphological Characterization
2.3. UV-Vis Spectroscopy
2.4. Electrochemical and Electric Characterization
2.5. Chromatographic Quantification
3. Materials and Methods
3.1. Reagents and Solutions
3.2. Synthesis of the Ionic Liquid
3.3. Electrode Preparation
3.4. Instrumentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanley, E.S.; Deane, J.P.; Gallachóir, B. The role of hydrogen in low carbon energy futures—A review of existing perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [Google Scholar] [CrossRef]
- Rong, J.; Xu, J.; Qiu, F.; Zhu, Y.; Fang, Y.; Xu, J.; Zhang, T. Sea Urchin-Like MOF-Derived Formation of Porous Cu3P@C as an Efficient and Stable Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions. Adv. Mater. Interfaces 2019, 6, 1900502. [Google Scholar] [CrossRef]
- Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A.K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 2011, 36, 638–670. [Google Scholar] [CrossRef]
- Thornton, D.C.; Corby, K.T.; Spendel, V.A.; Jordan, J.; Robbat, A.; Rutstrom, D.J.; Gross, M.; Ritzler, G. Pretreatment and validation procedure for glassy carbon voltammetric indicator electrodes. Anal. Chem. 1985, 57, 150–155. [Google Scholar] [CrossRef]
- Munoz, J.; Baeza, M. Customized bio-functionalization of nanocomposite carbon paste electrodes for electrochemical sensing: A mini review. Electroanalysis 2017, 29, 1660–1669. [Google Scholar] [CrossRef]
- Kalcher, K. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 1990, 2, 419–433. [Google Scholar] [CrossRef]
- Shvedene, N.V.; Chernyshov, D.V.; Pletnev, I.V. Ionic liquids in electrochemical sensors. Russ. J. Gen. Chem. 2008, 78, 2507–2520. [Google Scholar] [CrossRef]
- Abo-Hamad, A.; AlSaadi, M.A.; Hayyan, M.; Juneidi, I.; Hashim, M.A. Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: A Review. Electrochim. Acta 2016, 193, 321–343. [Google Scholar] [CrossRef]
- Momeni, S.; Farrokhnia, M.; Karimi, S.; Nabipour, I. Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: A theoretical and experimental study. J. Iran. Chem. Soc. 2016, 13, 1027–1035. [Google Scholar] [CrossRef]
- Momeni, S.; Nabipour, S.I. A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl. Biochem. Biotechnol. 2015, 176, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Eslami, E.; Farjami, F. Electrochemical determination of amitriptyline using a nanocomposite carbon paste electrode in human body fluids. Phys. Chem. Electrochem. 2016, 4, 111–117. [Google Scholar]
- Hoard, J.L.; Smith, K.M. Porphyrins and Metalloporphyrin; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Bodedla, G.B.; Li, L.; Che, Y.; Jiang, Y.; Huang, J.; Zhao, J.; Zhu, X. Enhancing photocatalytic hydrogen evolution by intramolecular energy transfer in naphthalimide conjugated porphyrins. Chem. Commun. 2018, 54, 11614–11617. [Google Scholar] [CrossRef]
- Canales, C.; Varas-Concha, F.; Mallouk, T.E.; Ramírez, G. Enhanced electrocatalytic hydrogen evolution reaction: Supramolecular assemblies of metalloporphyrins on glassy carbon electrodes. Appl. Catal. B: Environ. 2016, 188, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Canales, C.; Olea, A.F.; Gidi, L.; Arce, R.; Ramírez, G. Enhanced light-induced hydrogen evolution reaction by supramolecular systems of cobalt (II) and copper(II) octaethylporphyrins on glassy carbon electrodes. Electrochim. Acta 2017, 258, 850–857. [Google Scholar] [CrossRef]
