The Preparation of g-C3N4/CoAl-LDH Nanocomposites and Their Depollution Performances in Cement Mortars under UV-Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH Nanocomposites
2.2. Optical and Photoelectric Properties of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH Nanocomposites
2.3. Photocatalytic Depollution Activity of g-C3N4, CoAl-LDH and the g-C3N4/CoAl-LDH Nanocomposites
2.4. Photocatalytic Activity of the g-C3N4/CoAl-LDH Nanocomposites in Cement Mortars
2.4.1. Effect of High Alkalinity of the Cementitious Materials on Photocatalytic Ability
2.4.2. Photocatalytic Performance Investigation in Cement Mortars
2.4.3. Effect of Wearing on NOx Degradation Efficiency
3. Experimental
3.1. Materials
3.2. Preparation of g-C3N4/CoAl-LDH
3.3. Preparation of Photocatalytic Cement Mortars
3.4. Characterization and Measurement
3.5. Photocatalytic Measurement
3.6. Laboratory-Simulated Wearing and Abrasion
4. Conclusions
- (1)
- A group of g-C3N4/CoAl-LDH nanocomposites with unique flower-like microsphere structures were synthesized through coprecipitation method. The microstructures of the g-C3N4/CoAl-LDH nanocomposites were affected by g-C3N4 content.
- (2)
- Formation of the heterojunction in the g-C3N4/CoAl-LDH nanocomposites was demonstrated. The g-C3N4/CoAl-LDH nanocomposites exhibited overall better photocatalytic performances than pure g-C3N4 and CoAl-LDH. A higher content of g-C3N4 leads to an increase in crystallinity, specific surface area, light response range, and electron–hole separation rate. The photocatalytic capacity of the g-C3N4/CoAl-LDH nanocomposites is enhanced accordingly.
- (3)
- A higher photocatalytic capacity was found in the g-C3N4/CoAl-LDH cement mortar than in the g-C3N4 cement mortar in view of NOx degradation. A sufficient combination of g-C3N4 with LDH can effectively accelerate the separation and transfer of photo-induced carriers, and also prevent the reduction in photocatalytic ability caused by the high alkalinity of cementitious materials.
- (4)
- The g-C3N4/CoAl-LDH photocatalytic cement mortars, including those fabricated by internal mixing, coating, and spraying, can effectively degrade NOx pollutant in a relatively short period under UV-visible light, and they all present good wear.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lasek, J.; Yu, Y.H.; Wu, J.C. Removal of NOx by photocatalytic processes. Photochem. Photobiol. 2013, 14, 29–52. [Google Scholar] [CrossRef]
- Yang, L.; Hakki, A.; Wang, F.; Macphee, D.E. Different roles of water in photocatalytic DeNOx mechanisms on TiO2: Basis for engineering nitrate selectivity? Appl. Mater. Interfaces 2017, 9, 17034–17041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugrañez, R.; Álvarez, J.I.; Cruz-Yusta, M.; Mármol, I.; Morales, J.; Vila, J.; Sánchez, L. Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide. Build. Environ. 2013, 69, 55–63. [Google Scholar] [CrossRef]
- Vulic, T.; Rudic, O.; Hadnadjev-Kostic, M.; Radeka, M.; Marinkovic-Neducin, R.; Ranogajec, J. Improvement of cement-based mortars by application of photocatalytic active Ti–Zn–Al nanocomposites. Cem. Concr. Compos. 2013, 36, 121–127. [Google Scholar] [CrossRef]
- Macphee, D.; Folli, A. Photocatalytic concretes—The interface between photocatalysis and cement chemistry. J. Cem. Concr. Res. 2016, 85, 48–54. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.; Hou, P.; Ye, Z. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construct. Build. Mater. 2015, 81, 35–41. [Google Scholar] [CrossRef]
- Yousefi, A.; Allahverdi, A.; Hejazi, P. Effective dispersion of nano-TiO2 powder for enhancement of photocatalytic properties in cement mixes. Construct. Build. Mater. 2013, 41, 224–230. [Google Scholar] [CrossRef]
- Liu, P.; Gao, Y.; Wang, F.; Zhang, W.; Yang, L.; Yang, J.; Liu, Y. Photocatalytic activity of Portland cement loaded with 3D hierarchical Bi2WO6 microspheres under UV-visible light. Construct. Build. Mater. 2016, 120, 42–47. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under UV-visible light. J. Nat. Mater. 2009, 8, 76. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? J. Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121. [Google Scholar] [CrossRef] [PubMed]
