Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes
Abstract
:1. Introduction
2. Manganese
3. Iron
3.1. Hydroalkoxylation
3.2. Hydroamination
4. Cobalt
4.1. Hydroalkoxylation
4.2. Hydroamination
5. Nickel
5.1. Hydroalkoxylation
5.2. Hydroamination
6. Copper
6.1. Hydroalkoxylation
6.2. Hydroamination
7. Zinc
7.1. Hydroalkoxylation
7.2. Hydroamination
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Trowbridge, A.; Walton, S.M.; Gaunt, M.J. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chem. Rev. 2020, 120, 2613–2692. [Google Scholar] [CrossRef] [Green Version]
- Elliot, M.C.; Williams, E. Saturated oxygen heterocycles. J. Chem. Soc. Perkin Trans. 1 2001, 19, 2303–2340. [Google Scholar] [CrossRef]
- Müller, T.E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev. 2008, 108, 3795–3892. [Google Scholar] [CrossRef] [PubMed]
- Weiss, C.J.; Marks, T.J. Organo-f-element catalysts for efficient and highly selective hydroalkoxylation and hydrothiolation. Dalton Trans. 2010, 39, 6576–6588. [Google Scholar] [CrossRef]
- Ananikov, V.P.; Tanaka, M. (Eds.) Hydrofunctionalization; Topics in Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 2013; Volume 43, pp. 1–325. [Google Scholar]
- Rodriguez-Ruiz, V.; Carlino, R.; Bezzenine-Lafollée, S.; Gil, R.; Prim, D.; Schulz, E.; Hannedouche, J. Recent Developments in Alkene Hydrofunctionalisation Promoted by Homogeneous Catalysts based on Earth Abundant Elements: Formation of C–N, C–O and C–P bond. Dalton Trans. 2015, 44, 12029–12059. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L.J. Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chem. Rev. 2015, 115, 2596–2697. [Google Scholar] [CrossRef] [PubMed]
- Bezzenine-Lafollée, S.; Gil, R.; Prim, D.; Hannedouche, J. First-Row Late Transition Metals for Catalytic Alkene Hydrofunctionalisation: Recent Advances in C-N, C-O and C-P Bond Formation. Molecules 2017, 22, 1901. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.-B.; Li, Z. Asymmetric Synthesis of Ethers by Catalytic Alkene Hydroalkoxylation. Synthesis 2020, 52, 2127–2146. [Google Scholar]
- Bernoud, E.; Lepori, C.; Mellah, M.; Schulz, E.; Hannedouche, J. Recent advances in metal free- and late transition metal-catalysed hydroamination of unactivated alkenes. Catal. Sci. Technol. 2015, 5, 2017–2037. [Google Scholar] [CrossRef]
- Hannedouche, J.; Schulz, E. Asymmetric Hydroamination: A Survey of the Most Recent Developments. Chem. Eur. J. 2013, 19, 4972–4985. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Lee, H.; Audörsch, S.; Reznichenko, A.L.; Nawara-Hultzsch, A.J.; Schmidt, B.; Hultzsch, K.C. Asymmetric Intra- and Intermolecular Hydroamination Catalyzed by 3,3′-Bis(trisarylsilyl)- and 3,3′-Bis(arylalkylsilyl)-Substituted Binaphtholate Rare-Earth-Metal Complexes. Organometallics 2018, 37, 4358–4379. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, X.; Sun, H.; Tao, G.; Chang, X.-Y.; Xing, X.; Chen, X. Development of highly efficient platinum catalysts for hydroalkoxylation and hydroamination of unactivated alkenes. Nat. Commun. 2021, 12, 1953–1963. [Google Scholar] [CrossRef]
- Vanable, E.P.; Kennemur, J.L.; Joyce, L.A.; Ruck, R.T.; Schultz, D.M.; Hull, K.L. Rhodium-Catalyzed Asymmetric Hydroamination of Allyl Amines. J. Am. Chem. Soc. 2019, 141, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.P.; Breit, B. Rhodium-Catalyzed Cyclization of Terminal and Internal Allenols: An Atom Economic and Highly Stereoselective Access towards Tetrahydropyrans. Angew. Chem. Int. Ed. 2020, 59, 23485–23490. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.E.; Pacheco, J.; Schafer, L.L. Reversible C–N Bond Formation in the Zirconium-Catalyzed Intermolecular Hydroamination of 2-Vinylpyridine. Organometallics 2019, 38, 1011–1016. [Google Scholar] [CrossRef]
- Chirik, P.; Morris, R. Getting Down to Earth: The Renaissance of Catalysis with Abundant Metals. Acc. Chem. Res. 2015, 48, 2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lard, S.W.; Schmidt, V.A. Intermolecular Radical Mediated Anti-Markovnikov Alkene Hydroamination Using N-Hydroxyphthalimide. J. Am. Chem. Soc. 2018, 140, 12318–12322. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Z. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. Chin. J. Chem. 2018, 36, 1075–1109. [Google Scholar] [CrossRef]
- Tsui, E.; Metrano, A.J.; Tsuchiya, Y.; Knowles, R.R. Catalytic Hydroetherification of Unactivated Alkenes Enabled by Proton-Coupled Electron Transfer. Angew. Chem. Int. Ed. 2020, 59, 11845–11849. [Google Scholar] [CrossRef]
- Ganley, J.M.; Murray, P.R.D.; Knowles, R.R. Photocatalytic Generation of Aminium Radical Cations for C–N Bond Formation. ACS Catal. 2020, 10, 11712–11738. [Google Scholar] [CrossRef]
- Roos, C.B.; Demaerel, J.; Graff, D.E.; Knowles, R.R. Enantioselective Hydroamination of Alkenes with Sulfonamides Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc. 2020, 142, 5974–5979. [Google Scholar] [CrossRef] [PubMed]
- Francis, D.; Nelson, A.; Marsden, S.P. Synthesis of β-Diamine Building Blocks by Photocatalytic Hydroamination of Enecarbamates with Amines, Ammonia and N-H Heterocycles. Chem. Eur. J. 2020, 26, 14861–14865. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jeong, J.; Fujita, K.; Yamamoto, A.; Yoshida, H. Anti-Markovnikov Hydroamination of Alkenes with Aqueous Ammonia by Metal-Loaded Titanium Oxide Photocatalyst. J. Am. Chem. Soc. 2020, 142, 12708–12714. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Zhu, Q.; Knowles, R.R. PCET-Enabled Olefin Hydroamidation Reactions with N-Alkyl Amides. ACS Catal. 2019, 9, 4502–4507. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.Q.; Knowles, R.R. Catalytic C–N Bond-Forming Reactions Enabled by Proton-Coupled Electron Transfer Activation of Amide N–H Bonds. ACS Catal. 2016, 6, 2894–2903. [Google Scholar] [CrossRef]
