Oxidative Strong Metal–Support Interactions
Abstract
:1. Introduction
2. Definition, Features, and Catalyst Systems of OMSI
- (1)
- Small-molecule of CO or H2 adsorption on metal will be significantly suppressed;
- (2)
- Mass transport that the support would encapsulate metal particles;
- (3)
- Electron transfer from metal to the support resulting in a positively charged metal species;
- (4)
- A reversal of the above phenomena following reduction treatment.
3. Identification and Characterization of OMSI
3.1. Adsorption Behavior
3.2. Mass Transport
3.3. Electron Transfer
4. Application and Influence of OMSI
4.1. Enhancing Catalyst Performance by Tuning the OMSI
4.2. Discoveries Inspired by or Based on OMSI
5. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boudart, M. Catalysis by supported metals. In Advances in Catalysis; Eley, D.D., Pines, H., Weisz, P.B., Eds.; Academic Press: New York, NY, USA, 1969; Volume 20, pp. 153–166. [Google Scholar]
- Cinneide, A.D.O.; Clarke, J.K.A. Catalysis on supported metals. Catal. Rev. 1972, 7, 213–232. [Google Scholar] [CrossRef]
- Bell, A.T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688. [Google Scholar] [CrossRef] [Green Version]
- Fechete, I.; Wang, Y.; Védrine, J.C. The past, present and future of heterogeneous catalysis. Catal. Today 2012, 189, 2–27. [Google Scholar] [CrossRef]
- Solymosi, F. Importance of the electric properties of supports in the carrier effect. Catal. Rev. 1968, 1, 233–255. [Google Scholar] [CrossRef]
- Haruta, M. Nanoparticles can open a new world of heterogeneous catalysis. J. Nanopart. Res. 2003, 5, 3–4. [Google Scholar] [CrossRef]
- Taylor, W.F.; Yates, D.J.C.; Sinfelt, J.H. Catalysis over supported metals II. The effect of the support on the catalytic activity of nickel for ethane hydrogenolysis. J. Phys. Chem. 1964, 68, 2962–2966. [Google Scholar] [CrossRef]
- Vannice, M.A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals. J. Catal. 1975, 40, 129–134. [Google Scholar] [CrossRef]
- Schubert, M.M.; Hackenberg, S.; van Veen, A.C.; Muhler, M.; Plzak, V.; Behm, R.J. CO oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J. Catal. 2001, 197, 113–122. [Google Scholar] [CrossRef]
- Green, I.X.; Tang, W.J.; Neurock, M.; Yates, J.T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 2011, 3, 934–948. [Google Scholar] [CrossRef]
- Vayssilov, G.N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G.P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K.C.; et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310–315. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, A.; Zhang, T.; Mou, C.-Y. Catalysis by gold: New insights into the support effect. Nano Today 2013, 8, 403–416. [Google Scholar] [CrossRef]
- van Deelen, T.W.; Hernández Mejía, C.; de Jong, K.P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C. Strong metal-support interactions—Occurrence among binary oxides of groups IIA-Vb. J. Catal. 1978, 55, 29–35. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Horsley, J.A. A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide. J. Am. Chem. Soc. 1979, 101, 2870–2874. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong-interactions in supported-metal catalysts. Science 1981, 211, 1121–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belton, D.N.; Sun, Y.M.; White, J.M. Encapsulation and electronic effects in a thin-film model of a rhodium-titania catalyst. J. Am. Chem. Soc. 1984, 106, 3059–3060. [Google Scholar] [CrossRef]
