Fuel Pretreatment Systems in Modern CI Engines
Abstract
:1. Introduction
2. Fuel Pretreatment Systems in Modern CI Engines
- Substrates are transferred from liquid or gas phase to the catalyst surface; this stage is very slow and controlled by the diffusion speed. This phase could be controlled by moderating the speed (turbulence);
- Substrates are absorbed onto the catalyst surface, controlled by the absorption speed,
- Intermolecular substrates formed in reactions are absorbed onto the catalyst surface; this process is controlled by the surface reaction speed;
- Reaction products are desorbed from the catalyst surface to the phase interior; this stage is controlled by the desorption speed;
- Reaction products are transported from the catalyst surface to the phase interior; this stage, like the first stage, is controlled by the diffusion speed.
3. Simulation Studies’ Results
4. Discussion
5. Conclusions
- Carry out laboratory tests on the injected fuel stream with standard and modified atomizers. During the tests, a qualitative stream analysis will be performed.
- Carry out engine tests during which the operating and ecological parameters of the engine will be measured, and the measurement of fast-changing pressures and temperature will be carried out using a standard and modified fuel supply system.
Author Contributions
Funding
Conflicts of Interest
References
- Han, N.; Wang, C.; Duan, Y.; Tian, Z.; Huang, Z. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system. Energy 2014, 75, 513–519. [Google Scholar] [CrossRef]
- Gianotti, E.; Taillades-Jacquin, M.; Carmona, A.R.; Taillades, G.; Rozière, J.; Jones, D.J. Hydrogen generation via catalytic partial dehydrogenation of gasoline and diesel fuels. Appl. Catal. B Environ. 2016, 185, 233–241. [Google Scholar] [CrossRef]
- Wang, N.; Qiu, J.; Wu, J.; Yuan, X.; You, K.; Luo, H. Microwave assisted synthesis of Sn–modified MgAlO as support for platinum catalyst in cyclohexane dehydrogenation to cyclohexene. Appl. Catal. A Gen. 2016, 516, 9–16. [Google Scholar] [CrossRef]
- Echeverri, A.; Gomez, T.; Hadad, C. Ammonia borane dehydrogenation tendencies using Pt4, Au4, and Pt2Au2 clusters as catalysts. Mol. Catal. 2019, 471, 9–20. [Google Scholar] [CrossRef]
- Wu, S.; Xu, M.; Hung, D.L.S.; Pan, H. In-nozzle flow investigation of flash boiling fuel sprays. Appl. Therm. Eng. 2017, 117, 644–651. [Google Scholar] [CrossRef]
- Feng, Z.; Zhan, C.; Tang, C.; Yang, K.; Huang, Z. Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system. Energy 2016, 112, 549–561. [Google Scholar] [CrossRef]
- Wang, C.; Dai, X.; Liu, F.; Li, Z.; Wu, H. Breakup of fuel sprays under cavitating and flash boiling conditions. Appl. Therm. Eng. 2018, 143, 22–33. [Google Scholar] [CrossRef]
- Salvador, F.J.; Gimeno, J.; Carreres, M.; Crialesi-Esposito, M. Fuel temperature influence on the performance of last generation Common–Rail Diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Convers. Manag. 2016, 114, 364–375. [Google Scholar] [CrossRef] [Green Version]
- Salvador, F.J.; Payri, R.; Carreres, M.; De la Morena, J. Fuel temperature influence on the performance of last generation Common–Rail Diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers. Manag. 2016, 114, 376–391. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Feng, Z.; Zhan, C.; Ma, W.; Huang, Z. Experimental study on the effect of injector nozzle K factor on the spray characteristics in a constant volume chamber: Near nozzle spray initiation, the macroscopic and the droplet statistics. Fuel 2017, 202, 583–594. [Google Scholar] [CrossRef]
- Salvador, F.J.; De La Morena, J.; Martínez-López, J.; Jaramillo, D.; Rubio, F.J.S. Assessment of compressibility effects on internal nozzle flow in diesel injectors at very high injection pressures. Energy Convers. Manag. 2017, 132, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lowrie, J.; Ngaile, G.; Fang, T. High injection pressure diesel sprays from a piezoelectric fuel injector. Appl. Therm. Eng. 2019, 152, 807–824. [Google Scholar] [CrossRef]
- Yao, C.; Geng, P.; Yin, Z.; Hu, J.; Chen, D.; Ju, Y. Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a constant volume combustion chamber. Fuel 2016, 179, 235–245. [Google Scholar] [CrossRef]
- Osipowicz, T.; Abramek, K. Common Rail System High Pressure Accumulator. Patent No. 234823, 20 December 2019. [Google Scholar]
- Osipowicz, T. Fuel Injector Atomizer. Patent No. 222791, 24 November 2015. [Google Scholar]
- Ambrozik, A. Wybrane Zagadnienia Procesów Cieplnych w Tłokowych Silnikach Spalinowych; Politechnika Świętokrzyska: Kielce, Poland, 2003. [Google Scholar]
- Technical Reference. Solidworks Flow Simulation; Dassault Systèmes SolidWorks Corp.: Waltham, MA, USA, 2018.
- Osipowicz, T.; Abramek, K. Common Rail Fuel Injectors Technical Condition Assessment Method. Patent No. 233791, 8 August 2019. [Google Scholar]
- Eliasz, J.; Osipowicz, T.; Abramek, K.F.; Mozga, Ł. Model Issues Regarding Modification of Fuel Injector Components to Improve the Injection Parameters of a Modern Compression Ignition Engine Powered by Biofuel. Appl. Sci. 2019, 9, 5479. [Google Scholar] [CrossRef] [Green Version]
- Osipowicz, T.; Abramek, K. Catalytic treatment in Diesel engine injectors. Eksploatacja i Niezawodnosc 2014, 16, 22–28. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliasz, J.; Osipowicz, T.; Abramek, K.F.; Matuszak, Z.; Mozga, Ł. Fuel Pretreatment Systems in Modern CI Engines. Catalysts 2020, 10, 696. https://doi.org/10.3390/catal10060696
Eliasz J, Osipowicz T, Abramek KF, Matuszak Z, Mozga Ł. Fuel Pretreatment Systems in Modern CI Engines. Catalysts. 2020; 10(6):696. https://doi.org/10.3390/catal10060696
Chicago/Turabian StyleEliasz, Jacek, Tomasz Osipowicz, Karol Franciszek Abramek, Zbigniew Matuszak, and Łukasz Mozga. 2020. "Fuel Pretreatment Systems in Modern CI Engines" Catalysts 10, no. 6: 696. https://doi.org/10.3390/catal10060696
APA StyleEliasz, J., Osipowicz, T., Abramek, K. F., Matuszak, Z., & Mozga, Ł. (2020). Fuel Pretreatment Systems in Modern CI Engines. Catalysts, 10(6), 696. https://doi.org/10.3390/catal10060696