- Jiang, H.; Studer, A. Anti-Markovnikov Radical Hydro-and Deuteroamidation of UnactivatedAlkenes. Chem. Eur. J. 2019, 25, 7105–7109. [Google Scholar] [CrossRef]
- Margrey, K.A.; Nicewicz, D.A. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis. Acc. Chem. Res. 2016, 49, 1997–2006. [Google Scholar] [CrossRef]
- Weiser, M.; Hermann, S.; Penner, A.; Wagenknecht, H.-A. Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation. Beilstein J. Org. Chem. 2015, 11, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, H.; Li, S.; Zhang, M.-T.; Luo, S. A chiral ion-pair photoredox organocatalyst: Enantioselective anti-Markovnikov hydroetherification of alkenols. Org. Chem. Front. 2017, 4, 1037–1041. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, X.; Chang, L.; Chen, Y.; Chu, L.; Zuo, Z. Bisphosphonium salt: An effective photocatalyst for the intramolecular hydroalkoxylation of olefins. Sci. Bull. 2019, 64, 1896–1901. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Man, Y.; Xiang, Y.; Wang, K.; Li, N.; Tang, B. Regioselective intramolecular Markovnikov and anti-Markovnikov hydrofunctionalization of alkenes via photoredox catalysis. Chem. Commun. 2019, 55, 11426–11429. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, N.; Kennemur, J.L.; Buyck, T.; Lee, S.; Prévost, S.; Kaib, P.S.J.; Bykov, D.; Farès, C.; List, B. Activation of olefins via asymmetric Brønsted acid catalysis. Science 2018, 359, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.-L.; Cheng, Y.-F.; Jiang, N.-C.; Wang, J.; Fan, L.-W.; Yuan, Y.; Li, Z.-L.; Gu, Q.-S.; Liu, X.-Y. Desymmetrization of unactivated bis-alkenes via chiral Brønsted acid-catalysed hydroamination. Chem. Sci. 2020, 11, 5987–5993. [Google Scholar] [CrossRef]
- Guoa, J.; Teo, P. Anti-Markovnikov Oxidation and Hydration of Terminal Olefins. Dalton Trans. 2014, 43, 6952–6964. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, A.; Bergander, K.; Daniliuc, C.G.; Studer, A. Fe-Catalyzed Anaerobic Mukaiyama-Type Hydration of Alkenes using Nitroarenes. Angew. Chem. Int. Ed. 2021, 60, 8313–8320. [Google Scholar] [CrossRef] [PubMed]
- Ferrand, L.; Tang, Y.; Aubert, C.; Fensterbank, L.; Mouriès-Mansuy, V.; Petit, M.; Amatore, M. Niobium-Catalyzed Intramolecular Addition of O-H and N-H Bonds to Alkenes: A Tool for Hydrofunctionalization. Org. Lett. 2017, 19, 2062–2065. [Google Scholar] [CrossRef]
- Nagamoto, M.; Nishimura, T. Iridium-Catalyzed Asymmetric Cyclization of Alkenoic Acids Leading to γ-Lactones. Chem. Commun. 2015, 51, 13466–13469. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Yang, S.; Gandon, V.; Leboeuf, D. Calcium(II)- and Triflimide-Catalyzed Intramolecular Hydroacyloxylation of Unactivated Alkenes in Hexafluoroisopropanol. Org. Lett. 2019, 21, 7405–7409. [Google Scholar] [CrossRef]
- Carney, J.R.; Dillon, B.R.; Thomas, S.P. Recent Advances of Manganese Catalysis for Organic Synthesis. Eur. J. Org. Chem. 2016, 2016, 3912–3929. [Google Scholar] [CrossRef]
- Ji, Y.-X.; Li, J.; Li, C.-M.; Qu, S.; Zhang, B. Manganese-Catalyzed N–F Bond Activation for Hydroamination and Carboamination of Alkenes. Org. Lett. 2021, 23, 207–212. [Google Scholar] [CrossRef]
- De Almeida, L.D.; Bourriquen, F.; Junge, K.; Beller, M. Catalytic Formal Hydroamination of Allylic Alcohols Using Manganese PNP-Pincer Complexes. Adv. Synth. Catal. 2021, 363. [Google Scholar] [CrossRef]
- Cheng, W.-M.; Shang, R. Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catal. 2020, 10, 9170–9196. [Google Scholar] [CrossRef]
- Greenhalgh, M.D.; Jones, A.S.; Thomas, S.P. Iron-catalysed Hydrofunctionalisation of Alkenes and Alkynes. ChemCatChem 2015, 7, 190–222. [Google Scholar] [CrossRef]
- Alcaide, B.; Almendros, P.; Martínez del Campo, T.; Redondo, M.C.; Fernández, I. Striking Alkenol versus Allenol Reactivity: Metal-catalyzed Chemodifferentiating Oxycyclization of Enallenols. Chem. Eur. J. 2011, 17, 15005–15013. [Google Scholar] [CrossRef] [PubMed]
- Alcaide, B.; Almendros, P.; Quirós, M.T. Accessing Skeletal Diversity under Iron Catalysis Using Substrate Control: Formation of Pyrroles versus Lactones. Adv. Synth. Catal. 2011, 353, 585–594. [Google Scholar] [CrossRef]
- Komeyama, K.; Morimoto, T.; Nakayama, Y.; Takaki, K. Cationic iron-catalyzed Intramolecular Hydroalkoxylation of Unactivated Olefins. Tetrahedron Lett. 2007, 48, 3259–3261. [Google Scholar] [CrossRef]
- Ke, F.; Li, Z.; Xiang, H.; Zhou, X. Catalytic Hydroalkoxylation of Alkenes by Iron(III) Catalyst. Tetrahedron Lett. 2011, 52, 318–320. [Google Scholar] [CrossRef]
- Notar Francesco, I.; Cacciuttolo, B.; Pucheault, M.; Antoniotti, S. Simple metal salts supported on montmorillonite as recyclable catalysts for intramolecular hydroalkoxylation of double bonds in conventional and VOC-exempt solvents. Green Chem. 2015, 17, 837–841. [Google Scholar] [CrossRef]
- Notar Francesco, I.; Cacciuttolo, B.; Pascu, O.; Aymonier, C.; Pucheault, M.; Antoniotti, S. Simple Salts of Abundant Metals (Fe, Bi, and Ti) Supported on Montmorillonite as Efficient and Recyclable Catalysts for Regioselective Intramolecular and Intermolecular Hydroalkoxylation Reactions of Double Bonds and Tandem Processes. RCS Adv. 2016, 6, 19807–19818. [Google Scholar] [CrossRef]