- Ladomenou, K.; Natali, M.; Iengo, E.; Charalampidis, G.; Scandola, F.; Coutsolelos, A.G. Photochemical hydrogen generation with porphyrin-based systems. Coord. Chem. Rev. 2015, 304, 38–54. [Google Scholar] [CrossRef]
- Natali, M.; Luisa, A.; Iengo, E.; Scandola, F. Efficient photocatalytic hydrogen generation from water by a cationic cobalt (II) porphyrin. Chem. Commun. 2014, 50, 1842–1844. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, G.; Ferraudi, G.; Chen, Y.Y.; Trollund, E.; Villagra, D. Enhanced photoelectrochemical catalysis of CO2 reduction mediated by a supramolecular electrode of packed CoII (tetrabenzoporphyrin). Inorg. Acta 2009, 362, 5–10. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: New York, NY, USA, 1989; Volume 332. [Google Scholar]
- Hauk, V.M.; Macherauch, E. A Useful Guide for X-ray Stress Evaluation (XSE). Adv. X-ray Anal. 1984, 27, 81–99. [Google Scholar]
- Canales, C.; Gidi, L.; Arce, R.; Armijo, F.; Aguirre, M.J.; Ramírez, G. Electro-Reduction of Molecular Oxygen Mediated by a Cobalt (II)octaethylporphyrin System onto Oxidized Glassy Carbon/Oxidized Graphene Substrat. Catalysts 2018, 8, 629. [Google Scholar] [CrossRef] [Green Version]
- Josefsen, L.B.; Ross, W.B. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 2008, 276109. [Google Scholar] [CrossRef] [Green Version]
- Lasia, A.; Rami, A. Kinetics of hydrogen evolution on nickel electrodes. Electroanal. Chem. 1990, 294, 123–141. [Google Scholar] [CrossRef]
- Frumkin, A.N. Hydrogen overvoltage and adsorption phenomena. In Advances in Electrochemistry and Electrochemical Engineering; Delahay, P., Tobias, C.W., Eds.; Interscience Publishers Inc: New York, NY, USA, 1963; Volume 3, pp. 65–122. [Google Scholar]
- Bernhardt, P.V.; Jones, L.A. Electrochemistry of Macrocyclic Cobalt (III/II) Hexaamines: Electrocatalytic Hydrogen Evolution in Aqueous Solution. Inorg. Chem. 1999, 38, 5086–5090. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.R.; Song, C.; Wang, H.; Zhang, J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gidi, L.; Honores, J.; Ibarra, J.; Arce, R.; Aguirre, M.J.; Ramírez, G. Improved photoelectrocatalytic effect of Co (ii) and Fe (iii) mixed porphyrins on graphite paste electrodes towards hydrogen evolution reaction. New J. Chem. 2019, 43, 12727–12733. [Google Scholar] [CrossRef]
- Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D.C.B.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Văduva, C.C.; Vaszilcsin, N.; Kellenberger, A.; Medeleanu, M. Catalytic enhancement of hydrogen evolution reaction on copper in the presence of benzylamine. Int. J. Hydrog. Energy 2011, 36, 6994–7001. [Google Scholar] [CrossRef]
- Ramírez, G.; Lucero, M.; Riquelme, A.; Villagrán, M.; Costamagna, J.; Trollund, E.; Aguirre, M.J. A supramolecular cobalt–porphyrin-modified electrode, toward the electroreduction of CO2. J. Coord. Chem. 2004, 57, 249–255. [Google Scholar] [CrossRef]
- Pentland, N.; Bockris, J.M.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 1957, 104, 182–194. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Muthukumar, P.; Moon, D.; Anthony, S.P. Copper coordination polymer electrocatalyst for strong hydrogen evolution reaction activity in neutral medium: Influence of coordination environment and network structure. Catal. Sci. Technol. 2019, 9, 4347–4354. [Google Scholar] [CrossRef]
