Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. Catalytic Activity of Degreened and Aged Samples
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalytic Activity Tests and Aging
3.2.1. Degreening and Pre-Treatment
- 2% H2 at 500 °C (30 min)
- Wet reaction mixture at 600 °C (60 min)
- 2% H2 and 5% H2O at 600 °C (20 min)
- Wet reaction mixture at 600 °C (60 min)
- 2% H2 at 600 °C (30 min)
- 8% O2 at 600 °C (30 min)
- Cooling in 8% O2 to 250 °C
3.2.2. Catalytic Activity Tests
- Heating in 8% O2 to 450 °C
- Wet reaction mixture at 450 °C (3 h)
- Wet reaction mixture + 500 ppm NO at 450 °C (1 h)
- Wet reaction mixture at 450 °C (1 h)
- Wet reaction mixture but with 10% H2O at 450 °C (1 h)
- Wet reaction mixture at 450 °C (1 h)
- Wet reaction mixture but with 3% H2O at 450 °C (1 h)
- Wet reaction mixture at 450 °C (1 h)
- Cooling to 150 °C in wet reaction mixture
- Heating to 700 °C in wet reaction mixture (5 °C/min)
3.2.3. Hydrothermal Aging
- Degreening
- Pre-treatment 600 °C
- Activity test
- Aging 700 °C
- Pre-treatment 700 °C
- Activity test
- Aging 800 °C
- Pre-treatment 700 °C
- Activity test
- Aging 900 °C
- Pre-treatment 700 °C
- Activity test
3.2.4. Degreening and Hydrothermal Aging of Catalyst Powder for Characterization
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gelin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B Environ. 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Gholami, R.; Alyani, M.; Smith, K.J. Deactivation of Pd catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters. Catalysts 2015, 5, 561–594. [Google Scholar] [CrossRef] [Green Version]
- Burch, R.; Urbano, F.J.; Loader, P.K. Methane combustion over palladium catalysts: The effect of carbon dioxide and water on activity. Appl. Catal. A Gen. 1995, 123, 173–184. [Google Scholar] [CrossRef]
- Schwartz, W.R.; Ciuparu, D.; Pfefferle, L.D. Combustion of methane over palladium-based catalysts: Catalytic deactivation and role of the support. J. Phys. Chem. C 2012, 116, 8587–8593. [Google Scholar] [CrossRef]
- Schwartz, W.R.; Pfefferle, L.D. Combustion of methane over palladium-based catalysts: Support interactions. J. Phys. Chem. C 2012, 116, 8571–8578. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Friberg, I.; Sadokhina, N.; Olsson, L. The effect of Si/Al ratio of zeolite supported Pd for complete CH4 oxidation in the presence of water vapor and SO2. Appl. Catal. B Environ. 2019, 250, 117–131. [Google Scholar] [CrossRef]
- Okumura, K.; Shinohara, E.; Niwa, M. Pd loaded on high silica beta support active for the total oxidation of diluted methane in the presence of water vapor. Catal. Today 2006, 117, 577–583. [Google Scholar] [CrossRef]
- Petrov, A.W.; Ferri, D.; Krocher, O.; Van Bokhoven, J.A. Design of Stable Palladium-Based Zeolite Catalysts for Complete Methane Oxidation by Postsynthesis Zeolite Modification. ASC Catal. 2019, 9, 2303–2312. [Google Scholar] [CrossRef]
- Petrov, A.W.; Ferri, D.; Krumeich, F.; Nachtegaal, M.; Van Bokhoven, J.A.; Kröcher, O. Stable complete methane oxidation over palladium based zeolite catalysts. Nat. Commun. 2018, 9, 2545. [Google Scholar] [CrossRef]
- Petrov, A.; Ferri, D.; Tarik, M.; Krocher, O.; Bokhoven, J. Deactivation Aspects of Methane Oxidation Catalysts Based on Palladium and ZSM-5. Top. Catal. 2017, 60, 123–130. [Google Scholar] [CrossRef]
- Liu, S.-b.; Wu, J.-F.; Ma, L.-J.; Tsai, T.-C.; Wang, I. On the thermal stability of zeolite beta. J. Catal. 1991, 132, 432–439. [Google Scholar] [CrossRef]