- Jung, M.S.; Kim, W.S.; Shin, Y.H.; Jin, H.J.; Kim, Y.S.; Kang, E.J. Chemoselective Activities of Fe(III) Catalysts in the Hydrofunctionalization of Allenes. Org. Lett. 2012, 14, 6262–6265. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.W.; Jung, M.S.; Ahn, K.-H.; Kang, E.J. Regioselectivities in Fe(III)-catalyzed Cycloisomerization Reactions of γ-Allenyl Alcohols. Bull. Korean Chem. Soc. 2015, 36, 2846–2850. [Google Scholar] [CrossRef]
- El-Sepelgy, O.; Brzozowska, A.; Sklyaruk, J.; Jang, Y.K.; Zubar, V.; Rueping, M. Cooperative metal-ligand catalyzed intramolecular hydroamination and hydroalkoxylation of allenes using a stable iron catalyst. Org. Lett. 2018, 20, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Marcyk, P.T.; Cook, S.P. Iron-catalyzed hydroamination and hydroetherification of unactivated alkenes. Org. Lett. 2019, 21, 1547–1550. [Google Scholar] [CrossRef] [PubMed]
- Komeyama, K.; Morimoto, T.; Takaki, K. A Simple and Efficient Iron-Catalyzed Intramolecular Hydroamination of Unactivated Olefins. Angew. Chem. Int. Ed. 2006, 45, 2938–2941. [Google Scholar] [CrossRef] [PubMed]
- Michaux, J.; Terrasson, V.; Marque, S.; Wehbe, J.; Prim, D.; Campagne, J.-M. Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. Eur. J. Org. Chem. 2007, 2007, 2601–2603. [Google Scholar] [CrossRef]
- Cheng, X.; Xia, Y.; Wei, H.; Xu, B.; Zhang, C.; Li, Y.; Qian, G.; Zhang, X.; Li, K.; Li, W. Lewis Acid Catalyzed Intermolecular Olefin Hydroamination: Scope, Limitation, and Mechanism. Eur. J. Org. Chem. 2008, 2008, 1929–1936. [Google Scholar] [CrossRef]
- Dal Zotto, C.; Michaux, J.; Zarate-Ruiz, A.; Gayon, E.; Virieux, D.; Campagne, J.-M.; Terrasson, V.; Pieters, G.; Gaucher, A.; Prim, D. FeCl3-catalyzed addition of nitrogen and 1,3-dicarbonyl nucleophiles to olefins. J. Organomet. Chem. 2011, 696, 296–304. [Google Scholar] [CrossRef]
- Shao, M.; Wu, Y.; Feng, Z.; Gu, X.; Wang, S. Synthesis of polysubstituted 1,2-dihydroquinolines and indoles via cascade reactions of arylamines and propargylic alcohols catalyzed by FeCl3·6H2O. Org. Biomol. Chem. 2016, 14, 2515–2521. [Google Scholar] [CrossRef]
- Pérez, S.J.; Martin, A.P.; Cruz, D.A.; Ljpez-Soria, J.M.; Carballo, R.M.; Ramirez, M.A.; Fernandez, I.; Martin, V.S.; Padron, J.I. Enantiodivergent synthesis of (+)- and (−)-pyrrolidine 197B: Synthesis of trans-2,5-disubstituted pyrrolidines by intramolecular hydroamination. Chem. Eur. J. 2016, 22, 15529–15535. [Google Scholar] [CrossRef]
- Marcyk, P.T.; Cook, S.P. Synthesis of Tetrahydroisoquinolines through an Iron-Catalyzed Cascade: Tandem Alcohol Substitution and Hydroamination. Org. Lett. 2019, 21, 6741–6744. [Google Scholar] [CrossRef]
- Peng, Y.; Quin, C.; Chen, X.; Li, J.; Li, H.; Wang, W. Iron-catalyzed Anti-Markovnikov Hydroamination of Vinylpyridines. Asian J. Org. Chem. 2017, 6, 694–697. [Google Scholar] [CrossRef]
- Xiao, E.; Wu, X.-T.; Ma, F.; Feng, X.; Chen, P.; Jiang, Y.-J. Fe(OTf)3- and γ-cycldextrin-catalyzed hydrooamination of alkenes with carbazoles. Org. Lett. 2021, 23, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Bernoud, E.; Oulié, P.; Guillot, R.; Mellah, M.; Hannedouche, J. Well-Defined Four-Coordinate Iron(II) Complexes For Intramolecular Hydroamination of Primary Aliphatic Alkenylamines. Angew. Chem. Int. Ed. 2014, 53, 4930–4934. [Google Scholar] [CrossRef]
- Lepori, C.; Guillot, R.; Hannedouche, J. C1-symmetric β-Diketiminatoiron(II) Complexes for Hydroamination of Primary Alkenylamines. Adv. Synth. Catal. 2019, 361, 714–719. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X.; Fan, J.; Liu, Y.; Tang, W.; Xue, D.; Li, C.; Xiao, J.; Wang, C. Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. J. Am. Chem. Soc. 2019, 141, 13506–13515, For an elegant report that involves in situ generated activated alkene via a hydrogen-borrowing strategy. [Google Scholar] [CrossRef]
- Huehls, C.B.; Lin, A.; Yang, J. Iron-Catalyzed Intermolecular Hydroamination of Styrenes. Org. Lett. 2014, 16, 3620–3623. [Google Scholar] [CrossRef]
- Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J.C.; Lee, B.J.; Spergel, S.H.; Mertzman, M.E.; Pitts, W.J.; La Cruz, T.E.; et al. Practical olefin hydroamination with nitroarenes. Science 2015, 348, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P.S. Functionalized Olefin Cross-Coupling to Construct Carbon–Carbon Bonds. Nature 2014, 516, 343–348. [Google Scholar] [CrossRef]
- Kim, D.; Rahaman, S.M.W.; Mercado, B.Q.; Poli, R.; Holland, P.L. Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study. J. Am. Chem. Soc. 2019, 141, 7473, An unobserved iron(III)-H species could be speculated as the species [Fen]-H. [Google Scholar] [CrossRef]
- Villa, M.; von Wangelin, A.J. Hydroaminations of Alkenes: A Radical, Revised, and Expanded Version. Angew. Chem. Int. Ed. 2015, 54, 11906–11908. [Google Scholar] [CrossRef]
- Obradors, C.; Martinez, R.M.; Shenvi, R.A. Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. J. Am. Chem. Soc. 2016, 138, 4962–4971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Shaver, M.P.; Thomas, S.P. Amine-bis(phenolate) Iron(III)-Catalyzed Formal Hydroamination of Olefins. Chem. Asian J. 2016, 11, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Shaver, M.P.; Thomas, S.P. Chemoselective Nitro Reduction and Hydroamination Using a Single Iron Catalyst. Chem. Sci. 2016, 7, 3031–3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Yang, Z.; Tung, C.-H.; Wang, W. Iron-catalyzed reductive coupling of nitroarenes with olefins: Intermediate of iron–nitroso complex. ACS Catal. 2020, 10, 276–281. [Google Scholar] [CrossRef]
