Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Characterization of Waste Chicken Fat Oil (WCFO)
2.2. Optimization of Biodiesel Production Process
2.3. Graphs of Predicted vs. Actual Values
2.4. Optimization of Reaction Parameters for Manufacturing of Biodiesel Using Chicken Fat Oils
2.5. ANOVA for Transesterification Data of WCFO
2.6. FTIR Spectroscopic Analysis of Feedstock Oil, Biodiesel and Composition of Fatty Acid Methyl Esters
2.7. Fuel Characteristics of WCFO Biodiesel
3. Materials and Methods
3.1. Pre-Treatment of Feedstock
3.2. Experimental Design
3.2.1. Chemical Transesterification
3.2.2. Enzymatic Transesterification
3.3. Quantification and Characterization of Synthesized Biodiesel
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the use of diesel–biodiesel–alcohol blends in compression ignition engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Rehan, M.; Gardy, J.; Demirbas, A.; Rashid, U.; Budzianowski, W.M.; Pant, D.; Nizami, A.S. Waste to biodiesel: A preliminary assessment for Saudi Arabia. Bioresour. Technol. 2018, 250, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 2013, 104, 683–710. [Google Scholar] [CrossRef]
- Jamil, F.; Al-Muhtaseb, A.H.; Al-Haj, L.; Al-Hinai, M.A.; Hellier, P.; Rashid, U. Optimization of oil extraction from waste “Date pits” for biodiesel production. Energ. Conver. Manag. 2016, 117, 264–272. [Google Scholar] [CrossRef]
- Lotero, E.; Goodwin, J.G., Jr.; Bruce, D.A.; Suwannakarn, K.; Liu, Y.; Lopez, D.E. The catalysis of biodiesel synthesis. Catalysis 2006, 19, 41–83. [Google Scholar]
- Gürü, M.; Koca, A.; Can, Ö.; Çınar, C.; Şahin, F. Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine. Renew. Energy 2010, 35, 637–643. [Google Scholar] [CrossRef]
- Chiu, M.C.; Gioielli, L.A. Solid fat content of abdominal chicken fat, its stearins and its binary mixtures with bacon. Food Sci. Technol. 2002, 22, 151–157. [Google Scholar]
- Gugule, S.; Fatimah, F.; Rampoh, Y. The utilization of chicken fat as alternative raw material for biodiesel synthesis. Anim. Prod. 2011, 13, 115–121. [Google Scholar]
- Liu, K.S. Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. J. Am. Oil Chem. Soc. 1994, 71, 1179–1187. [Google Scholar] [CrossRef]
- Coppini, M.; Magro, J.D.; Martello, R.; Valério, A.; Zenevicz, M.C.; Oliveira, D.D.; Oliveira, J.V. Production of methyl esters by enzymatic hydroesterification of chicken fat industrial residue. Braz. J. Chem. Eng. 2019, 36, 923–928. [Google Scholar] [CrossRef] [Green Version]
- Christopher, L.P.; Kumar, H.; Zambare, V.P. Enzymatic biodiesel: Challenges and opportunities. Appl. Energy 2014, 119, 497–520. [Google Scholar] [CrossRef]
- Dumri, K.; Hung Anh, D. Immobilization of lipase on silver nanoparticles via adhesive polydopamine for biodiesel production. Enzym. Res. 2014, 2014, 389739. [Google Scholar] [CrossRef] [Green Version]
- Aryee, A.N.; Simpson, B.K.; Cue, R.I.; Phillip, L.E. Enzymatic transesterification of fats and oils from animal discards to fatty acid ethyl esters for potential fuel use. Biomass Bioenergy 2011, 35, 4149–4157. [Google Scholar] [CrossRef]
- da Silva, J.R.P.; Nürnberg, A.J.; da Costa, F.P.; Zenevicz, M.C.; Lerin, L.A.; Zanetti, M.; Valério, A.; de Oliveira, J.V.; Ninow, J.L.; de Oliveira, D. Lipase NS40116 as catalyst for enzymatic transesterification of abdominal chicken fat as substrate. Bioresour. Technol. Rep. 2018, 4, 214–217. [Google Scholar] [CrossRef]
- Feddern, V.; Kupski, L.; Cipolatti, E.P.; Giacobbo, G.; Mendes, G.L.; Badiale, F.E.; de Souza-Soares, L.A. Physico-chemical composition, fractionated glycerides and fatty acid profile of chicken skin fat. Eur. J. Lipid Sci. Technol. 2010, 112, 1277–1284. [Google Scholar] [CrossRef]