- Ding, L.; Zheng, Y.; Hong, Y.; Ring, Z. Effect of particle size on the hydrothermal stability of zeolite beta. Microporous Mesoporous Mat. 2007, 101, 432–439. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tran, D.; Burton, S.D.; Szanyi, J.; Lee, J.H.; Peden, C.H.F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites. J. Catal. 2012, 287, 203–209. [Google Scholar] [CrossRef]
- Blakeman, P.G.; Burkholder, E.M.; Chen, H.-Y.; Collier, J.E.; Fedeyko, J.M.; Jobson, H.; Rajaram, R.R. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catal. Today 2014, 231, 56–63. [Google Scholar] [CrossRef]
- Leistner, K.; Kumar, A.; Kamasamudram, K.; Olsson, L. Mechanistic study of hydrothermally aged Cu/SSZ-13 catalysts for ammonia-SCR. Catal. Today 2018, 307, 55–64. [Google Scholar] [CrossRef]
- Wang, A.Y.; Arora, P.; Bernin, D.; Kumar, A.; Kamasamudram, K.; Olsson, L. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction. Appl. Catal. B Environ. 2019, 246, 242–253. [Google Scholar] [CrossRef]
- Ryu, T.; Ahn, N.H.; Seo, S.; Cho, J.; Kim, H.; Jo, D.; Park, G.T.; Kim, P.S.; Kim, C.H.; Bruce, E.L.; et al. Fully Copper-Exchanged High-Silica LTA Zeolites as Unrivaled Hydrothermally Stable NH3-SCR Catalysts. Angew. Chem. Int. Ed. 2017, 56, 3256–3260. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.B.; Jo, D.; Hong, S.B. Palladium-exchanged small-pore zeolites with different cage systems as methane combustion catalysts. Appl. Catal. B Environ. 2017, 219, 155–162. [Google Scholar] [CrossRef]
- Lee, J.; Ryou, Y.; Hwang, S.; Kim, Y.; Cho, S.J.; Lee, H.; Kim, C.H.; Kim, D.H. Comparative study of the mobility of Pd species in SSZ-13 and ZSM-5, and its implication for their activity as passive NOx adsorbers (PNAs) after hydro-thermal aging. Catal. Sci. Technol. 2019, 9, 163–173. [Google Scholar] [CrossRef]
- Ryou, Y.; Lee, J.; Cho, S.J.; Lee, H.; Kim, C.H.; Kim, D.H. Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Appl. Catal. B Environ. 2017, 212, 140–149. [Google Scholar] [CrossRef]
- Hernandez-Garrido, J.C.; Gomez, D.M.; Gaona, D.; Vidal, H.; Gatica, J.M.; Sanz, O.; Rebled, J.M.; Peiro, F.; Calvino, J.J. Combined (S)TEM-FIB Insight into the Influence of the Preparation Method on the Final Surface Structure of a Co3O4/La-Modified-CeO2 Washcoated Monolithic Catalyst. J. Phys. Chem. C 2013, 117, 13028–13036. [Google Scholar] [CrossRef]
- Thevenin, P.O.; Pocoroba, E.; Pettersson, L.J.; Karhu, H.; Vayrynen, I.J.; Jaras, S.G. Characterization and activity of supported palladium combustion catalysts. J. Catal. 2002, 207, 139–149. [Google Scholar] [CrossRef]
- Ogura, M.; Hayashi, M.; Kage, S.; Matsukata, M.; Kikuchi, E. Determination of active palladium species in ZSM-5 zeolite for selective reduction of nitric oxide with methane. Appl. Catal. B Environ. 1999, 23, 247–257. [Google Scholar] [CrossRef]
- Watson, J.M.; Ozkan, U.S. Adsorption characteristics of sol-gel Gd-Pd/TiO2 catalysts in reduction of nitric oxide with CH4: DRIFTS and TPD. J. Catal. 2002, 210, 295–312. [Google Scholar] [CrossRef]
- Chakarova, K.; Ivanova, E.; Hadjiivanov, K.; Klissurski, D.; Knozinger, H. Co-ordination chemistry of palladium cations in Pd-H-ZSM-5 as revealed by FTIR spectra of adsorbed and co-adsorbed probe molecules (CO and NO). Phys. Chem. Chem. Phys. 2004, 6, 3702–3709. [Google Scholar] [CrossRef]
- Chen, H.Y.; Collier, J.E.; Liu, D.X.; Mantarosie, L.; Duran-Martin, D.; Novak, V.; Rajaram, R.R.; Thompsett, D. Low Temperature NO Storage of Zeolite Supported Pd for Low Temperature Diesel Engine Emission Control. Catal. Lett. 2016, 146, 1706–1711. [Google Scholar] [CrossRef]