- Crossley, S.W.M.; Martinez, R.M.; Obradors, C.; Shenvi, R.A. Mn, Fe, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 2016, 116, 8912–9000. [Google Scholar] [CrossRef] [Green Version]
- Isayama, S.; Mukaiyama, T. A New Method for Preparation of Alcohols from Olefins with Molecular Oxygen and Phenylsilane by the Use of Bis(acetylacetonato)cobalt(II). Chem. Lett. 1989, 18, 1071–1074. [Google Scholar] [CrossRef]
- Waser, J.; Carreira, E.M. Convenient Synthesis of Alkylhydrazides by the Cobalt-Catalyzed Hydrohydrazination Reaction of Olefins and Azodicarboxylates. J. Am. Chem. Soc. 2004, 126, 5676–5677. [Google Scholar] [CrossRef]
- Waser, J.; Nambu, H.; Carreira, E.M. Cobalt-Catalyzed Hydroazidation of Olefins: Convenient Access to Alkyl Azides. J. Am. Chem. Soc. 2005, 127, 8294–8295. [Google Scholar] [CrossRef]
- Gaspar, B.; Carreira, E.M. Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide. Angew. Chem. Int. Ed. 2007, 46, 4519–4522. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, B.; Carreira, E.M. Catalytic Hydrochlorination of Unactivated Olefins with para-Toluenesulfonyl Chloride. Angew. Chem. Int. Ed. 2008, 47, 5758–5760. [Google Scholar] [CrossRef]
- Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. Hydroalkoxylation of Unactivated Olefins with Carbon Radicals and Carbocation Species as Key Intermediates. J. Am. Chem. Soc. 2013, 135, 10306–10309. [Google Scholar] [CrossRef]
- Shigehisa, H.; Kikuchi, H.; Hiroya, K. Markovnikov-Selective Addition of Fluorous Solvents to Unactivated Olefins Using a Co Catalyst. Chem. Pharm. Bull. 2016, 64, 371–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepard, S.M.; Diaconescu, P.L. Redox-switchable Hydroelementation of a Cobalt Complex Supported by a Ferrocene-based Ligand. Organometallics 2016, 35, 2446–2453. [Google Scholar] [CrossRef]
- Shigehisa, H.; Hayashi, M.; Ohkawa, H.; Suzuki, T.; Okayasu, H.; Mukai, M.; Yamazaki, A.; Kawai, R.; Kikuchi, H.; Satoh, Y.; et al. Catalytic Synthesis of Saturated Oxygen Heterocycles by Hydrofunctionalization of Unactivated Olefins: Unprotected and Protected Strategies. J. Am. Chem. Soc. 2016, 138, 10597–10604. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Mimata, N.; Terada, Y.; Sebe, C.; Shigehisa, H. Catalytic Dealkylative Synthesis of Cyclic Carbamates and Ureas via Hydrogen Atom Transfer and Radical-Polar Crossover. Org. Lett. 2020, 22, 5522–5527. [Google Scholar] [CrossRef] [PubMed]
- Touney, E.E.; Foy, N.J.; Pronin, S.V. Catalytic Radical–Polar Crossover Reactions of Allylic Alcohols. J. Am. Chem. Soc. 2018, 140, 16982–16987. [Google Scholar] [CrossRef] [PubMed]
- Discolo, C.A.; Touney, E.E.; Pronin, S.V. Catalytic Asymmetric Radical-Polar Crossover Hydroalkoxylation. J. Am. Chem. Soc. 2019, 141, 17527–17532. [Google Scholar] [CrossRef]
- Ebisawa, K.; Izumi, K.; Ooka, Y.; Kato, H.; Kanazawa, S.; Komatsu, S.; Nishi, E.; Shigehisa, H. Catalyst- and silane- controlled enantioselective hydrofunctionalization of alkenes by TM-HAT and RPC mechanism. J. Am. Chem. Soc. 2020, 142, 13481–13490. [Google Scholar] [CrossRef]
- Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. Catalytic Hydroamination of Unactivated Olefins Using a Co Catalyst for Complex Molecule Synthesis. J. Am. Chem. Soc. 2014, 136, 13534–13537. [Google Scholar] [CrossRef]
- Ohuchi, S.; Koyama, H.; Shigehisa, H. Catalytic Synthesis of Cyclic Guanidines via Hydrogen Atom Transfer and Radical-Polar Crossover. ACS Catal. 2021, 11, 900–906. [Google Scholar] [CrossRef]
- Yahata, K.; Kaneko, Y.; Akai, S. Cobalt-Catalyzed Intermolecular Markovnikov Hydroamination of Nonactivated Olefins: N2-Selective Alkylation of Benzotriazole. Org. Lett. 2020, 22, 598–603. [Google Scholar] [CrossRef]
- Yahata, K.; Kaneko, Y.; Akai, S. Cobalt-Catalyzed Hydroamination of Alkenes with 5-Substituted Tetrazoles: Facile Access to 2,5-Disubstituted Tetrazoles and Asymmetric Intermolecular Hydroaminations. Chem. Pharm. Bull. 2020, 68, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Chen, X.; Chen, J.; Sun, Y.; Cheng, Z.; Lu, Z. Ligand-promoted cobalt-catalyzed radical hydroamination of alkenes. Nat. Commun. 2020, 11, 783–790. [Google Scholar] [CrossRef]
- Chen, J.; Shen, X.; Lu, Z. Cobalt-Catalyzed Markovnikov Selective Sequential Hydrogenation/Hydrohydrazidation of Aliphatic Terminal Alkynes. J. Am. Chem. Soc. 2020, 142, 14455–14460. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-L.; Yang, F.; Ye, W.-T.; Wang, J.-J.; Zhu, R. Dual Cobalt and Photoredox Catalysis Enabled Intermolecular Oxidative Hydrofunctionalization. ACS Catal. 2020, 10, 4983–4989. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. Cobalt-Catalyzed Intermolecular Hydrofunctionalization of Alkenes: Evidence for a Bimetallic Pathway. J. Am. Chem. Soc. 2019, 141, 7250–7255, For previous work of the group that uses hypervalent iodine(III) as two-electron oxidant for intermolecular alkene hydrofunctionalization with O- and N-based nucleophiles featuring a unique bimetallic-mediated coupling between organocobalt(III) and Co(III)-nucleophile. [Google Scholar] [CrossRef] [PubMed]
- Lepori, C.; Gomez-Orellana, P.; Ouharzoune, A.; Guillot, R.; Lledos, A.; Ujaque, G.; Hannedouche, J. Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene Cyclohydroamination of Primary Amines. ACS Catal. 2018, 8, 4446–4451. [Google Scholar] [CrossRef]
- Schroeter, F.; Lerch, S.; Kaliner, M.; Strassner, T. Cobalt-Catalyzed Hydroarylations and Hydroaminations of Alkenes in Tunable Aryl Alkyl Ionic Liquids. Org. Lett. 2018, 20, 6215–6219, For a report on the use of cobalt salts in ionic liquids. [Google Scholar] [CrossRef]
