Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates Furfural to Alcohols
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Activity Tests
3. Materials and Methods
3.1. Synthesis of the Catalysts
3.2. Catalyst Characterization
3.3. Catalyst Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US department of energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Wettstein, S.G.; Martin Alonso, D.; Gürbüz, E.I.; Dumesic, J.A. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Chem. Eng. 2012, 1, 218–224. [Google Scholar] [CrossRef]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; López, G. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoydonckx, H.E.; Van Rhijn, W.M.; Van Rhijn, W.; De Vos, D.E.; Jacobs, P.A. Furfural and derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 16, pp. 285–313. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Luque, R.; Sepulveda-Escribano, A. Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 2011, 40, 5266–5281. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.-P.; van der Heide, E.; van Buijtenen, J.; Price, R. Furfural—A promising platform for lignocellulosic biofuels. ChemSusChem 2012, 5, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Climent, M.J.; Corma, A.; Iborra, S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chem. 2014, 16, 516–547. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wang, X.; Cao, Q.; Dong, L.; Guan, J.; Mu, X. Chemical conversion of biomass to green chemicals. In Sustainable Production of Bulk Chemicals; Xian, M., Ed.; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Sitthisa, S.; Pham, T.; Prasomsri, T.; Sooknoi, T.; Mallinson, R.G.; Resasco, D.E. Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd−Cu/SiO2 catalysts. J. Catal. 2011, 280, 17–27. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Yang, Y.; Li, Y.-W.; Jiao, H. Exploring furfural catalytic conversion on Cu(111) from computation. ACS Catal. 2015, 5, 4020–4032. [Google Scholar] [CrossRef]
- Medlin, J.W. Understanding and controlling reactivity of unsaturated oxygenates and polyols on metal catalysts. ACS Catal. 2011, 1, 1284–1297. [Google Scholar] [CrossRef]
- Ni, Z.-M.; Xia, M.-Y.; Shi, W.; Qian, P.-P. Adsorption and decarbonylation reaction of furfural on Pt (111) surface. Acta Phys.-Chim. Sin. 2013, 29, 1916–1922. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, L.; Curtiss, L.; Greeley, J. Effects of van der waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces. Surf. Sci. 2014, 622, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Wan, W.; Chen, J.G. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces. Surf. Sci. 2016, 652, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Bradley, M.K.; Robinson, J.; Woodruff, D.P. The structure and bonding of furan on Pd(111). Surf. Sci. 2010, 604, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Jenness, G.R.; Vlachos, D.G. DFT study of the conversion of furfuryl alcohol to 2-methylfuran on RuO2 (110). J. Phys. Chem. C 2015, 119, 5938–5945. [Google Scholar] [CrossRef]
- Sitthisa, S.; Resasco, D.E. Hydrodeoxygenation of furfural over supported metal catalysts: A comparative study of Cu, Pd and Ni. Catal. Lett. 2011, 141, 784–791. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Y.; Niu, S.; Li, Y. A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts. J. Mol. Catal. A: Chem. 2011, 335, 71–81. [Google Scholar] [CrossRef]
- Fu, X.; Ren, X.; Shen, J.; Jiang, Y.; Wang, Y.; Orooji, Y.; Xu, W.; Liang, J. Synergistic catalytic hydrogenation of furfural to 1,2-pentanediol and 1,5-pentanediol with LDO derived from CuMgAl hydrotalcite. Mol. Catal. 2021, 499, 111298. [Google Scholar] [CrossRef]
- Gavilà, L.; Lähde, A.; Jokiniemi, J.; Constanti, M.; Medina, F.; Del Río, E.; Tichit, D.; Álvarez, M.G. Insights on the one-pot formation of 1,5-pentanediol from furfural with Co-Al spinel-based nanoparticles as an alternative to noble metal catalysts. ChemCatChem 2019, 11, 4944–4953. [Google Scholar] [CrossRef]
- Bertolini, G.R.; Jiménez-Gómez, C.P.; Cecilia, J.A.; Maireles-Torres, P. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu-ZnO-Al2O3 catalysts prepared from layered double hydroxides. Catalysts 2020, 10, 486. [Google Scholar] [CrossRef]