- Touqeer, T.; Mumtaz, M.W.; Mukhtar, H.; Irfan, A.; Akram, S.; Shabbir, A.; Rashid, U.; Nehdi, I.A.; Choong, T.S.Y. Fe3O4-PDA-Lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: Characterization and process optimization. Energies 2019, 13, 177. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.F.; Parussulo, A.L.; Netto, C.G.C.M.; Andrade, L.H.; Toma, H.E. Lipase immobilized on polydopamine-coated magnetite nanoparticles for biodiesel production from soybean oil. Biofuel Res. J. 2016, 3, 403–409. [Google Scholar] [CrossRef]
- Alptekin, E.; Canakci, M. Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel 2010, 89, 4035–4039. [Google Scholar] [CrossRef]
- Mata, T.M.; Cardoso, N.; Ornelas, M.; Neves, S.; Caetano, N.S. Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy Fuels 2011, 25, 4756–4762. [Google Scholar] [CrossRef]
- Kamel, D.A.; Farag, H.A.; Amin, N.K.; Zatout, A.A.; Ali, R.M. Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production: Optimization and mechanism. Ind. Crops. Prod. 2018, 111, 407–413. [Google Scholar] [CrossRef]
- Mumtaz, M.W.; Mukhtar, H.; Anwar, F.; Saari, N. RSM based optimization of chemical and enzymatic transesterification of palm oil: Biodiesel production and assessment of exhaust emission levels. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Chai, M.; Tu, Q.; Lu, M.; Yang, Y.J. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 2014, 125, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Marulanda, V.F.; Anitescu, G.; Tavlarides, L.L. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. J. Supercrit. Fluids 2010, 54, 53–60. [Google Scholar] [CrossRef]
- Katiyar, M.; Ali, A. Onepot lipase entrapment within silica particles to prepare a stable and reusable biocatalyst for transesterification. J. Am.OilChem. Soc. 2015, 92, 623–632. [Google Scholar] [CrossRef]
Feedstock | Catalysts/Biocatalysts | Selected Models | Sequential p-Value | Lack-of-Fit p-Value | Adjusted R-Squared | |
---|---|---|---|---|---|---|
WCFO | Enzymes | Fe3O4_PDA_Lipase | Quadratic | <0.0001 | 0.0701 | 0.9713 |
WCFO | Aspergillus terreus lipase | Quadratic | <0.0001 | 0.1276 | 0.9679 | |
WCFO | Chemicals | CH3ONa | Quadratic | <0.0001 | 0.4021 | 0.9519 |
WCFO | KOH | Quadratic | <0.0001 | 0.0916 | 0.9518 |
Feedstock Oil | Catalysts/Biocatalysts | Reaction Time (Hours) | Reaction Temperature °C | CH3OH:Oil Molar Ratio | Catalyst’s Concentration (%) | Biodiesel Yield (%) |
---|---|---|---|---|---|---|
WCFO | Fe3O4_PDA_Lipase | 36 | 42 | 6:1 | 6 | 90.6 |
WCFO | Aspergillus terreus Lipase | 36 | 35 | 6:1 | 1 | 78.4 |
WCFO | CH3ONa | 1.25 | 60 | 6:1 | 1 | 87.1 |
WCFO | KOH | 1 | 60 | 6:1 | 1 | 84.8 |
Source | Df | SS (MS) a | F-Value (p Value) a | SS (MS) b | F Value (p Value) b | SS (MS) c | F Value (p Value) c | SS (MS) d | F Value (p Value) d |
---|---|---|---|---|---|---|---|---|---|
Model | 14 | 7213.87 (515.28) | 70.99 (< 0.0001) | 3018.69 (215.62) | 63.48 (< 0.0001) | 3159.24 (225.66) | 41.95 (< 0.0001) | 3806.96 (271.93) | 41.87 (< 0.0001) |
A—Reaction Time | 1 | 310.24 (310.24) | 42.74 (< 0.0001) | 76.08 (76.08) | 22.40 (0.0003) | 114.01 (114.01) | 21.19 (0.0003) | 4.84 (4.84) | 0.75 (0.4014) |
B—Reaction Temperature | 1 | 14.76 (14.76) | 2.03 (0.1743) | 1656.84 (1656.84) | 487.79 (< 0.0001) | 107.62 (107.62) | 20.01 (0.0004) | 268.40 (268.40) | 41.33 (< 0.0001) |
C—CH3OH:Oil | 1 | 188.55 (188.55) | 25.97 (0.0001) | 7.72 (7.72) | 2.27 (0.1524) | 376.29 (376.29) | 69.95 (< 0.0001) | 0.45 (0.45) | 0.069 (0.7970) |
D—Catalyst/Biocatalyst Concentration | 1 | 3164.57 (3164.57) | 435.97 (< 0.0001) | 277.26 (277.26) | 81.63 (< 0.0001) | 460.40 (460.40) | 85.59 (< 0.0001) | 2557.47 (2557.47) | 393.81 (< 0.0001) |