- Bigot, S.; El Alami, M.S.I.; Mifleur, A.; Castanet, Y.; Suisse, I.; Mortreux, A.; Sauthier, M. Nickel-catalysed Hydroalkoxylation Reaction of 1,3-Butadiene: Ligand Controlled Selectivity for the Efficient and Atom-economical Synthesis of Alkylbutenyl Ethers. Chem. Eur. J. 2013, 19, 9785–9788. [Google Scholar] [CrossRef]
- Mifleur, A.; Ledru, H.; Lopes, A.; Suisse, I.; Mortreux, A.; Sauthier, M. Synthesis of Short-chain Alkenyl Ethers from Primary and Biosourced Alcohols via the Nickel-catalyzed Hydroalkoxylation Reaction of Butadiene and Derivatives. Adv. Synth. Catal. 2016, 358, 110–121. [Google Scholar] [CrossRef]
- Mifleur, A.; Merel, D.; Mortreux, D.; Suisse, I.; Capet, F.; Trivelli, X.; Sauthier, M.; Macgregor, S.A. Deciphering the mechanism of the nickel-catalyzed hydroalkoxylation reaction: A combined experimental and computational study. ACS Catal. 2017, 7, 6915–6923. [Google Scholar] [CrossRef]
- Mifleur, A.; Mortreux, A.; Suisse, I.; Sauthier, M. Synthesis of C4 Chain Glyceryl Ethers via Nickel-catalyzed Butadiene Hydroalkoxylation Reaction. J. Mol. Catal. A Chem. 2017, 427, 25–30. [Google Scholar] [CrossRef]
- Mifleur, A.; Suisse, I.; Mortreux, A.; Sauthier, M. Enantioselective Nickel Catalyzed Butadiene Hydroalkoxylation with Ethanol: From Experimental Results to Kinetics Parameters. Catal. Lett. 2021, 151, 27–35, For a preliminary study towards an enantioselective Nickel-catalyzed butadiene hydroalkoxylation with ethanol. [Google Scholar] [CrossRef]
- Tran, G.; Mazet, C. Ni-Catalyzed Regioselective Hydroalkoxylation of Branched 1,3-Dienes. Org. Lett. 2019, 21, 9124–9127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, R.; Cook, A.H.; Halliday, D.E.; Smith, T.N. Reaction of amines with 1,3-dienes catalysed by nickel complexes. J. Chem. Soc. Perkin Trans. 2 1974, 1511–1517. [Google Scholar] [CrossRef]
- Baker, R.; Onions, A.; Popplestone, R.J.; Smith, T.N. Reactions of amines and active methylene compounds with buta-1,3-diene and isoprene: Catalysis by nickel, cobalt, rhodium, and iridium complexes. J. Chem. Soc. Perkin Trans. 2 1975, 1133–1138. [Google Scholar] [CrossRef]
- Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J.F. A General Nickel-Catalyzed Hydroamination of 1,3-Dienes by Alkylamines: Catalyst Selection, Scope, and Mechanism. J. Am. Chem. Soc. 2002, 124, 3369–3679. [Google Scholar] [CrossRef]
- Tran, G.; Shao, W.; Mazet, C. Ni-Catalyzed Enantioselective Intermolecular Hydroamination of Branched 1,3-Dienes Using Primary Aliphatic Amines. J. Am. Chem. Soc. 2019, 141, 14814–14822. [Google Scholar] [CrossRef]
- Long, J.; Wang, P.; Wang, W.; Li, Y.; Yin, G. Nickel/Brønsted Acid-Catalyzed Chemo- and Enantioselective Intermolecular Hydroamination of Conjugated Dienes. iScience 2019, 22, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Tafazolian, H.; Schmidt, J.A.R. Cationic [(Iminophosphine)nickel(allyl)]+ Complexes as the First Example of Nickel Catalysts for Direct Hydroamination of Allenes. Chem. Eur. J. 2017, 23, 1507–1511. [Google Scholar] [CrossRef]
- Xiao, J.; He, Y.; Ye, F.; Zhu, S. Remote sp3 C–H Amination of Alkenes with Nitroarenes. Chem 2018, 4, 1645–1657. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, C.; Seo, H.; Hong, S. NiH-Catalyzed Proximal-Selective Hydroamination of Unactivated Alkenes. J. Am. Chem. Soc. 2020, 142, 20470–20480. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.G.; Whittall, N.; Hii, K.K.M. Copper(II)-catalysed Addition of O-H Bonds to Norbornene. Chem. Commun. 2005, 5103–5105. [Google Scholar] [CrossRef] [PubMed]
- Adrio, L.A.; Hii, K.K.M. A Recyclable Copper(II) Catalyst for the Annulation of Phenols with 1,3-Dienes. Chem. Commun. 2008, 2325–2327. [Google Scholar] [CrossRef] [PubMed]
- Tschan, M.J.-L.; Thomas, C.M.; Strub, H.; Carpentier, J.-F. Copper(II) Triflate as a Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation Reactions. Adv. Synth. Catal. 2009, 351, 2496–2504. [Google Scholar] [CrossRef]
- Murayama, H.; Nagao, K.; Ohmiya, H.; Sawamura, M. Copper(I)-catalyzed Intramolecular Hydroalkoxylation of Unactivated Alkenes. Org. Lett. 2015, 17, 2039–2041. [Google Scholar] [CrossRef]
- Miller, Y.; Miao, L.; Hosseini, A.S.; Chemler, S.R. Copper-Catalyzed Enantioselective Intramolecular Alkene Amination/Intermolecular Heck-Type Coupling Cascade. J. Am. Chem. Soc. 2012, 134, 12149–12156. [Google Scholar] [CrossRef] [Green Version]
- Bovino, M.T.; Liwosz, T.W.; Kendel, N.E.; Miller, Y.; Tyminska, N.; Zurek, E.; Chemler, S.R. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes. Angew. Chem. Int. Ed. 2014, 53, 6383–6387. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chemler, S.R. Synthesis of Phthalans Via Copper-Catalyzed Enantioselective Cyclization/Carboetherification of 2-Vinylbenzyl Alcohols. Org. Lett. 2018, 20, 6453–6456. [Google Scholar] [CrossRef]
- Karyakarte, S.D.; Um, C.; Berhane, I.A.; Chemler, S.R. Synthesis of Spirocyclic Ethers by Enantioselective Copper-Catalyzed Carboetherification of Alkenols. Angew. Chem. Int. Ed. 2018, 57, 12921–12924. [Google Scholar] [CrossRef]
- Chen, D.; Berhane, I.A.; Chemler, S.R. Copper-Catalyzed Enantioselective Hydroalkoxylation of Alkenols for the Synthesis of Cyclic Ethers. Org. Lett. 2020, 22, 7409–7414. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.G.; Whittall, N.; Hii, K.K. Copper-Catalyzed Intermolecular Hydroamination of Alkenes. Org. Lett. 2006, 8, 3561–3564. [Google Scholar] [CrossRef]