- Chung, Y.W.; Xiong, G.X.; Kao, C.C. Mechanism of strong metal support interaction in Ni/TiO2. J. Catal. 1984, 85, 237–243. [Google Scholar] [CrossRef]
- Belton, D.N.; Sun, Y.-M.; White, J.M. Metal-support interactions on Rh and Pt/TiO2 model catalysts. J. Phys. Chem. 1984, 88, 5172–5176. [Google Scholar] [CrossRef]
- Sadeghi, H.R.; Henrich, V.E. SMSI in Rh/TiO2 model catalysts: Evidence for oxide migration. J. Catal. 1984, 87, 279–282. [Google Scholar] [CrossRef]
- Singh, A.K.; Pande, N.K.; Bell, A.T. Electron microscopy study of the interactions of rhodium with titania. J. Catal. 1985, 94, 422–435. [Google Scholar] [CrossRef]
- Anderson, J.B.F.; Burch, R.; Cairns, J.A. The reversibility of strong metal-support interactions—A comparison of Pt/TiO2 and Rh/TiO2 Catalysts. Appl. Catal. 1986, 25, 173–180. [Google Scholar] [CrossRef]
- Tauster, S.J. Strong metal-support interactions. Acc. Chem. Res. 1987, 20, 389–394. [Google Scholar] [CrossRef]
- Logan, A.D.; Braunschweig, E.J.; Datye, A.K.; Smith, D.J. Direct observation of the surfaces of small metal crystallites: Rhodium supported on titania. Langmuir 1988, 4, 827–830. [Google Scholar] [CrossRef]
- Braunschweig, E.J.; Logan, A.D.; Datye, A.K.; Smith, D.J. Reversibility of strong metal-support interactions on Rh/TiO2. J. Catal. 1989, 118, 227–237. [Google Scholar] [CrossRef]
- Haller, G.L.; Resasco, D.E. Metal-support interaction: Group VIII metals and reducible oxides. In Advances in Catalysis; Eley, D.D., Pines, H., Weisz, P.B., Eds.; Academic Press: New York, NY, USA, 1989; Volume 36, pp. 173–235. [Google Scholar]
- Resasco, D.E.; Haller, G.L. A model of metal-oxide support interaction for Rh on TiO2. J. Catal. 1983, 82, 279–288. [Google Scholar] [CrossRef]
- Chen, B.H.; White, J.M. Properties of platinum supported on oxides of titanium. J. Phys. Chem. 1982, 86, 3534–3541. [Google Scholar] [CrossRef]
- Chen, B.H.; White, J.M. Behavior of titanium(3+) centers in the low-temperature reduction of platinum/titania/potassium systems. J. Phys. Chem. 1983, 87, 1327–1329. [Google Scholar] [CrossRef]
- Schierbaum, K.D.; Fischer, S.; Torquemada, M.C.; de Segovia, J.L.; Román, E.; Martín-Gago, J.A. The interaction of Pt with TiO2 (110) surfaces: A comparative XPS, UPS, ISS, and ESD study. Surf. Sci. 1996, 345, 261–273. [Google Scholar] [CrossRef]
- Fu, Q.; Wagner, T.; Olliges, S.; Carstanjen, H.-D. Metal-oxide interfacial reactions: Encapsulation of Pd on TiO2 (110). J. Phys. Chem. B 2005, 109, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Belzunegui, J.P.; Sanz, J.; Rojo, J.M. Contribution of physical blocking and electronic effect to establishment of strong metal support interaction in Rh/TiO2 catalysts. J. Am. Chem. Soc. 1992, 114, 6749–6754. [Google Scholar] [CrossRef]
- Baker, R.T.K.; Prestridge, E.B.; Mcvicker, G.B. The interaction of palladium with alumina and titanium oxide supports. J. Catal. 1984, 89, 422–432. [Google Scholar] [CrossRef]
- Sadeghi, H.R.; Henrich, V.E. Rh on TiO2—Model catalyst studies of the strong metal support interaction. Appl. Surf. Sci. 1984, 19, 330–340. [Google Scholar] [CrossRef]
- Bernal, S.; Botana, F.J.; Calvino, J.J.; Cifredo, G.A.; Pe’rez-Omil, J.A.; Pintado, J.M. HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catal. Today 1995, 23, 219–250. [Google Scholar] [CrossRef]