AB | 1 | 9.79 (9.79) | 1.35 (0.2637) | 15.05 (15.05) | 4.43 (0.0525) | 0.46 (0.46) | 0.085 (0.7750) | 0.45 (0.45) | 0.070 (0.7952) |
AC | 1 | 129.39 (129.39) | 17.83 (0.0007) | 8.70 (8.70) | 2.56 (0.1303) | 16.61 (16.61) | 3.09 (0.0993) | 105.50 (105.50) | 16.25 (0.0011) |
AD | 1 | 104.67 (104.67) | 14.42 (0.0018) | 0.83 (0.83) | 0.25 (0.6277) | 53.66 (53.66) | 9.97 (0.0065) | 0.13 (0.13) | 0.021 (0.8880) |
BC | 1 | 3.05 (3.05) | 0.42 (0.5264) | 2.16 (2.16) | 0.64 (0.4376) | 1.27 (1.27) | 0.24 (0.6346) | 1.56 (1.56) | 0.24 (0.6313) |
BD | 1 | 0.81 (0.81) | 0.11 (0.7424) | 222.82 (222.82) | 65.60 (< 0.0001) | 17.21 (17.21) | 3.20 (0.0939) | 1.17 (1.17) | 0.18 (0.6774) |
CD | 1 | 193.91 (193.91) | 26.71 (0.0001) | 47.01 (47.01) | 13.84 (0.0021) | 77.88 (77.88) | 14.48 (0.0017) | 12.23 (12.23) | 1.88 (0.1901) |
A2 | 1 | 2.49 (2.49) | 0.34 (0.5670) | 11.18 (11.18) | 3.29 (0.0897) | 5.19 (5.19) | 0.096 (0.3416) | 115.85 (115.85) | 17.84 (0.0007) |
B2 | 1 | 1.19 (1.19) | 0.16 (0.6913) | 22.09 (22.09) | 6.50 (0.0222) | 79.02 (79.02) | 14.69 (0.0016) | 0.15 (0.15) | 0.023 (0.8811) |
C2 | 1 | 524.04 (524.04) | 72.19 (< 0.0001) | 112.00 (112.00) | 32.97 (< 0.0001) | 1011.94 (1011.94) | 188.12 (< 0.0001) | 1.20 (1.20) | 0.19 (0.6731) |
D2 | 1 | 96.56 (96.56) | 13.30 (0.0024) | 112.82 (112.82) | 33.21 (< 0.0001) | 2.48 (2.48) | 0.46 (0.5078) | 117.67 (117.67) | 18.12 (0.0007) |
Residual | 15 | 108.88 (7.26) | - | 50.95 (3.40) | - | 80.69 (5.38) | - | 97.41 (6.49) | - |
Lack of Fit | 10 | 96.75 (9.67) | 3.99 (0.0701) | 30.77 (5.13) | 2.29 (0.1276) | 58.46 (5.85) | 1.31 (0.4021) | 85.11 (8.51) | 3.46 (0.0916) |
Pure Error | 5 | 12.13 (2.43) | - | 20.18 (2.24) | - | 22.24 (4.45) | - | 12.30 (2.46) | - |
Cor Total | 29 | 7322.75 | - | 3069.64 | - | 3239.93 | - | 3904.37 | - |
Biodiesel Type | Palmitic Acid (C16:0) ME % | Stearic Acid (C18:0) ME % | Oleic Acid (C18:1, cis) ME % | Linoleic Acid (C18:2, cis) |
---|---|---|---|---|
WCFAO | 17.96 | 20.85 | 42.92 | 16.54 |
Properties | WCFOB |
---|---|
Kinematic viscosity (mm2/s) at 40 °C | 4.9 ± 0.55 |
Flash point °C | 171 ± 2.51 |
Fire point °C | 187 ± 3.51 |
Pour point °C | 3.0 ± 2.0 |
Cloud point °C | 6.3 ± 2.37 |
Design | Catalysts/Biocatalysts | A—Reaction Time (h) | B—Reaction Temp (°C) | C—CH3OH:oil | D—Catalyst/Biocatalyst Concentration (%) (with Respect to Substrate) |
---|---|---|---|---|---|
(a) | Fe3O4_PDA_Lipase | 12−36 | 35−50 | 3:1−9:1 | 1−6 |
(b) | Aspergillus terreus lipase | 12−36 | 35−50 | 3:1−9:1 | 1−6 |
(c) | CH3ONa | 0.5−2 | 40−60 | 3:1−9:1 | 0.6−1 |
(d) | KOH | 0.5−2 | 40−60 | 3:1−9:1 | 0.6−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, F.; Mumtaz, M.W.; Mukhtar, H.; Touqeer, T.; Raza, S.A.; Rashid, U.; Nehdi, I.A.; Choong, T.S.Y. Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil. Catalysts 2020, 10, 633. https://doi.org/10.3390/catal10060633
Shafiq F, Mumtaz MW, Mukhtar H, Touqeer T, Raza SA, Rashid U, Nehdi IA, Choong TSY. Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil. Catalysts. 2020; 10(6):633. https://doi.org/10.3390/catal10060633
Chicago/Turabian StyleShafiq, Fatima, Muhammad Waseem Mumtaz, Hamid Mukhtar, Tooba Touqeer, Syed Ali Raza, Umer Rashid, Imededdine Arbi Nehdi, and Thomas Shean Yaw Choong. 2020. "Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil" Catalysts 10, no. 6: 633. https://doi.org/10.3390/catal10060633
APA StyleShafiq, F., Mumtaz, M. W., Mukhtar, H., Touqeer, T., Raza, S. A., Rashid, U., Nehdi, I. A., & Choong, T. S. Y. (2020). Response Surface Methodology Approach for Optimized Biodiesel Production from Waste Chicken Fat Oil. Catalysts, 10(6), 633. https://doi.org/10.3390/catal10060633