Carbon Aerogel-Supported Iron for Gasification Gas Cleaning: Tars Decomposition
Abstract
:1. Introduction
2. Results
2.1. Compositional Analysis of Support
2.2. CAG Surface Characterization
2.3. Particle Size Distribution and Metallic Surface
2.4. Throughput Study on Tar Decomposition over Fe/CAG
2.4.1. Kinetic Measurements
2.4.2. Reaction in Quasi-Real Conditions
3. Discussion
4. Materials and Methods
4.1. CAG Promotor Cellulose Microfibrils
4.2. CAG Preparation
4.3. Preparation of Catalysts
4.4. Compositional Analysis
4.5. N2-Physisorption
4.6. X-ray Diffraction (XRD)
4.7. Transmission Electron Microscopy (TEM)
4.8. Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM–EDX)
4.9. Kinetic Measurements for Tars Decomposition on Fe/CAG
4.10. Evaluation of the Catalytic Performance of Fe/CAG-ps for a Tar Mixture
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Signal’s Angle (°) | Plane | Metal Phase | References |
---|---|---|---|
30 | (220) | Fe3O4 | [57,58] |
35.4 | (311) | FeO | [57,58] |
43 | (400) | Fe3O4 | [57,58] |
44.6 | (110) | Fe0 | [59] |
54 | (422) | Fe3O4 | [57,58] |
56.9 | (511) | Fe3O4 | [57,58] |
62.5 | (440) | FeO | [57,58] |
65 | (220) | Fe0 | [59] |
82.2 | (211) | Fe0 | [59] |
Catalysts | Particle Size (nm) | Pattern Area | |||
---|---|---|---|---|---|
FeO (311) | Fe0 (110) | Fe3O4 (511) | Fe0 (%) | Fex+ (%) | |
Fe/CAG fresh | - | 27.1 | - | ~99 | ~1 |
Fe/CAG 575 °C-990 | 19.7 | 31.7 | 15.2 | 38.3 | 61.7 |
Fe/CAG 600 °C-990 | 21.2 | 29.6 | 17.3 | 51.7 | 48.3 |
Fe/CAG 625 °C-990 | 17.4 | 30.2 | 14.9 | 61.5 | 38.5 |
Fe/CAG 575 °C-1485 | 20.0 | 29.6 | 16.4 | 57 | 43 |
Fe/CAG 600 °C-1485 | 18.7 | 29.6 | 17.3 | 62.9 | 37.1 |
Fe/CAG 625 °C-1485 | 17.0 | 29.3 | 20.0 | 75.5 | 24.5 |
Fe/CAG 575 °C-990 SV 875 | 21.9 | 30.8 | 14.8 | 54.3 | 45.7 |
Fe/CAG 625 °C-990 SV 875 | 20.5 | 30.8 | 14.3 | 77.3 | 22.7 |
Signal’s Angle (°) | Plane | Metal Phase | References |
---|---|---|---|
37.6 | (222) | Fe3O4 | [48] |
39.7 | (109) | γ-Fe2O3 | [48] |
40.6 | (119) | γ-Fe2O3 | [48] |
43 | (400) | Fe3O4 | [57,58] |
43.7 | (202) | α-Fe2O3 | [48] |
44.56 | (102) | Fe3C | [60] |
44.6 | (110) | Fe0 | [59] |
45.8 | (330) | γ-Fe2O3 | [48] |
49.12 | (112) | Fe3C | [60] |
50 | (421) | γ-Fe2O3 | [48] |
51.7 | (00 12) | γ-Fe2O3 | [48] |
54 | (422) | Fe3O4 | [57,58] |
58 | (21 12) | γ-Fe2O3 | [48] |
61.8 | (440) | γ-Fe2O3 | [57,58] |
65 | (220) | Fe0 | [59] |
70.7 | (620) | Fe3O4 | [48] |
78.6 | (133) | Fe3C | [60] |
82.2 | (211) | Fe0 | [59] |
Catalysts | Benzene Flow Inlet (µmol/s) | Benzene Flow Exhaust (µmol/s) | Change (%) |
---|---|---|---|
Fe/CAG-ps 565 °C | 0.00424 | 0.004314 | 1.57 |
Fe/CAG-ps 620 °C | 0.00424 | 0.004310 | 1.47 |
Fe/CAG-ps 665 °C | 0.00424 | 0.004308 | 1.44 |
Fe/CAG-ps 565 °C 10% CO | 0.00424 | 0.004296 | 1.15 |
Fe/CAG-ps 565 °C (pure benzene) | 0.00424 | 0.00390 | −8.01 |
References
- Molino, A.; Larocca, V.; Chianese, S.; Musmarra, D. Biofuels production by biomass gasification: A review. Energies 2018, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Rios, M.L.V.; González, A.M.; Lora, E.E.S.; del Olmo, O.A.A. Reduction of tar generated during biomass gasification: A review. Biomass Bioenergy 2018, 108, 345–370. [Google Scholar] [CrossRef]
- Li, C.; Suzuki, K. Resources, properties and utilization of tar. Resour. Conserv. Recycl. 2010, 54, 905–915. [Google Scholar] [CrossRef]
