Optimization of Fe@Cu Core–Shell Nanoparticle Synthesis, Characterization, and Application in Dye Removal and Wastewater Treatment
Abstract
:1. Introduction
2. Results
2.1. X-Ray Diffraction Studies of S1, S2, and S3
2.2. FT-IR Spectra of S1, S2, and S3 Nanoparticles
2.3. Morphological Studies of S1, S2, and S3 Using SEM
2.4. Elemental Analysis of S1, S2, and S3 Using SEM-Energy-Dispersive X-Ray Analysis (EDX)
2.5. The Effect of Various Metal Ratios in the Flocculation Process
2.6. Effect of pH on the Flocculation Process
2.7. The Effect of the Presence of Different Metal Ions in the Flocculation Process
2.8. Thermostability Test for Samples S1, S2, and S3
2.9. The Removal Efficiency of Staining Dyes by Nanoparticle Samples S1, S2, and S3
2.10. Removal Efficiency of Nutrients in Wastewater by Nanoparticle Samples S1, S2, and S3
3. Discussion
4. Materials and Methods
4.1. Synthesis of Iron@Copper Core–Shell Nanoparticles
4.2. Test for Flocculation Activity of S1, S2, and S3
4.3. Optimization of S1, S2, and S3 in Flocculation Activity
4.4. Dye Removal by Core-Shell Nanoparticles
4.5. Characterization of S1, S2, and S3
4.5.1. Morphological Studies and Elemental Analysis of S1, S2, and S3
4.5.2. FT-IR and X-Ray Diffraction Analysis of S1, S2, and S3
4.5.3. Thermogravimetric Analysis of S1, S2, and S3
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tiwari, D.K.; Behari, J.; Sen, P. Application of nanoparticles in wastewater treatment 1. World Appl. Sci. J. 2008, 3, 417–433. [Google Scholar]
- Exley, C.; Korchazhkina, O.; Job, D.; Strekopytov, S.; Polwart, A.; Crome, P. Non-invasive therapy to reduce the body burden of aluminium in Alzheimer’s disease. J. Alzheimer’s Dis. 2006, 10, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.-H.; Huang, J.; Zeng, G.-M.; Ruan, M.; Zhou, C.-S.; Li, L.; Rong, Z.-G. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology. Bioresour. Technol. 2009, 100, 4233–4239. [Google Scholar] [CrossRef]
- Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K.S.; Ravikumar, V. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 746–750. [Google Scholar] [CrossRef]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Optimization and Application of Bioflocculant Passivated Copper Nanoparticles in the Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 2185. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Maliehe, T.S.; Basson, A.K.; Dlamini, N.G. Removal of Pollutants in Mine Wastewater by a Non-Cytotoxic Polymeric Bioflocculant from Alcaligenes faecalis HCB2. Int. J. Environ. Res. Public Health 2019, 16, 4001. [Google Scholar] [CrossRef] [Green Version]
- Sworska, A.; Laskowski, J.; Cymerman, G. Flocculation of the Syncrude fine tailings: Part I. Effect of pH, polymer dosage and Mg2+ and Ca2+ cations. Int. J. Miner. Process. 2000, 60, 143–152. [Google Scholar]
- Zaki, S.A.; Elkady, M.F.; Farag, S.; Abd-El-Haleem, D. Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J. Environ. Biol. 2013, 34, 51. [Google Scholar] [PubMed]
- Gao, X.; Wei, L.; Yan, H.; Xu, B. Green synthesis and characteristic of core-shell structure silver/starch nanoparticles. Mater. Lett. 2011, 65, 2963–2965. [Google Scholar] [CrossRef]
- Zheng, Y.; Ye, Z.-L.; Fang, X.-L.; Li, Y.-H.; Cai, W.-M. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresour. Technol. 2008, 99, 7686–7691. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Harshiny, M.; Sen, S.S.; Sukumaran, V.; Park, S.C. Production and characterization of a thermostable bioflocculant from Bacillus subtilis F9, isolated from wastewater sludge. Ecotoxicol. Environ. Saf. 2015, 121, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Zaimy, M.; Jebali, A.; Bazrafshan, B.; Mehrtashfar, S.; Shabani, S.; Tavakoli, A.; Hekmatimoghaddam, S.; Sarli, A.; Azizi, H.; Izadi, P. Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33 (+)/CD34 (+) aptamer. Cancer Gene Ther. 2016, 23, 315. [Google Scholar] [CrossRef] [PubMed]