- Herbois, R.; Noël, S.; Léger, B.; Bai, L.; Roucoux, A.; Monflier, E.; Ponchel, A. Cyclodextrins as growth controlling agents for enhancing the catalytic activity of PVP-stabilized Ru(0) nanoparticles. Chem. Commun. 2012, 48, 3451–3453. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, M.; Wang, T.; Xiao, G. Conversion of furfural to cyclopentanol on Cu/Zn/Al catalysts derived from hydrotalcite-like materials. Catal. Lett. 2015, 145, 1557–1565. [Google Scholar] [CrossRef]
- Zhou, M.; Zeng, Z.; Zhu, H.; Xiao, G.; Xiao, R. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts: Model reaction for upgrading bio-oil. J. Energy Chem. 2014, 23, 91–96. [Google Scholar] [CrossRef]
- Guo, J.; Xu, G.; Han, A.; Zhang, Y.; Fu, Y.; Guo, Q. Selective conversion of furfural to cyclopentanone with CuZnAl catalysts. ACS Sustain. Chem. Eng. 2014, 2, 2259–2266. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, M.; Zeng, Z.; Xiao, G.; Xiao, R. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts. Korean J. Chem. Eng. 2014, 31, 593–597. [Google Scholar] [CrossRef]
- Yao, S.; Wang, X.; Jiang, Y.; Wu, F.; Chen, X.; Mu, X. One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni−Co−Al mixed oxide catalysts under mild conditions. ACS Sustain. Chem. Eng. 2014, 2, 173–180. [Google Scholar] [CrossRef]
- Kong, X.; Zheng, R.; Zhu, Y.; Ding, G.; Zhu, Y.; Lia, Y.-W. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chem. 2015, 17, 2504–2514. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, H.; Chu, B.; Qin, Z.; Donga, L.; He, H.; Tang, C.; Fan, M.; Bin, L. Catalytic removal NO by CO over LaNi0.5M0.5O3 (M=Co, Mn, Cu) perovskite oxide catalysts: Tune surface chemical composition to improve N2 selectivity. Chem. Eng. J. 2019, 369, 511–521. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Cook, M.G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 1975, 47, 2208–2213. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992; ISBN 096481241X. [Google Scholar]
- Zhidkov, I.S.; Belik, A.A.; Kukharenko, A.I.; Cholakh, S.O.; Taran, L.S.; Fujimori, A.; Streltsov, S.V.; Kurmaev, E.Z. Cu-Site Disorder in CuAl2O4 as studied by XPS spectroscopy. JETP Lett. 2021, 114, 556–560. [Google Scholar] [CrossRef]
- Monaco, L.; Sodhi, R.N.S.; Palumbo, G.; Erb, U. XPS study on the passivity of coarse-grained polycrystalline and electrodeposited nanocrystalline nickel-iron (NiFe) alloys. Corros. Sci. 2020, 176, 108902. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Koike, M.; Nakagawa, Y.; Tomishige, K. Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Appl. Catal. B Environ. 2011, 102, 528–538. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, F.; Chu, W. Effect of a second metal (Co, Cu, Mn or Zr) on nickel catalysts derived from hydrotalcites for the carbon dioxide reforming of methane. RSC Adv. 2016, 6, 70537. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J. Catal. 2013, 298, 51–60. [Google Scholar] [CrossRef]
- Liu, C.; Guo, X.; Guo, Q.; Mao, D.; Yu, J.; Lu, G. Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2. J. Mol. Catal. A Chem. 2016, 425, 86–93. [Google Scholar] [CrossRef]
- Abelló, S.; Verboekend, D.; Bridier, B.; Pérez-Ramírez, J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. J. Catal. 2008, 259, 85–95. [Google Scholar] [CrossRef]
- Puxley, D.C.; Kitchener, I.J.; Komodromos, D.; Parkyns, N.D. The effect of preparation method upon the structures, stability and metal/support interactions in nickel/alumina catalysts. In Studies in Surface Science and Catalysis; Poncelet, G., Grange, P., Jacobs, P.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; Volume 16, pp. 237–271. [Google Scholar] [CrossRef]
- Clause, O.; Coelho, M.G.; Gazzano, M.; Matteuzzi, D.; Trifirò, F.; Vaccari, A. Synthesis and thermal reactivity of nickel-containing anionic clays. Appl. Clay Sci. 1993, 8, 169–186. [Google Scholar] [CrossRef]
- Abelló, S.; Berrueco, C.; Gispert-Guirado, F.; Montané, D. Synthetic natural gas by direct CO2 hydrogenation on activated takovites: Effect of Ni/Al molar ratio. Catal. Sci. Technol. 2016, 6, 2305–2317. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Q.; Guan, Y.; Wu, P. Facile synthesis of furfuryl ethyl ether in high yield via the reductive etherification of furfural in ethanol over Pd/C under mild conditions. Green Chem. 2018, 20, 2110–2117. [Google Scholar] [CrossRef]