- Zwart, R.W.R. Gas Cleaning Downstream Biomass Gasification Status Report 2009; ECN SenterNovem: Petten, The Netherlands, 2009. [Google Scholar]
- You, S.; Ok, Y.S.; Tsang, D.C.W.; Kwon, E.E.; Wang, C.H. Towards practical application of gasification: A critical review from syngas and biochar perspectives. Crit. Rev. Environ. Sci. Technol. 2018, 48, 1165–1213. [Google Scholar] [CrossRef] [Green Version]
- Arregi, A.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Convers. Manag. 2018, 165, 696–719. [Google Scholar] [CrossRef]
- Hu, J.; Li, D.; Lee, D.J.; Zhang, Q. Gasification and catalytic reforming of corn straw in closed-loop reactor. Bioresour. Technol. 2019, 282, 530–533. [Google Scholar] [CrossRef]
- Jess, A. Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from Pyrolysis of Solid Fuels. Fuel 1996, 75, 1441–1448. [Google Scholar] [CrossRef]
- Gai, C.; Dong, Y.; Fan, P.; Zhang, Z.; Liang, J.; Xu, P. Kinetic study on thermal decomposition of toluene in a micro fluidized bed reactor. Energy Convers. Manag. 2015, 106, 721–727. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, W.; Sun, J.; Song, Z.; Zhao, X.; Mao, Y. Decomposition of methylbenzene over Fe0/ZSM-5 under microwave irradiation. Catal. Commun. 2017, 96, 63–68. [Google Scholar] [CrossRef]
- Zhang, Y. In-situ IR study for elucidating the adsorption cracking mechanism of toluene over calcined olivine catalyst. Int. J. Hydrogen Energy 2018, 43, 15835–15842. [Google Scholar] [CrossRef]
- Janajreh, I.; Adeyemi, I.; Raza, S.S.; Ghenai, C. A review of recent developments and future prospects in gasification systems and their modeling. Renew. Sustain. Energy Rev. 2021, 138, 110505. [Google Scholar] [CrossRef]
- Ramadhani, B.; Kivevele, T.; Kihedu, J.H.; Jande, Y.A.C. Catalytic tar conversion and the prospective use of iron-based catalyst in the future development of biomass gasification: A review. Biomass Convers. Biorefin. 2020, 12, 1369–1392. [Google Scholar] [CrossRef]
- Rapagnà, S.; Jand, N.; Kiennemann, A.; Foscolo, P.U. Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy 2000, 19, 187–197. [Google Scholar] [CrossRef]
- Abu El-Rub, Z.; Bramer, E.A.; Brem, G. Review of Catalysts for Tar Elimination in Biomass Gasification Processes. Ind. Eng. Chem. Res. 2004, 43, 6911–6919. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Alencar, A.C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. Int. J. Hydrogen Energy 2020, 45, 18114–18132. [Google Scholar] [CrossRef]
- Wang, L.; Li, D.; Koike, M.; Koso, S.; Nakagawa, Y.; Xu, Y.; Tomishige, K. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Appl. Catal. A Gen. 2011, 392, 248–255. [Google Scholar] [CrossRef]
- Min, Z.; Yimsiri, P.; Asadullah, M.; Zhang, S.; Li, C.-Z. Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel 2011, 90, 2545–2552. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, P.; Gao, F.; Ren, Z.; Li, R.; Chen, H.; Ma, X.; Hao, Q. Fuel gas production and char upgrading by catalytic CO2 gasification of pine sawdust char. Fuel 2020, 280, 118686. [Google Scholar] [CrossRef]
- Xu, R.; Kong, X.; Zhang, H.; Ruya, P.M.; Li, X. Destruction of gasification tar over Ni catalysts in a modified rotating gliding arc plasma reactor: Effect of catalyst position and nickel loading. Fuel 2021, 289, 119742. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [Green Version]
- Stevens, D.J. Hot Gas Conditioning: Recent Progress with Larger-Scale Biomass Gasification Systems; OSTI: Washingtion, DC, USA, 2001.