- Ali, H. Biodegradation of Synthetic Dyes—A Review. Water Air Soil Pollut. 2010, 213, 251–273. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, J.; Shi, T.; Cheng, C.; Liao, G.; Fan, J.; Li, T.; Tang, Z. A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics. J. Alloys Compd. 2017, 724, 365–372. [Google Scholar] [CrossRef]
- Kurane, R.; Toeda, K.; Takeda, K.; Suzuki, T. Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 1986, 50, 2309–2313. [Google Scholar]
- Agunbiade, M.; Pohl, C.; Ashafa, O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz. J. Microbiol. 2018, 49, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Cao, G.; Rong, K.; Xia, Z.; Peng, T.; Chen, H.; Zhou, J. Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity. Colloids Surf. B Biointerfaces 2018, 161, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Biosynthesis and Characterization of Copper Nanoparticles Using a Bioflocculant Extracted from Alcaligenis faecalis HCB2. Adv. Sci. Eng. Med. 2019, 11, 1–7. [Google Scholar] [CrossRef]
Elements | Sample | ||
---|---|---|---|
S1 (wt.%) | S2 (wt.%) | S3 (wt.%) | |
C | 13.74 | 19.07 | 16.27 |
O | 53.97 | 55.09 | 54.14 |
Na | 8.53 | 7.01 | 8.22 |
Mg | 14.10 | 12.27 | 12.42 |
P | 1.30 | 0.63 | 0.94 |
S | 0.39 | - | 0.38 |
Cl | 0.17 | 0.20 | 0.08 |
Ca | 1.34 | 0.70 | 0.76 |
Fe | 1.65 | 1.19 | 0.83 |
Cu | 4.82 | 3.83 | 5.96 |
Total | 100.00 | 100.00 | 100.00 |
Type of Flocculant | Cation FA (%) ± SD | |||
---|---|---|---|---|
Control | Na+ | Ca2+ | Fe3+ | |
S3 | 95 ± 0.031 a | 97 ± 0.012 a | 99 ± 0.025 a | 97 ± 0.037 a |
S2 | 96 ± 0.003 a | 95 ± 0.063 a | 98 ± 0.007 a | 87 ± 0.023 b |
S1 | 96 ± 0.039 a | 95 ± 0.051 a | 98 ± 0.012 a | 97 ± 0.014 a |
Type of Flocculant | Type of Wastewater | Type of Pollutants | Removal Efficiency (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Quality Before Treatment | Water Quality After Treatment | COD | BOD | P | N | ||||||||
COD mg/mL | BOD mg/mL | P mg/mL | Total nitrogen mg/mL | COD mg/mL | BOD mg/mL | P mg/mL | Total mg/mL | - | - | - | - | ||
S1 | Domestic | 2.313 | 123 | 3.38 | 0.223 | 1.151 | 17 | 2.55 | 0.017 | 50 | 86 | 37 | 88 |
Mzingazi river | 3.300 | 146 | 85.7 | 0.127 | 1.074 | 15 | 0.120 | 0.020 | 67 | 87 | 99 | 84 | |
S2 | Domestic | 2.313 | 123 | 3.38 | 0.223 | 1.152 | 13 | 0.69 | 0.124 | 50 | 89 | 80 | 44 |
Mzingazi river | 3.300 | 146 | 85.7 | 0.127 | 1.900 | 21 | 0.121 | 0.025 | 42 | 86 | 99 | 80 | |
S3 | Domestic | 2.313 | 123 | 3.38 | 0.223 | 0.464 | 19 | 0.09 | 0.014 | 85 | 91 | 97 | 98 |
Mzingazi river | 3.300 | 146 | 85.7 | 0.127 | 0.793 | 31 | 0.109 | 0.023 | 79 | 72 | 99 | 82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlamini, N.G.; Basson, A.K.; Emmanuel, S.J.S.; Pullabhotla, V.S.R. Optimization of Fe@Cu Core–Shell Nanoparticle Synthesis, Characterization, and Application in Dye Removal and Wastewater Treatment. Catalysts 2020, 10, 755. https://doi.org/10.3390/catal10070755
Dlamini NG, Basson AK, Emmanuel SJS, Pullabhotla VSR. Optimization of Fe@Cu Core–Shell Nanoparticle Synthesis, Characterization, and Application in Dye Removal and Wastewater Treatment. Catalysts. 2020; 10(7):755. https://doi.org/10.3390/catal10070755
Chicago/Turabian StyleDlamini, Nkosinathi Goodman, Albertus Kotze Basson, Shandu Jabulani Siyabonga Emmanuel, and Viswanadha Srirama Rajasekhar Pullabhotla. 2020. "Optimization of Fe@Cu Core–Shell Nanoparticle Synthesis, Characterization, and Application in Dye Removal and Wastewater Treatment" Catalysts 10, no. 7: 755. https://doi.org/10.3390/catal10070755
APA StyleDlamini, N. G., Basson, A. K., Emmanuel, S. J. S., & Pullabhotla, V. S. R. (2020). Optimization of Fe@Cu Core–Shell Nanoparticle Synthesis, Characterization, and Application in Dye Removal and Wastewater Treatment. Catalysts, 10(7), 755. https://doi.org/10.3390/catal10070755