- Turnpenny, B.W.; Hyman, K.L.; Chemler, S.R. Chiral Indoline Synthesis via Enantioselective Intramolecular Copper-Catalyzed Alkene Hydroamination. Organometallics 2012, 31, 7819–7822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michon, C.; Medina, F.; Capet, F.; Roussel, P.; Agbossou-Niedercorn, F. Inter- and Intramolecular Hydroamination of Unactivated Alkenes Catalysed by a Combination of Copper and Silver Salts: The Unveiling of a Brønstedt Acid Catalysis. Adv. Synth. Catal. 2010, 35, 3293–3305. [Google Scholar] [CrossRef]
- Ohmiya, H.; Moriya, T.; Sawamura, M. Cu(I)-Catalyzed Intramolecular Hydroamination of Unactivated Alkenes Bearing a Primary or Secondary Amino Group in Alcoholic Solvents. Org. Lett. 2009, 11, 2145–2147. [Google Scholar] [CrossRef] [PubMed]
- Ohmiya, H.; Yoshida, M.; Sawamura, M. Protecting-Group-Free Route to Hydroxylated Pyrrolidine and Piperidine Derivatives through Cu(I)-Catalyzed Intramolecular Hydroamination of Alkenes. Synlett 2010, 2010, 2136–2140. [Google Scholar]
- Blieck, R.; Bahri, J.; Taillefer, M.; Monnier, F. Copper-Catalyzed Hydroamination of Terminal Allenes. Org. Lett. 2016, 18, 1482–1485. [Google Scholar] [CrossRef]
- Tsuhako, A.; Oikawa, D.; Sakai, K.; Okamoto, S. Copper-catalyzed intramolecular hydroamination of allenylamines to 3-pyrrolines or 2-alkenylpyrrolidines. Tetrahedron Lett. 2008, 49, 6529–6532. [Google Scholar] [CrossRef] [Green Version]
- Blieck, R.; Taillefer, M.; Monnier, F. Metal-Catalyzed Intermolecular Hydrofunctionalization of Allenes: Easy Access to Allylic Structures via the Selective Formation of C–N, C–C, and C–O Bonds. Chem. Rev. 2020, 24, 13545–13598. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, G. Visible-Light-Induced Copper-Catalyzed Intermolecular Markovnikov Hydroamination of Alkenes. Org. Lett. 2019, 21, 7873–7877, For an interesting a photo-induced Cu(NCMe)4(PF6)-catalyzed hydroamination of styrenes with aromatic amines. [Google Scholar] [CrossRef]
- Perego, L.A.; Blieck, R.; Groué, A.; Monnier, F.; Taillefer, M.; Ciofini, I.; Grimaud, L. Copper-Catalyzed Hydroamination of Allenes: From Mechanistic Understanding to Methodology Development. ACS Catal. 2017, 7, 4253–4264. [Google Scholar] [CrossRef]
- Perego, L.A.; Blieck, R.; Michel, J.; Ciofini, I.; Grimaud, L.; Taillefer, M.; Monnier, F. Copper-Catalyzed Hydroamination of N-Allenylazoles: Access to Amino-Substituted N-Vinylazoles. Adv. Synth. Catal. 2017, 359, 4388–4392. [Google Scholar] [CrossRef]
- Blieck, R.; Perego, L.A.; Ciofini, I.; Grimaud, L.; Taillefer, M.; Monnier, F. Copper-Catalysed Hydroamination of N-Allenylsulfonamides: The Key Role of Ancillary Coordinating Groups. Synthesis 2019, 51, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Philippova, A.N.; Vorobyeva, D.V.; Monnier, F.; Osipov, S.N. Synthesis of α-CF3-substituted E-dehydroornithine derivatives via copper(I)-catalyzed hydroamination of allenes. Org. Biomol. Chem. 2020, 18, 3274–3280. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Copper-Catalyzed Intermolecular Regioselective Hydroamination of Styrenes with Polymethylhydrosiloxane and Hydroxylamines. Angew. Chem. Int. Ed. 2013, 52, 10830–10834. [Google Scholar] [CrossRef]
- Zhu, S.; Niljianskul, N.; Buchwald, S.L. Enantio- and Regioselective CuH-Catalyzed Hydroamination of Alkenes. J. Am. Chem. Soc. 2013, 135, 15746–15749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirnot, M.T.; Wang, Y.-M.; Buchwald, S.L. Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes. Angew. Chem. Int. Ed. 2016, 55, 48–57. [Google Scholar] [CrossRef]
- Liu, Y.R.; Buchwald, S.L. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Acc. Chem. Res. 2020, 53, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, C.; Krause, N.; Lipshutz, B.H. CuH-Catalyzed Reactions. Chem. Rev. 2008, 108, 2916–2927. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.J.; Lalic, G.; Sadighi, J.P. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. Chem. Rev. 2016, 116, 8318–8372. [Google Scholar] [CrossRef] [PubMed]
- Corpet, M.; Gosmini, C. Recent Advances in Electrophilic Amination Reactions. Synlett 2014, 46, 2258–2271. [Google Scholar]
- Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Copper-Catalyzed Enantioselective Formal Hydroamination of Oxa- and Azabicyclic Alkenes with Hydrosilanes and Hydroxylamines. Org. Lett. 2014, 16, 1498–1501. [Google Scholar] [CrossRef]
- Bandar, J.S.; Pirnot, M.T.; Buchwald, S.L. Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed Asymmetric Hydroamination of Olefins. J. Am. Chem. Soc. 2015, 137, 14812–14818. [Google Scholar] [CrossRef] [Green Version]
- Tobisch, S. CuH-Catalysed Hydroamination of Styrene with Hydroxylamine Esters: A Coupled Cluster Scrutiny of Mechanistic Pathways. Chem. Eur. J. 2016, 22, 8290–8300. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Liu, R.Y.; Yang, Y.; Fang, C.; Lambrecht, D.S.; Buchwald, S.L.; Liu, P. Ligand–Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. J. Am. Chem. Soc. 2017, 139, 16548–16555. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.A.; Speck, K.; Kevlishvili, I.; Lu, Z.; Liu, P.; Buchwald, S.L. Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed Hydroamination Reactions. J. Am. Chem. Soc. 2018, 140, 13976–13984. [Google Scholar] [CrossRef]