- Virginie, M.; Courson, C.; Niznansky, D.; Chaoui, N.; Kiennemann, A. Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification. Appl. Catal. B Environ. 2010, 101, 90–100. [Google Scholar] [CrossRef]
- Claude, V.; Mahy, J.G.; Douven, S.; Pirard, S.L.; Courson, C.; Lambert, S.D. Ni- and Fe-doped γ-Al2O3 or olivine as primary catalyst for toluene reforming. Mater. Today Chem. 2019, 14, 100197. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Zhang, B.; Khajeh, A.; Shahbazi, A. Iron oxide supported on silicalite-1 as a multifunctional material for biomass chemical looping gasification and syngas upgrading. Chem. Eng. J. 2020, 401, 125943. [Google Scholar] [CrossRef]
- Madadkhani, S.; Burhenne, L.; Bi, X.; Ellis, N.; Grace, J.R.; Lewis, T. Bauxite residue as an iron-based catalyst for catalytic cracking of naphthalene, a model compound for gasification tar. Can. J. Chem. Eng. 2021, 99, 1461–1474. [Google Scholar] [CrossRef]
- Duvenhage, D.J.; Espinoza, R.L.; Coville, N.J. Fischer-Tropsch precipitated iron catalysts: Deactivation studies. Stud. Surf. Sci. Catal. 1994, 88, 351–358. [Google Scholar] [CrossRef]
- Zhang, Y.; Kajitani, S.; Ashizawa, M.; Oki, Y. Tar destruction and coke formation during rapid pyrolysis and gasification of biomass in a drop-tube furnace. Fuel 2010, 89, 302–309. [Google Scholar] [CrossRef]
- Bhandari, P.N.; Kumar, A.; Huhnke, R.L. Simultaneous Removal of Toluene (Model Tar), NH3, and H2S, from Biomass-Generated Producer Gas Using Biochar-Based and Mixed-Metal Oxide Catalysts. Energy Fuels 2013, 28, 1918–1925. [Google Scholar] [CrossRef]
- Korus, A.; Samson, A.; Szle, A.; Katelbach-woz, A.; Sladek, S. Pyrolytic toluene conversion to benzene and coke over activated carbon in a fixed-bed reactor. Fuel 2017, 207, 283–292. [Google Scholar] [CrossRef]
- Fuentes-Cano, D.; Gómez-Barea, A.; Nilsson, S.; Ollero, P. Decomposition kinetics of model tar compounds over chars with different internal structure to model hot tar removal in biomass gasification. Chem. Eng. J. 2013, 228, 1223–1233. [Google Scholar] [CrossRef]
- Meng, Y.; Young, T.M.; Liu, P.; Contescu, C.I.; Huang, B.; Wang, S. Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 2014, 22, 435–447. [Google Scholar] [CrossRef]
- Ábrahám, D.; Nagy, B.; Dobos, G.; Madarász, J.; Onyestyák, G.; Trenikhin, M.V.; László, K. Hydroconversion of acetic acid over carbon aerogel supported molybdenum catalyst. Microporous Mesoporous Mater. 2014, 190, 46–53. [Google Scholar] [CrossRef]
- Perez, L.E.A.; Gómez-Cápiro, O.; Hinkle, A.; Delgado, A.M.; Fernández, C.; Jiménez, R.; Arteaga-Pérez, L.E. Carbon Aerogel-Supported Nickel and Iron for Gasification Gas Cleaning. Part I: Ammonia Adsorption. Catalysts 2018, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Arteaga-Pérez, L.E.; Gómez Cápiro, O.; Romero, R.; Delgado, A.; Olivera, P.; Ronsse, F.; Jimenez, R. In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts. Energy 2017, 128, 701–712. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Jiménez, R.; Grob, N.; Gómez, O.; Romero, R.; Ronsse, F. Catalytic upgrading of biomass-derived vapors on carbon aerogel-supported Ni: Effect of temperature, metal cluster size and catalyst-to-biomass ratio. Fuel Process. Technol. 2018, 178, 251–261. [Google Scholar] [CrossRef]