- Lonyi, F.; Solt, H.E.; Valyon, J.; Decolatti, H.; Gutierrez, L.B.; Miro, E. An operando DRIFTS study of the active sites and the active intermediates of the NO-SCR reaction by methane over In,H- and In,Pd,H-zeolite catalysts. Appl. Catal. B Environ. 2010, 100, 133–142. [Google Scholar] [CrossRef]
- Pommier, B.; Gelin, P. On the nature of Pd species formed upon exchange of H-ZSM5 with Pd(NH3)(4)(2+) and calcination in O-2. Phys. Chem. Chem. Phys. 1999, 1, 1665–1672. [Google Scholar] [CrossRef]
- Loiland, J.A.; Lobo, R.F. Oxidation of zeolite acid sites in NO/O-2 mixtures and the catalytic properties of the new site in NO oxidation. J. Catal. 2015, 325, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Hadjiivanov, K.; Saussey, J.; Freysz, J.L.; Lavalley, J.C. FT-IR study of NO+O-2 co-adsorption on H-ZSM-5: Re-assignment of the 2133 cm(-1) band to NO+ species. Catal. Lett. 1998, 52, 103–108. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wei, Z.H.; Kollar, M.; Gao, F.; Wang, Y.L.; Szanyi, J.; Peden, C.H.F. NO oxidation on zeolite supported Cu catalysts: Formation and reactivity of surface nitrates. Catal. Today 2016, 267, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, M.; Marie, O.; Bazin, P.; Daturi, M. Fe-H-BEA and Fe-H-ZSM-5 for NO2 removal from ambient air—A detailed in situ and operando FTIR study revealing an unexpected positive water-effect. J. Catal. 2010, 271, 1–11. [Google Scholar] [CrossRef]
- Auvray, X.; Olsson, L. Stability and activity of Pd-, Pt- and Pd-Pt catalysts supported on alumina for NO oxidation. Appl. Catal. B Environ. 2015, 168, 342–352. [Google Scholar] [CrossRef]
- Mihai, O.; Trandafilovic, L.; Wentworth, T.; Torres, F.F.; Olsson, L. The Effect of Si/Al Ratio for Pd/BEA and Pd/SSZ-13 Used as Passive NOx Adsorbers. Top. Catal. 2018, 61, 2007–2020. [Google Scholar] [CrossRef] [Green Version]
- Sadokhina, N.; Smedler, G.; Nylén, U.; Olofsson, M.; Olsson, L. The influence of gas composition on Pd-based catalyst activity in methane oxidation—Inhibition and promotion by NO. Appl. Catal. B Environ. 2017, 200, 351–360. [Google Scholar] [CrossRef]
- Sadokhina, N.; Ghasempour, F.; Auvray, X.; Smedler, G.; Nylén, U.; Olofsson, M.; Olsson, L. An Experimental and kinetic modelling study for methane oxidation over Pd-based catalyst: Inhibition by water. Catal. Lett. 2017, 147, 2360–2371. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Kovarik, L.; Engelhard, M.H.; Wang, Y.; Wang, Y.; Gao, F.; Szanyi, J. Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry. J. Phys. Chem. C 2017, 121, 15793–15803. [Google Scholar] [CrossRef]
Pd Content (wt %) | Si/Al Molar Ratio (-) | BET Surface Area (m2/g) | Micropore Volume (t-plot, cm3/g) | Pore Volume (BJH, cm3/g) | ||
---|---|---|---|---|---|---|
PdLTA (Pd/H-LTA) | 2.12 | 44 | Degreened (600 °C) | 500 | 0.18 | 0.35 |
Aged (900 °C) | 464 | 0.17 | 0.32 | |||
PdAl (Pd/γ-Al2O3) | 2.21 | - | Degreened (600 °C) | 170 | 0.00 | 0.50 |
Aged (900 °C) | 123 | 0.00 | 0.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friberg, I.; Wang, A.; Olsson, L. Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation. Catalysts 2020, 10, 517. https://doi.org/10.3390/catal10050517
Friberg I, Wang A, Olsson L. Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation. Catalysts. 2020; 10(5):517. https://doi.org/10.3390/catal10050517
Chicago/Turabian StyleFriberg, Ida, Aiyong Wang, and Louise Olsson. 2020. "Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation" Catalysts 10, no. 5: 517. https://doi.org/10.3390/catal10050517
APA StyleFriberg, I., Wang, A., & Olsson, L. (2020). Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation. Catalysts, 10(5), 517. https://doi.org/10.3390/catal10050517