- Pesty, F.; Steinrück, H.-P.; Madey, T.E. Thermal stability of Pt films on TiO2 (110): Evidence for encapsulation. Surf. Sci. 1995, 339, 83–95. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Y.; Chambers, S.A. Thermal stability and the role of oxygen vacancy defects in strong metal support interaction—Pt on Nb-doped TiO2 (100). Surf. Sci. 1996, 365, 638–648. [Google Scholar] [CrossRef]
- Haller, G.L. New catalytic concepts from new materials: Understanding catalysis from a fundamental perspective, past, present, and future. J. Catal. 2003, 216, 12–22. [Google Scholar] [CrossRef]
- Labich, S.; Taglauer, E.; Knözinger, H. Metal-support interactions on rhodium model catalysts. Top. Catal. 2000, 14, 153–161. [Google Scholar] [CrossRef]
- Zhang, L.; Persaud, R.; Madey, T.E. Ultrathin metal films on a metal oxide surface: Growth of Au on TiO2 (110). Phys. Rev. B 1997, 56, 10549–10557. [Google Scholar] [CrossRef]
- Goodman, D.W. “Catalytically active Au on titania”: Yet another example of a strong metal support interaction (SMSI)? Catal. Lett. 2005, 99, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, M.-H.; Luo, Y.-C.; Mou, C.-Y.; Lin, S.D.; Cheng, H.; Chen, J.-M.; Lee, J.-F.; Lin, T.-S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 2012, 134, 10251–10258. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wei, J.; Liu, F.; Qiao, B.; Pan, X.; Li, L.; Liu, J.; Wang, J.; Zhang, T. Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 2016, 138, 56–59. [Google Scholar] [CrossRef]
- Tang, H.; Su, Y.; Guo, Y.; Zhang, L.; Li, T.; Zang, K.; Liu, F.; Li, L.; Luo, J.; Qiao, B.; et al. Oxidative strong metal-support interactions (OMSI) of supported platinum-group metal catalysts. Chem. Sci. 2018, 9, 6679–6684. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.L.; Liu, F.; Wei, J.K.; Qiao, B.T.; Zhao, K.F.; Su, Y.; Jin, C.Z.; Li, L.; Liu, J.Y.; Wang, J.H.; et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew. Chem. Int. Ed. 2016, 55, 10606–10611. [Google Scholar] [CrossRef]
- Tang, H.L.; Su, Y.; Zhang, B.S.; Lee, A.F.; Isaacs, M.A.; Wilson, K.; Li, L.; Ren, Y.G.; Huang, J.H.; Haruta, M.; et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, J.; Zhu, Y.; Xu, S.; Wang, C.; Bian, C.; Meng, X.; Xiao, F.-S. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017, 7, 7461–7465. [Google Scholar] [CrossRef]
- Du, X.; Huang, Y.; Pan, X.; Han, B.; Su, Y.; Jiang, Q.; Li, M.; Tang, H.; Li, G.; Qiao, B. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811. [Google Scholar] [CrossRef]
- Beck, A.; Huang, X.; Artiglia, L.; Zabilskiy, M.; Wang, X.; Rzepka, P.; Palagin, D.; Willinger, M.-G.; van Bokhoven, J.A. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 2020, 11, 3220. [Google Scholar] [CrossRef] [PubMed]
- Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlogl, R.; Willinger, M.G. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions. Angew. Chem. Int. Ed. 2015, 54, 4544–4548. [Google Scholar] [CrossRef]
- Chung, Y.-W.; Weissbard, W.B. Surface spectroscopy studies of the SrTiO3 (100) surface and the platinum-SrTiO3 (100) interface. Phys. Rev. B 1979, 20, 3456–3461. [Google Scholar] [CrossRef]
- Takatani, S.; Chung, Y.W. Strong metal support interaction in Ni-TiO2—Auger and vibrational spectroscopy evidence for the segregation of TiOx (X-Congruent-to-1) on Ni and its effects on Co chemisorption. J. Catal. 1984, 90, 75–83. [Google Scholar] [CrossRef]