- Niljianskul, N.; Zhu, S.; Buchwald, S.L. Enantioselective Synthesis of α-Aminosilanes by Copper-Catalyzed Hydroamination of Vinylsilanes. Angew. Chem. Int. Ed. 2015, 54, 1638–1641. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Buchwald, S.L. Enantioselective CuH-Catalyzed Anti-Markovnikov Hydroamination of 1,1-Disubstituted Alkenes. J. Am. Chem. Soc. 2014, 136, 15913–15916. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S.L. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines. Science 2015, 349, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Butcher, T.W.; Zhang, J.; Hartwig, J.F. Regioselective, Asymmetric Formal Hydroamination of Unactivated Internal Alkenes. Angew. Chem. Int. Ed. 2016, 55, 776–780. [Google Scholar] [CrossRef]
- Nishikawa, D.; Hirano, K.; Miura, M. Asymmetric Synthesis of α-Aminoboronic Acid Derivatives by Copper-Catalyzed Enantioselective Hydroamination. J. Am. Chem. Soc. 2015, 137, 15620–15623. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Nishikawa, D.; Hirano, K.; Miura, M. Synthesis of a-Aminophosphines by Copper-Catalyzed Regioselective Hydroamination of Vinylphosphines. Chem. Eur. J. 2018, 24, 10975–10978. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Hirano, K.; Miura, M. Synthesis of α-Trifluoromethylamines by Cu-Catalyzed Regio- and Enantioselective Hydroamination of 1-Trifluoromethylalkenes. Org. Lett. 2019, 21, 4284–4288. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Somfai, P. Regio- and Enantioselective Formal Hydroamination of Enamines for the Synthesis of 1,2-Diamines. Angew. Chem. Int. Ed. 2019, 58, 8551–8555. [Google Scholar] [CrossRef]
- Ichikawa, S.; Dai, X.-J.; Buchwald, S.L. Regio- and Enantioselective Synthesis of 1,2-Diamine Derivatives by Copper-Catalyzed Hydroamination. Org. Lett. 2019, 21, 4370–4373. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, S.; Buchwald, S.L. Asymmetric Synthesis of γ-Amino Alcohols by Copper-Catalyzed Hydroamination. Org. Lett. 2019, 21, 8736–8739. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, S.; Zhu, S.; Buchwald, S.L. A Modified System for the Synthesis of Enantioenriched N-Arylamines through Copper-Catalyzed Hydroamination. Angew. Chem. Int. Ed. 2018, 55, 8714–8718. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.C.; Buchwald, S.L. CuH-Catalyzed Regioselective Intramolecular Hydroamination for the Synthesis of Alkyl-Substituted Chiral Aziridines. J. Am. Chem. Soc. 2017, 139, 8428–8431. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.-J.; Engl, O.D.; León, T.; Buchwald, S.L. Catalytic Asymmetric Synthesis of a-Arylpyrrolidines and Benzo-fused Nitrogen Heterocycles. Angew. Chem. Int. Ed. 2019, 58, 3407–3411. [Google Scholar] [CrossRef]
- It was noted that both (E)- and (Z)-vinylsilanes afford the same enantiomer, but (E)-isomers are obtained with faster reaction rates and with higher ee values than (Z)-isomers, see ref. [148].
- For an isolated example of hydroamination of a (Z)-1,2-dialkylsubstituted alkene in low yield and with low ee, see ref. [151].
- Yang, Q.; Li, S.; Wang, J. Asymmetric Synthesis of Chiral Chromanes by Copper-Catalyzed Hydroamination of 2H-Chromenes. ChemCatChem 2020, 12, 3202–3206. [Google Scholar] [CrossRef]
- Xu-Xu, Q.-F.; Zhang, X.; You, S.-L. Enantioselective Synthesis of 4-Aminotetrahydroquinolines via 1,2-Reductive Dearomatization of Quinolines and Copper(I) Hydride-Catalyzed Asymmetric Hydroamination. Org. Lett. 2019, 21, 5357–5362. [Google Scholar] [CrossRef] [PubMed]
- Xu-Xu, Q.-F.; Liu, Q.-Q.; Zhang, X.; You, S.-L. Copper-Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angew. Chem. Int. Ed. 2018, 57, 15204–15208. [Google Scholar] [CrossRef]
- Nishikawa, D.; Sakae, R.; Miki, Y.; Hirano, K.; Miura, M.J. Copper-Catalyzed Regioselective Ring-Opening Hydroamination of Methylenecyclopropanes. Org. Chem. 2016, 81, 12128–12134. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hao, H.; Liu, P.; Buchwald, S.L. Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catal. 2020, 10, 282–291. [Google Scholar] [CrossRef]
- Niu, D.; Buchwald, S.L. Design of Modified Amine Transfer Reagents Allows the Synthesis of α-Chiral Secondary Amines via CuH-Catalyzed Hydroamination. J. Am. Chem. Soc. 2015, 137, 9716–9721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, C.; Fiorito, D.; Mazet, C. Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. J. Am. Chem. Soc. 2019, 141, 16983–16990, For an elegant integration of the methodology in [Pd/Cu]-catalyzed deconjugation isomerization/α-hydroamination sequence. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, J.C.; Buchwald, S.L. Practical Electrophilic Nitrogen Source for the Synthesis of Chiral Primary Amines by Copper-Catalyzed Hydroamination. J. Am. Chem. Soc. 2018, 140, 15976–15984. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Shen, B.; Li, X. Enantioselective Copper-Catalyzed Hydroamination of Vinylarenes with Anthranils. Org. Lett. 2018, 20, 7154–7157. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Engl, O.D.; Bandar, J.S.; Chant, E.D.; Buchwald, S.L. CuH-Catalyzed Asymmetric Hydroamidation of Vinylarenes. Angew. Chem. Int. Ed. 2018, 57, 6672–6675. [Google Scholar] [CrossRef]
- Tobisch, S. Copper hydride-mediated electrophilic amidationof vinylarenes with dioxazolones–a computationalmechanistic study. Dalton Trans. 2019, 48, 14337–14346. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, F.-P.; Schünemann, C.; Holz, J.; Kamer, P.C.J.; Wu, X.-F. Copper-Catalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angew. Chem. Int. Ed. 2020, 59, 22441–22445, For a related Cu-H catalyzed hydroamidation process using CO. [Google Scholar] [CrossRef]
- Ye, Y.; Kim, S.-T.; Jeong, J.; Baik, M.-H.; Buchwald, S.L. CuH-Catalyzed Enantioselective Alkylation of Indole Derivatives with Ligand-Controlled Regiodivergence. J. Am. Chem. Soc. 2019, 141, 3901–3909. [Google Scholar] [CrossRef]