- Beyene, B.B.; Mane, S.B.; Hung, C.-H. Electrochemical Hydrogen Evolution by Cobalt (II) Porphyrins: Effects of Ligand Modification on Catalytic Activity, Efficiency and Overpotentia. J. Electrochem. Soc. 2018, 165, H481–H487. [Google Scholar] [CrossRef]
- Khnayzer, R.S.; Thoi, V.S.; Nippe, M.; King, A.E.; Jurss, J.W.; el Roz, K.A.; Long, J.R.; Chang, C.J.; Castellano, F.N. towards a Comprehensive Understanding of Visible-Light Photogeneration of Hydrogen from Water Using Cobalt (II) Polypyridyl Catalysts. Energy Environ. Sci. 2014, 7, 1477–1488. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.-Z.; Zhou, L.L.; Tang, L.Z.; Zhang, Y.X.; Zhan, S.Z. Electrochemical and photochemical-driven hydrogen evolution catalyzed by a dinuclear cobalt (II)–triazenido complex with high turnover number. Int. J. Hydrog. Energy 2015, 40, 5099–5105. [Google Scholar]
- Domańska, U.; Skiba, K.; Zawadzki, M.; Paduszyński, K.; Królikowski, M. Synthesis, physical, and thermodynamic properties of 1-alkyl-cyanopyridinium bis {(trifluoromethyl) sulfonyl} imide ionic liquids. J. Chem. Thermodyn. 2013, 56, 153–161. [Google Scholar] [CrossRef]
Element | Weight Percentage (%) |
---|---|
C | 69.65 |
O | 0.77 |
F | 21.56 |
P | 7.19 |
Co | 0.84 |
System | EO/V | Rct/Ω |
---|---|---|
Gr | −1.46 | 3950 |
Gr/Co | −1.34 | 1010 |
Gr/IL | −0.99 | 1510 |
Gr/IL/Co | −0.91 | 960 |
Gr/IL/Co 395 nm | −0.89 | 545 |
System | CH/μmol | CH/μmol h−1 cm−2 | N/mol | TON |
---|---|---|---|---|
Gr/IL/Co | 56.5 | 15.4 | 9.01 × 10−9 | 6342 |
Gr/IL/Co 395 nm | 57.3 | 15.7 | 8.40 × 10−9 | 6827 |
System | pH | EO/V Ag/AgCl | EO/V RHE | TON | Ref. |
---|---|---|---|---|---|
Commercial Pt/C | 7 | ≈−0.66 * | ≈−0.05 | - | [33] |
[Co(TPP)](COOH)4] | ≈7 | −0.92 | −0.31 * | 51.8 | [34] |
[Co(TPP)](SO43H)4] | ≈7 | −0.75 | −0.14 * | 104.1 | [34] |
[Co(TPP)](NH2)4] | ≈7 | −1.01 | −0.40 * | 46 | [34] |
[Co(bpyPY2Me)(CH3CN)(CF3SO3)](CF3SO3)] | ≈4 | −1.11 | −0.50 * | 4200 | [35] |
dinuclear cobalt(II)etriazenido complex | 4.6 | ≈−1.1 | ≈−0.5 * | 4367 | [36] |
dinuclear cobalt(II)etriazenido complex | 7 | ≈−1.3 | ≈−0.7 * | 4367 | [36] |
GC + 4AP + Co(II)OEP | ≈7 | −1.17 | −0.56 * | 6000 | [13] |
Gr/IL/Co | 7 | −0.91 | −0.30 * | 6342 | This work |
Gr/IL/Co 395 nm | 7 | −0.89 | −0.28 * | 6827 | This work |
System | q/C | f(%) |
---|---|---|
Gr/IL/Co | 19.1 | 57 |
Gr/IL/Co 395 nm | 21.7 | 51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidi, L.; Honores, J.; Ibarra, J.; Arce, R.; Aguirre, M.J.; Ramírez, G. Study of the Hydrogen Evolution Reaction Using Ionic Liquid/Cobalt Porphyrin Systems as Electro and Photoelectrocatalysts. Catalysts 2020, 10, 239. https://doi.org/10.3390/catal10020239
Gidi L, Honores J, Ibarra J, Arce R, Aguirre MJ, Ramírez G. Study of the Hydrogen Evolution Reaction Using Ionic Liquid/Cobalt Porphyrin Systems as Electro and Photoelectrocatalysts. Catalysts. 2020; 10(2):239. https://doi.org/10.3390/catal10020239
Chicago/Turabian StyleGidi, Leyla, Jessica Honores, José Ibarra, Roxana Arce, M. J Aguirre, and Galo Ramírez. 2020. "Study of the Hydrogen Evolution Reaction Using Ionic Liquid/Cobalt Porphyrin Systems as Electro and Photoelectrocatalysts" Catalysts 10, no. 2: 239. https://doi.org/10.3390/catal10020239
APA StyleGidi, L., Honores, J., Ibarra, J., Arce, R., Aguirre, M. J., & Ramírez, G. (2020). Study of the Hydrogen Evolution Reaction Using Ionic Liquid/Cobalt Porphyrin Systems as Electro and Photoelectrocatalysts. Catalysts, 10(2), 239. https://doi.org/10.3390/catal10020239