- Polo-Garzon, F.; Blum, T.F.; Bao, Z.; Wang, K.; Fung, V.; Huang, Z.; Bickel, E.E.; Jiang, D.-e.; Chi, M.; Wu, Z. In Situ Strong Metal-Support Interaction (SMSI) Affects Catalytic Alcohol Conversion. ACS Catal. 2021, 11, 1938–1945. [Google Scholar] [CrossRef]
- Zhang, S.; Plessow, P.N.; Willis, J.J.; Dai, S.; Xu, M.J.; Graham, G.W.; Cargnello, M.; Abild-Pedersen, F.; Pan, X.Q. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 2016, 16, 4528–4534. [Google Scholar] [CrossRef]
- Beard, B.C.; Ross, P.N. Pt-Ti alloy formation from high-temperature reduction of a titania-impregnated Pt catalyst—Implications for strong metal support interaction. J. Phys. Chem. 1986, 90, 6811–6817. [Google Scholar] [CrossRef]
- Roberts, S.; Gorte, R.J. A study of the migration and stability of titania on a model Rh catalyst. J. Catal. 1990, 124, 553–556. [Google Scholar] [CrossRef]
- Sanz, J.; Rojo, J.M.; Malet, P.; Munuera, G.; Blasco, M.T.; Conesa, J.C.; Soria, J. Influence of the hydrogen uptake by the support on metal-support interactions in catalysts. Comparison of the rhodium/titanium dioxide and rhodium/strontium titanate (SrTiO3) systems. J. Phys. Chem. 1985, 89, 5427–5433. [Google Scholar] [CrossRef]
- Louis, C.; Lepetit, C.; Che, M. EPR characterization of oxide supported transition metal ions: Relevance to catalysis. Mol. Eng. 1994, 4, 3–38. [Google Scholar] [CrossRef]
- Dyrek, K.; Che, M. EPR as a tool to investigate the transition metal chemistry on oxide surfaces. Chem. Rev. 1997, 97, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Xu, M.; Yang, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zheng, L.; Hong, S.; Wei, M. Auδ−-Ov-Ti3+ interfacial site: Catalytic active center toward low-temperature water gas shift reaction. ACS Catal. 2019, 9, 2707–2717. [Google Scholar] [CrossRef]
- Short, D.R.; Mansour, A.N.; Cook, J.W.; Sayers, D.E.; Katzer, J.R. X-ray absorption edge and extended X-ray absorption fine structure studies of Pt/TiO2 catalysts. J. Catal. 1983, 82, 299–312. [Google Scholar] [CrossRef]
- Qiu, C.; Odarchenko, Y.; Meng, Q.; Cong, P.; Schoen, M.A.W.; Kleibert, A.; Forrest, T.; Beale, A.M. Direct observation of the evolving metal-support interaction of individual cobalt nanoparticles at the titania and silica interface. Chem. Sci. 2020, 11, 13060–13070. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Yang, X.; Duan, H.; Qi, H.; Su, Y.; Liang, B.; Tao, H.; Liu, B.; Chen, D.; et al. Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nat. Commun. 2020, 11, 3185. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew. Chem. Int. Ed. 2017, 56, 10761–10765. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, Y.; Pan, X.; Miao, D.; Ding, D.; Cui, Y.; Dong, J.; Bao, X. Enhanced CO2 methanation activity of Ni/Anatase catalyst by tuning strong metal-support interactions. ACS Catal. 2019, 9, 6342–6348. [Google Scholar] [CrossRef]
- Hernández Mejía, C.; van Deelen, T.W.; de Jong, K.P. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nat. Commun. 2018, 9, 4459. [Google Scholar] [CrossRef]
- Corma, A.; Serna, P.; Concepción, P.; Calvino, J.J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 2008, 130, 8748–8753. [Google Scholar] [CrossRef]