- Selishcheva, S.A.; Smirnov, A.A.; Fedorov, A.V.; Bulavchenko, O.A.; Saraev, A.A.; Lebedev, M.Y.; Yakovlev, V.A. Highly active CuFeAl-containing catalysts for selective hydrogenation of furfural to furfuryl alcohol. Catalysts 2019, 9, 816. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Nielsen, M.R.; Hansen, T.W.; Yang, S.; Riisager, A. Hierarchically constructed NiO with improved performance for catalytic transfer hydrogenation of biomass-derived aldehydes. Catal. Sci. Technol. 2019, 9, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.; Peixoto, A.F.; Arias-Serrano, B.I.; Soares, O.S.G.; Pereira, M.F.; Kubička, D.; Freire, C. Catalytic transfer hydrogenation of furfural over Co3O4-Al2O3 hydrotalcite-derived catalyst. ChemCatChem 2020, 12, 1467–1475. [Google Scholar] [CrossRef]
- Jorge, E.Y.; Lima, T.D.M.; Lima, C.G.; Marchini, L.; Castelblanco, W.N.; Rivera, D.G.; Urquieta-Gonzalez, E.A.; Varma, R.S.; Paixão, M.W. Metal-exchanged magnetic β-zeolites: Valorization of lignocellulosic biomass-derived compounds to platform chemicals. Green Chem. 2017, 19, 3856–3868. [Google Scholar] [CrossRef]
- d′Angelo, J.V.H.; Francesconi, A.Z. Gas-liquid solubility of hydrogen in n-alcohols (1 ≤ n ≤ 4) at pressures from 3.6 MPa to 10 MPa and temperatures from 298.15 K to 525.15 K. J. Chem. Eng. Data 2001, 46, 671–674. [Google Scholar] [CrossRef]
- Abelló, S.; Bolshak, E.; Montané, D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming. Appl. Catal. A Gen. 2013, 450, 261–274. [Google Scholar] [CrossRef]
- Jorgensen, A.D.; Picel, K.C.; Stamoudis, V.C. Prediction of gas chromatography flame ionization detector response factors from molecular structures. Anal. Chem. 1990, 62, 683–689. [Google Scholar] [CrossRef]
- De Saint Laumer, J.-Y.; Leocata, S.; Tissot, E.; Baroux, L.; Kampf, D.M.; Merle, P.; Boschung, A.; Seyfried, M.; Chaintreau, A. Prediction of response factors for gas chromatography with flame ionization detection: Algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites. J. Sep. Sci. 2015, 38, 3209–3217. [Google Scholar] [CrossRef]
Calcined Material | BET Surface Area (m2 g−1) | Pore Volume (mL g−1) | Average Pore Diameter (nm) |
---|---|---|---|
Ni1.5Cu0.5Al1 | 201 | 0.53 | 7.0 |
Ni1Cu1Al1 | 162 | 0.52 | 7.3 |
Ni0.5Cu1.5Al1 | 127 | 0.48 | 7.4 |
FAA | FESEM-EDX | XPS | ||||
---|---|---|---|---|---|---|
Calcined Material | Ni/Al (mol/mol) | Cu/Al (mol/mol) | Ni/Al (mol/mol) | Cu/Al (mol/mol) | Ni/Al (mol/mol) | Cu/Al (mol/mol) |
Ni1.5Cu0.5Al1 | 1.43 | 0.53 | 1.86 | 0.64 | 1.60 | 0.66 |
Ni1Cu1Al1 | 0.98 | 1.04 | 0.90 | 0.91 | 1.19 | 1.27 |
Ni0.5Cu1.5Al1 | 0.49 | 1.47 | 0.47 | 1.48 | 0.67 | 1.57 |
Binding Energy (eV) | ||||||||
---|---|---|---|---|---|---|---|---|
Calcined Material | Ni 2p (NiO) | Ni 2p SU1 (NiO) | Ni 2p SU2 (NiO) | Cu 2p (Cu2O) | Cu 2p (CuO) | Cu 2p SU1 (CuO) | Cu 2p SU2 (CuO) | Al 2p (Al2O3) |
Ni1.5Cu0.5Al1 | 856.0; 854.4 | 861.1 | 865.8 | 932.9 | 934.6 | 940.8 | 943.4 | 73.4 |
Ni1Cu1Al1 | 856.3; 854.6 | 861.1 | 865.8 | 932.7 | 934.4 | 940.7 | 943.3 | 73.4 |
Ni0.5Cu1.5Al1 | 856.6; 854.9 | 861.3 | 866.0 | 933.1 | 934.6 | 940.8 | 943.3 | 73.7 |
Peak 1 | Peak 2 | Total | |||
---|---|---|---|---|---|
Calcined Material | T (K) | H2 (mL g−1 STP) | T (K) | H2 (mL g−1 STP) | H2 (mL g−1 STP) |
Ni1.5Cu0.5Al1 | 474 | 37 | 738 | 85 | 121 |
Ni1Cu1Al1 | 484 | 84 | 714 | 70 | 155 |
Ni0.5Cu1.5Al1 | 525 | 113 | 757 | 19 | 132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldureid, A.; Medina, F.; Patience, G.S.; Montané, D. Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates Furfural to Alcohols. Catalysts 2022, 12, 390. https://doi.org/10.3390/catal12040390
Aldureid A, Medina F, Patience GS, Montané D. Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates Furfural to Alcohols. Catalysts. 2022; 12(4):390. https://doi.org/10.3390/catal12040390
Chicago/Turabian StyleAldureid, Abdulaziz, Francisco Medina, Gregory S. Patience, and Daniel Montané. 2022. "Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates Furfural to Alcohols" Catalysts 12, no. 4: 390. https://doi.org/10.3390/catal12040390
APA StyleAldureid, A., Medina, F., Patience, G. S., & Montané, D. (2022). Ni-Cu/Al2O3 from Layered Double Hydroxides Hydrogenates Furfural to Alcohols. Catalysts, 12(4), 390. https://doi.org/10.3390/catal12040390