Catalytic Hydrogen Production, Storage and Application
Conflicts of Interest
References
- Qazi, U.Y.; Javaid, R.; Tahir, N.; Jamil, A.; Adeel, A. Design of advanced self-supported electrode by surface modification of copper foam with transition metals for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 3396–33406. [Google Scholar] [CrossRef]
- Javaid, R.; Kawasaki, S.; Ookawara, R.; Sato, K.; Nishioka, M.; Suzuki, A.; Suzuki, T.M. Continuous dehydrogenation of aqueous formic acid under sub-critical conditions by use of hollow tubular reactor coated with thin palladium oxide layer. J. Chem. Eng. Jpn. 2013, 46, 751–758. [Google Scholar] [CrossRef]
- Qazi, U.Y. Silver nanoparticles formation by nanosecond pulsed laser irradiation in an aqueous solution of silver nitrate; effect of sodium bis (2-ethyl hexyl) sulfosuccinate. J. New Mater. Electrochem. Syst. 2021, 24, 38–42. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic hydrogen production from methane: A review on recent progress and prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Yuan, C.Z.; Ullah, N.; Jiang, Y.F.; Imran, M.; Zeb, A.; Zhao, S.J.; Javaid, R.; Xu, A.W. One-step growth of iron-nickel bimetallic nanoparticles on feni alloy foils: Highly efficient advanced electrodes for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 28627–28634. [Google Scholar] [CrossRef] [PubMed]
- Qazi, U.Y.; Javaid, R.; Zahid, M.; Tahir, N.; Afzal, A.; Lin, X.M. Bimetallic NiCo–NiCoO2 nano-heterostructures embedded on copper foam as a self-supported bifunctional electrode for water oxidation and hydrogen production in alkaline media. Int. J. Hydrogen Energy 2021, 46, 18936–18948. [Google Scholar] [CrossRef]
- Ibn Shamsah, S.M. Earth-abundant electrocatalysts for water splitting: Current and future directions. Catalysts 2021, 11, 429. [Google Scholar] [CrossRef]
- Kamatsos, F.; Bethanis, K.; Mitsopoulou, C.A. Synthesis of Novel Heteroleptic Oxothiolate Ni (II) Complexes. Catalysts 2021, 11, 401. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. Effect of reaction conditions and surface characteristics of Ru/CeO2 on catalytic performance for ammonia synthesis as a clean fuel. Int. J. Hydrogen Energy 2020, 46, 18107–18115. [Google Scholar] [CrossRef]
- Javaid, R.; Matsumoto, H.; Nanba, T. Influence of reaction conditions and promoting role of ammonia produced at higher temperature conditions in its synthesis process over Cs-Ru/MgO catalyst. ChemistrySelect 2019, 4, 2218–2224. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. Effect of texture and physical properties of catalysts on ammonia synthesis. Catal. Today 2021, in press. [Google Scholar] [CrossRef]
- Nanba, T.; Nagata, Y.; Kobayashi, K.; Javaid, R.; Atsumi, R.; Nishi, M.; Mochizuki, T.; Manaka, Y.; Kojima, H.; Tsujimura, T.; et al. Explorative study of a Ru/CeO2 catalyst for NH3 synthesis from renewable hydrogen and demonstration of NH3 synthesis under a range of reaction conditions. J. Jpn. Pet. Inst. 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. MgFe2O4-Supported ru catalyst for ammonia synthesis: Promotive effect of chlorine. ChemistrySelect 2020, 5, 4312–4315. [Google Scholar] [CrossRef]
- Javaid, R.; Aoki, Y.; Nanba, T. Highly efficient Ru/MgO–Er2O3 catalysts for ammonia synthesis. J. Phys. Chem. Solids 2020, 146, 109570. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javaid, R. Catalytic Hydrogen Production, Storage and Application. Catalysts 2021, 11, 836. https://doi.org/10.3390/catal11070836
Javaid R. Catalytic Hydrogen Production, Storage and Application. Catalysts. 2021; 11(7):836. https://doi.org/10.3390/catal11070836
Chicago/Turabian StyleJavaid, Rahat. 2021. "Catalytic Hydrogen Production, Storage and Application" Catalysts 11, no. 7: 836. https://doi.org/10.3390/catal11070836
APA StyleJavaid, R. (2021). Catalytic Hydrogen Production, Storage and Application. Catalysts, 11(7), 836. https://doi.org/10.3390/catal11070836