- Kim, M.S.; Chung, S.H.; Yoo, C.J.; Lee, M.S.; Cho, I.H.; Lee, D.W.; Lee, K.Y. Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity. Appl. Catal. B Environ. 2013, 142, 354–361. [Google Scholar] [CrossRef]
- Murata, K.; Kosuge, D.; Ohyama, J.; Mahara, Y.; Yamamoto, Y.; Arai, S.; Satsuma, A. Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion. ACS Catal. 2020, 10, 1381–1387. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, X.; Li, L.; Qi, H.; Yang, C.; Liu, W.; Pan, X.; Liu, X.; Yang, X.; Huang, Y.; et al. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer-Tropsch synthesis. ACS Catal. 2020, 10, 12967–12975. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Yang, X.; Wang, R.; Duan, H.; Shen, Z.; Li, L.; Su, Y.; Yang, R.; Zhang, Y.; et al. Tuning selectivity of CO2 hydrogenation by modulating the strong metal-support interaction over Ir/TiO2 catalysts. Green Chem. 2020, 22, 6855–6861. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Lin, D.; Feng, X.; Niu, Y.; Zhang, B.; Xiao, F.-S. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal. 2021, 4, 418–424. [Google Scholar] [CrossRef]
- Lin, B.; Fang, B.; Wu, Y.; Li, C.; Ni, J.; Wang, X.; Lin, J.; Au, C.-t.; Jiang, L. Enhanced ammonia synthesis activity of ceria-supported ruthenium catalysts induced by CO activation. ACS Catal. 2021, 11, 1331–1339. [Google Scholar] [CrossRef]
- Matsubu, J.C.; Zhang, S.Y.; DeRita, L.; Marinkovic, N.S.; Chen, J.G.G.; Graham, G.W.; Pan, X.Q.; Christopher, P. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 2017, 9, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Peng, X.; Lin, B.; Cao, Y.; Jiang, L. Sacrificial adsorbate strategy achieved strong metal-support interaction of stable Cu nanocatalysts. ACS Appl. Energy Mater. 2018, 1, 1408–1414. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Q.; Jiang, Z.; Mei, B.; Bao, X. Carbide-supported Au catalysts for water-gas shift reactions: A new territory for the strong metal-support interaction effect. J. Am. Chem. Soc. 2018, 140, 13808–13816. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Q.; Li, H.; Xiao, J.; Yang, B.; Zhang, B.; Bai, Y.; Song, T.; Zhang, R.; Gao, L.; et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167–17174. [Google Scholar] [CrossRef]
- Rui, Z.; Chen, L.; Chen, H.; Ji, H. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Ind. Eng. Chem. Res. 2014, 53, 15879–15888. [Google Scholar] [CrossRef]
Classical SMSI | OMSI | |
---|---|---|
typical catalyst system | reducible oxide-supported Au or Pt-group metals | HAP- or ZnO-supported Au or Pt-group metals |
inducing conditions | high-temperature reduction | high-temperature oxidation |
suppression of adsorption | yes | yes |
mass transport (encapsulation) | yes | yes |
electron transfer | support to metal | metal to support |
reversibility | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Tang, H.; Qiao, B. Oxidative Strong Metal–Support Interactions. Catalysts 2021, 11, 896. https://doi.org/10.3390/catal11080896
Du X, Tang H, Qiao B. Oxidative Strong Metal–Support Interactions. Catalysts. 2021; 11(8):896. https://doi.org/10.3390/catal11080896
Chicago/Turabian StyleDu, Xiaorui, Hailian Tang, and Botao Qiao. 2021. "Oxidative Strong Metal–Support Interactions" Catalysts 11, no. 8: 896. https://doi.org/10.3390/catal11080896
APA StyleDu, X., Tang, H., & Qiao, B. (2021). Oxidative Strong Metal–Support Interactions. Catalysts, 11(8), 896. https://doi.org/10.3390/catal11080896