- Faúndez, J.M.; García, X.A.; Gordon, A.L. Kinetic approach to catalytic pyrolysis of tars. Fuel Process. Technol. 2001, 69, 239–256. [Google Scholar] [CrossRef]
- Mukai, D.; Murai, Y.; Higo, T.; Tochiya, S.; Hashimoto, T.; Sugiura, Y.; Sekine, Y. In situ IR study for elucidating reaction mechanism of toluene steam reforming over Ni/La0.7Sr0.3AlO3-δcatalyst. Appl. Catal. A Gen. 2013, 466, 190–197. [Google Scholar] [CrossRef]
- Kaisalo, N.; Simell, P.A.; Lehtonen, J. Benzene steam reforming kinetics in biomass gasification gas cleaning. Fuel 2016, 182, 696–703. [Google Scholar] [CrossRef]
- Braida, W.J.; Pignatello, J.J.; Lu, Y.; Ravikovitch, P.I.; Neimark, A.V.; Xing, B. Sorption Hysteresis of Benzene in Charcoal Particles. Environ. Sci. Technol. 2003, 37, 409–417. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Watwe, R.M.; Cortright, R.D.; Nørskov, J.K.; Dumesic, J.A. Theoretical Studies of Stability and Reactivity of C2 Hydrocarbon Species on Pt Clusters, Pt(111), and Pt(211). J. Phys. Chem. B 2000, 104, 2299–2310. [Google Scholar] [CrossRef]
- Van Santen, R.A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 2009, 42, 57–66. [Google Scholar] [CrossRef]
- Fogler, H.S. Elementos de Ingeniería de las Reacciones Químicas, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2008; ISBN 9789702611981. [Google Scholar]
- Oemar, U.; Ming Li, A.; Hidajat, K.; Kawi, S. Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3 catalyst. AIChE J. 2014, 60, 4190–4198. [Google Scholar] [CrossRef]
- Devi, L.; Ptasinski, K.J.; Janssen, F.J.J.G. Decomposition of naphthalene as a biomass tar over pretreated olivine: Effect of gas composition, kinetic approach, and reaction scheme. Ind. Eng. Chem. Res. 2005, 44, 9096–9104. [Google Scholar] [CrossRef]
- Duman, G.; Uddin, M.A.; Yanik, J. Hydrogen production from algal biomass via steam gasification. Bioresour. Technol. 2014, 166, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Kazeminezhad, I.; Mosivand, S. Phase transition of electrooxidized Fe3O4 to γ and α-Fe2O3 nanoparticles using sintering treatment. Acta Phys. Pol. A 2014, 125, 1210–1214. [Google Scholar] [CrossRef]
- Spender, J.; Demers, A.L.; Xie, X.; Cline, A.E.; Earle, M.A.; Ellis, L.D.; Neivandt, D.J. Method for production of polymer and carbon nanofibers from water-soluble polymers. Nano Lett. 2012, 12, 3857–3860. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Gómez-Cápiro, O.; Delgado, A.M.; Martín, S.A.; Jiménez, R. Elucidating the role of ammonia-based salts on the preparation of cellulose-derived carbon aerogels. Chem. Eng. Sci. 2017, 161, 80–91. [Google Scholar] [CrossRef]
- ABNT 8112; Carvão Vegetal-Análise Imediata. Associação Brasileira de Normas: Rio de Janeiro, Brazil, 1968.
