Application of Metal-Based Nanocatalysts for Addressing Environmental Issues and Energy Demand
Funding
Conflicts of Interest
References
- Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234. [Google Scholar] [CrossRef] [PubMed]
- York, R. Decarbonizing the Energy Supply May Increase Energy Demand. Sociol. Dev. 2016, 2, 265–272. [Google Scholar] [CrossRef]
- Teimouri, Z.; Abatzoglou, N.; Dalai, A.K. Kinetics and Selectivity Study of Fischer–Tropsch Synthesis to C5+ Hydrocarbons: A Review. Catalysts 2021, 11, 330. [Google Scholar] [CrossRef]
- Amin, M.H. A Mini-Review on CO2 Reforming of Methane. Prog. Petrochem. Sci. 2018, 2, 161–165. Available online: https://crimsonpublishers.com/pps/pdf/PPS.000532.pdf (accessed on 13 December 2021).
- Chen, Y.-J.; Huang, S.-H.; Uan, J.-Y.; Lin, H.-T. Synthesis of Catalytic Ni/Cu Nanoparticles from Simulated Wastewater on Li–Al Mixed Metal Oxides for a Two-Stage Catalytic Process in Ethanol Steam Reforming: Catalytic Performance and Coke Properties. Catalysts 2021, 11, 1124. [Google Scholar] [CrossRef]
- Wen, J.; Huang, C.; Sun, Y.; Liang, L.; Zhang, Y.; Zhang, Y.; Fu, M.; Wu, J.; Chen, L.; Ye, D. The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts. Catalysts 2020, 10, 533. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, N.; Jia, P.; Huang, W. In-Situ FT-IR Spectroscopy Investigation of CH4 and CO2 Reaction. Catalysts 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Gong, D.; Liu, H.; Wang, L. Highly Loaded Mesoporous Ni–La2O3 Catalyst Prepared by Colloidal Solution Combustion Method for CO2 Methanation. Catalysts 2019, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Newnham, J.; Mantri, K.; Amin, M.H.; Tardio, J.; Bhargava, S.K. Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane. Int. J. Hydrog. Energy 2012, 37, 1454–1464. [Google Scholar] [CrossRef]
- Modekwe, H.U.; Mamo, M.A.; Daramola, M.O.; Moothi, K. Catalytic Performance of Calcium Titanate for Catalytic Decomposition of Waste Polypropylene to Carbon Nanotubes in a Single-Stage CVD Reactor. Catalysts 2020, 10, 1030. [Google Scholar] [CrossRef]
- Amin, M.H.; Sudarsanam, P.; Field, M.R.; Patel, J.; Bhargava, S.K. Effect of a Swelling Agent on the Performance of Ni/Porous Silica Catalyst for CH4–CO2 Reforming. Langmuir 2017, 33, 10632–10644. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Tardio, J.; Bhargava, S. A Comparison Study on Methane Dry Reforming with Carbon Dioxide over Ni Catalysts Supported on Mesoporous SBA-15, MCM-41, KIT-6 and γ-Al2O3 Carrier. In Proceedings of the Chemeca 2013, South Brisbane, Australia, 29 September–2 October 2013; pp. 543–548. Available online: https://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=D5vJu6YAAAAJ&cstart=20&pagesize=80&citation_for_view=D5vJu6YAAAAJ:2osOgNQ5qMEC (accessed on 13 December 2021).
- Ding, C.; Wang, J.; Li, Y.; Ma, Q.; Ma, L.; Guo, J.; Ma, Z.; Liu, P.; Zhang, K. The Role of Active Sites Location in Partial Oxidation of Methane to Syngas for MCM-41 Supported Ni Nanoparticles. Catalysts 2019, 9, 606. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.H. Relationship Between the Pore Structure of Mesoporous Silica Supports and the Activity of Nickel Nanocatalysts in the CO2 Reforming of Methane. Catalysts 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z.; Zhang, B.; Liu, Z.; Yang, T. Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons. Catalysts 2020, 10, 501. [Google Scholar] [CrossRef]
- Amin, M.H.; Mantri, K.; Newnham, J.; Tardio, J.; Bhargava, S.K. Highly stable ytterbium promoted Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B Environ. 2012, 119, 217–226. [Google Scholar] [CrossRef]
- Amin, M.H.; Tardio, J.; Bhargava, S.K. An investigation on the role of ytterbium in ytterbium promoted γ-alumina-supported nickel catalysts for dry reforming of methane. Int. J. Hydrog. Energy 2013, 38, 14223–14231. [Google Scholar] [CrossRef]
- Amin, M.; Tardio, J.; Bhargava, S. An investigation on the role of promoters in promoted γ-alumina-supported nickel catalysts for dry reforming of methane. In Proceedings of the Chemeca 2013, South Brisbane, Australia, 29 September–2 October 2013; pp. 549–557. Available online: https://scholar.google.com.au/citations?view_op=view_citation&hl=en&user=D5vJu6YAAAAJ&cstart=20&pagesize=80&citation_for_view=D5vJu6YAAAAJ:KlAtU1dfN6UC (accessed on 13 December 2021).
- Amin, M.H.; Putla, S.; Abd Hamid, S.B.; Bhargava, S.K. Understanding the role of lanthanide promoters on the structure–activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane. Appl. Catal. A Gen. 2015, 492, 160–168. [Google Scholar] [CrossRef]
- Al-Najar, A.; Al-Doghachi, F.A.; Al-Riyahee, A.A.; Taufiq-Yap, Y.H. Effect of La2O3 as a Promoter on the Pt, Pd, Ni/MgO Catalyst in Dry Reforming of Methane Reaction. Catalysts 2020, 10, 750. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.H. Application of Metal-Based Nanocatalysts for Addressing Environmental Issues and Energy Demand. Catalysts 2021, 11, 1521. https://doi.org/10.3390/catal11121521
Amin MH. Application of Metal-Based Nanocatalysts for Addressing Environmental Issues and Energy Demand. Catalysts. 2021; 11(12):1521. https://doi.org/10.3390/catal11121521
Chicago/Turabian StyleAmin, Mohamad Hassan. 2021. "Application of Metal-Based Nanocatalysts for Addressing Environmental Issues and Energy Demand" Catalysts 11, no. 12: 1521. https://doi.org/10.3390/catal11121521
APA StyleAmin, M. H. (2021). Application of Metal-Based Nanocatalysts for Addressing Environmental Issues and Energy Demand. Catalysts, 11(12), 1521. https://doi.org/10.3390/catal11121521