- Ye, Y.; Kevlishvili, I.; Feng, S.; Liu, P.; Buchwald, S.L. Highly Enantioselective Synthesis of Indazoles with a C3-Quaternary Chiral Center Using CuH Catalysis. J. Am. Chem. Soc. 2020, 142, 10550–10556. [Google Scholar] [CrossRef]
- Zhu, S.; Niljianskul, N.; Buchwald, S.L. A Direct Approach to Amines with Remote Stereocentres by Enantioselective CuH-catalysed Reductive Relay Hydroamination. Nat. Chem. 2016, 8, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.-L.; Wong, Z.L.; Buchwald, S.L. Copper-catalysed Enantioselective Stereodivergent Synthesis of Amino Alcohols. Nature 2016, 532, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Zhu, J.; Buchwald, S.L. Enantioselective Synthesis of β-Amino Acid Derivatives Enabled by Ligand-Controlled Reversal of Hydrocupration Regiochemistry. Angew. Chem. Int. Ed. 2020, 59, 20841–20845. [Google Scholar] [CrossRef]
- Shi, S.-L.; Buchwald, S.L. Copper-catalysed Selective Hydroamination Reactions of Alkynes. Nat. Chem. 2015, 7, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Nishino, S.; Hirano, K.; Miura, M. Cu-Catalyzed Reductive gem-Difunctionalization of Terminal Alkynes via Hydrosilylation/Hydroamination Cascade: Concise Synthesis of α-Aminosilanes. Chem. Eur. J. 2020, 26, 8725–8728. [Google Scholar] [CrossRef]
- Arbour, J.L.; Rzepa, H.S.; White, A.J.P.; Hii, K.K.M. Unusual Regiodivergence in Metal-catalysed Intramolecular Cyclisation of γ-Allenols. Chem. Commun. 2009, 7125–7127. [Google Scholar] [CrossRef]
- Chou, T.-H.; Yu, B.H.; Chein, R.-J. ZnI2/Zn(OTf)2-TsOH: A Versatile Combined-acid System for Catalytic Intramolecular Hydrofunctionalization and Polyene Cyclization. Chem. Commun. 2019, 55, 13522–13525. [Google Scholar] [CrossRef]
- Ghobadi, M.; Qhazvini, P.P.; Kazemi, M. Catalytic application of zinc (II) bromide (ZnBr2) in organic synthesis. Synth. Commun. 2020, 50, 3717–3738. [Google Scholar] [CrossRef]
- Li, T.; Wiecko, J.; Roesky, P.W. Zinc-catalyzed hydroamination reactions. In Zinc Catalysis: Applications in Organic Synthesis; Enthaler, S., Wu, X.-F., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 83–118. [Google Scholar]
- Zulys, A.; Dochnahl, M.; Hollmann, D.; Löhnwitz, K.; Herrmann, J.S.; Roesky, P.W.; Blechert, S. Intramolecular hydroamination of functionalized alkenes and alkynes with a homogenous zinc catalyst. Angew. Chem. Int. Ed. 2005, 44, 7794–7798. [Google Scholar] [CrossRef]
- Duncan, C.; Biradar, A.V.; Asefa, T. Aminotroponate/aminotroponiminate zinc complexes functionalized mesoporous silica catalysts for intramolecular hydroamination of non-activated alkenes with varied steric and electronic properties. ACS Catal. 2011, 1, 736–750, For an interesting supported version of aminotroponiminate-/aminotroponate-zinc complexes. [Google Scholar] [CrossRef]
- Chilleck, M.A.; Hartenstein, L.; Braun, T.; Roesky, P.W.; Braun, B. Cationic zinc organyls as precatalysts for hydroamination reactions. Chem. Eur. J. 2015, 21, 2594–2602, For a triple-decker complex [Zn2Cp*3]+ [BArF4]- that demonstrates high catalytic activity in hydroamination without a co-catalyst. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Sen, T.K.; Ghorai, P.K.; Samuel, P.P.; Schulzke, C.; Mandal, S.K. Phenalenyl-based organozinc catalysts for intramolecular hydroamination reactions: A combined catalytic, kinetic, and mechanistic investigation of the catalytic cycle. Chem. Eur. J. 2012, 18, 10530–10545. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sen, T.K.; Ghorai, P.K.; Mandal, S.K. Organozinc catalyst on a phenalenyl scaffold for intramolecular hydroamination of aminoalkenes. Organometallics 2013, 32, 7213–7224. [Google Scholar] [CrossRef]
- Shen, X.-J.; Bu, H.-Z.; Shi, J.; Wu, Z.-G.; Ma, H.-F.; Li, Y.-F. Zn(CF3SO3)2-mediated domino hydroamination-ring cleavage of 2,5-dihydrofuran. Tetrahedron Lett. 2013, 54, 3937–3939. [Google Scholar] [CrossRef]
- Barman, M.K.; Baishya, A.; Nembenna, S. Bulky guanidinate calcium and zinc complexes as catalysts for the intramolecular hydroamination. J. Organomet. Chem. 2019, 887, 40–47. [Google Scholar] [CrossRef]
- Horrillo-Martinez, P.; Hultzsch, K.C. Intramolecular hydroamination/cyclization of aminoalkenes catalysed by diamidobinaphthyl magnesium- and zinc-complexes. Tetrahedron Lett. 2009, 50, 2054–2056. [Google Scholar] [CrossRef]
- Hussein, L.; Purkait, N.; Biyikal, M.; Tausch, E.; Roesky, P.W.; Blechert, S. Highly enantioselective hydroamination to six-membered rings by heterobimetallic catalysts. Chem. Commun. 2014, 50, 3862–3864, For a highly enantioselective cyclization of aminohex-1-ene type substrates by a Zr-based catalyst stabilized by a zinc-salen metalloligand. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocard, L.; Chen, D.; Stadler, A.; Zhang, H.; Gil, R.; Bezzenine, S.; Hannedouche, J. Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021, 11, 674. https://doi.org/10.3390/catal11060674
Rocard L, Chen D, Stadler A, Zhang H, Gil R, Bezzenine S, Hannedouche J. Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts. 2021; 11(6):674. https://doi.org/10.3390/catal11060674
Chicago/Turabian StyleRocard, Lou, Donghuang Chen, Adrien Stadler, Hailong Zhang, Richard Gil, Sophie Bezzenine, and Jerome Hannedouche. 2021. "Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes" Catalysts 11, no. 6: 674. https://doi.org/10.3390/catal11060674
APA StyleRocard, L., Chen, D., Stadler, A., Zhang, H., Gil, R., Bezzenine, S., & Hannedouche, J. (2021). Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts, 11(6), 674. https://doi.org/10.3390/catal11060674