- De Lange, M.F.; Vlugt, T.J.H.; Gascon, J.; Kapteijn, F. Adsorptive characterization of porous solids: Error analysis guides the way. Microporous Mesoporous Mater. 2014, 200, 199–215. [Google Scholar] [CrossRef]
- Arteaga-Pérez, L.E.; Delgado, A.M.; Flores, M.; Olivera, P.; Matschuk, K.; Hamel, C.; Schulzke, T.; Jiménez, R. Catalytic conversion of model tars over carbon-supported Ni and Fe. Catalysts 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.; Yuan, Z.; Ma, L.; Wu, C.; Chen, Y.; Zhu, J. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renew. Energy 2007, 32, 2173–2185. [Google Scholar] [CrossRef]
- Burhenne, L.; Rochlitz, L.; Lintner, C.; Aicher, T. Technical demonstration of the novel Fraunhofer ISE biomass gasification process for the production of a tar-free synthesis gas. Fuel Process. Technol. 2013, 106, 751–760. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Fennell, P.S.; Shah, N.; Anthony, E.J. Progress in biofuel production from gasification. Prog. Energy Combust. Sci. 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Cheng, W.; Tang, K.; Qi, Y.; Sheng, J.; Liu, Z. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 2010, 20, 1799–1805. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Shao, Q.; Ma, D.; Takahashi, F.; Yoshikawa, K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B Environ. 2014, 152–153, 140–151. [Google Scholar] [CrossRef]
- Lin, W.S.; Lin, H.M.; Chen, H.H.; Hwu, Y.K.; Chiou, Y.J. Shape effects of iron nanowires on hyperthermia treatment. J. Nanomater. 2013, 2013, 237439. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Wan, C.; Liu, J.; Gao, J.; Yu, F.; Zhang, J.; Cai, Z. Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons. Green Chem. 2013, 15, 1631–1640. [Google Scholar] [CrossRef]
Catalyst | C/Fe Ratio |
---|---|
Fe/CAG 575–990 ppm | 7.14 |
Fe/CAG 600–990 ppm | 5.13 |
Fe/CAG 625–990 ppm | 5.58 |
Fe/CAG 575–990 ppm SV 875 | 6.84 |
Fe/CAG 600–990 ppm SV 875 | 6.72 |
Fe/CAG 625–990 ppm SV 875 | 7.22 |
Fe/CAG 625–1485 ppm | 5.97 |
Fe/CAG 625–1979 ppm | 8.71 |
N° | Temperature (°C) | Gases 1 (v/v) |
---|---|---|
1 | 565 | Ar (balance) |
2 | 620 | Ar (balance) |
3 | 660 | Ar (balance) |
4 | 565 | 10% CO, Ar (balance) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cápiro, O.; Matschuk, K.; Schulzke, T.; Jiménez Concepción, R.; Arteaga-Pérez, L.E. Carbon Aerogel-Supported Iron for Gasification Gas Cleaning: Tars Decomposition. Catalysts 2022, 12, 391. https://doi.org/10.3390/catal12040391
Gómez-Cápiro O, Matschuk K, Schulzke T, Jiménez Concepción R, Arteaga-Pérez LE. Carbon Aerogel-Supported Iron for Gasification Gas Cleaning: Tars Decomposition. Catalysts. 2022; 12(4):391. https://doi.org/10.3390/catal12040391
Chicago/Turabian StyleGómez-Cápiro, Oscar, Kimberley Matschuk, Tim Schulzke, Romel Jiménez Concepción, and Luis E. Arteaga-Pérez. 2022. "Carbon Aerogel-Supported Iron for Gasification Gas Cleaning: Tars Decomposition" Catalysts 12, no. 4: 391. https://doi.org/10.3390/catal12040391
APA StyleGómez-Cápiro, O., Matschuk, K., Schulzke, T., Jiménez Concepción, R., & Arteaga-Pérez, L. E. (2022). Carbon Aerogel-Supported Iron for Gasification Gas Cleaning: Tars Decomposition. Catalysts, 12(4), 391. https://doi.org/10.3390/catal12040391