- Mamba, G.; Mishra, A. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of UV-visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Guo, S.E.; Deng, Z.P.; Li, M.X.; Jiang, B.J.; Tian, C.G.; Pan, Q.J.; Fu, H.G. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. J. Angew. Chem. Int. Ed. 2016, 55, 1830–1834. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Han, C.C.; Liu, J.; Li, Y.F. Enhanced UV-visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. J. Appl. Catal. A General. 2011, 409–410, 215–222. [Google Scholar] [CrossRef]
- Yuan, B.; Chu, Z.; Li, G.Y.; Jiang, Z.H.; Hu, T.J.; Wang, Q.H.; Wang, C.H. Water-soluble ribbon-like graphitic carbon nitride (g-C3N4): Green synthesis, self-assembly and unique optical properties. J. Mater. Chem. C 2014, 2, 8212–8215. [Google Scholar] [CrossRef]
- Liu, W.; Wang, M.; Xu, C.; Chen, S.; Fu, X. Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. J. Mol. Catal. A Chem. 2013, 368–369, 9–15. [Google Scholar] [CrossRef]
- Yang, N.; Li, G.; Wang, W.; Yang, X.; Zhang, W.F. Photophysical and enhanced daylight photocatalytic properties of N-doped TiO2/g-C3N4 composites. J. Phys. Chem. Solids 2011, 72, 1319–1324. [Google Scholar] [CrossRef]
- Peng, F.; Ni, Y.; Zhou, Q.; Kou, J.H.; Lu, C.H.; Xu, Z.Z. New g-C3N4 based photocatalytic cement with enhanced visible-light photocatalytic activity by constructing muscovite sheet/SnO2 structures. Construct. Build. Mater. 2018, 179, 315–325. [Google Scholar] [CrossRef]
- Parida, K.; Mohapatra, L. Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light. Dalton Trans. 2012, 41, 1173e8. [Google Scholar] [CrossRef]
- Kumar, S.; Durndell, L.J.; Manayil, J.C.; Isaacs, M.A.; Parlett, C.M.A.; Karthikeyan, S.; Douthwaite, R.E.; Coulson, B.; Wilson, K.; Lee, A.F. Delaminated CoAl-ayered double hydroxide@TiO2 heterojunction nanocomposites for photocatalytic reduction of CO2. Part. Part. Syst. Charact. 2017, 35, 1700317. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Ning, F.; Wei, M.; Evans, D.G.; Duan, X. Hierarchical Nanowire Arrays Based on ZnO Core -Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting. Adv. Funct. Mater. 2014, 24, 580–586. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, L.; Wang, T.; Liu, X.; Li, C. Improved photocatalytic activity of Ni2P/NiCo-LDH composites via a Co–P bond charge transfer channel to degrade tetracycline under UV-visible light. J. Alloy. Compd. 2021, 852, 156963. [Google Scholar] [CrossRef]
- Yang, Z.; Fischer, H.; Polder, R. Modified Hydrotalcites as A New Emerging Class of Smart Additive of Reinforced Concrete for Anti-Corrosion Applications: A Literature Review. Mater. Corros. 2013, 64, 1066–1074. [Google Scholar] [CrossRef]
- Yang, Z.; Fischer, H.; Polder, R. Synthesis and Characterisation of Modified Hydrotalcites and Their Ion Exchange Characteristics in Chloride-rich Simulated Concrete Pore Solution. Cem. Concr. Compos. 2014, 47, 87–93. [Google Scholar] [CrossRef]
- Yang, Z.; Fischer, H.; Polder, R. Laboratory Investigation of the Influence of Two Types of Modified Hydrotalcites on Chloride Ingress into Cement Mortar. Cem. Concr. Compos. 2015, 58, 105–113. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Xu, C.; Yang, P.; Ng, D.H.L.; Song, P.; Zuo, M. Hierarchically porous MoS2/CoAl-LDH/HCF with synergistic adsorption photocatalytic performance under UV-visible light irradiation. J. Alloys Compd. 2017, 698, 852e62. [Google Scholar] [CrossRef]
- Sanati, S.; Rezvani, Z. g-C3N4 nanosheet@CoAl-layered double hydroxide composites for electrochemical energy storage in supercapacitors. J. Chem. Eng. 2019, 362, 743–757. [Google Scholar] [CrossRef]
- Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 2018, 10, 2667–2678. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, J.; Bing, X.; Ng, D.H.L.; Cui, X.L.; Ji, F.; Kionga, D.D. ZnCr-LDH/N-doped graphitic carbonincorporated g-C3N4 2D/2D nanosheet heterojunction with enhanced charge transfer for photocatalysis. J. Mater. Res. Bull. 2018, 102, 379–390. [Google Scholar] [CrossRef]
- Shi, J.; Li, S.; Wang, F.; Gao, L.N.; Li, Y.M.; Zhang, X.R.; Lu, J. 2D/2D g-C3N4/MgFe MMO nanosheets heterojunctions with enhanced visible-light photocatalytic H2 production. J. Alloys Compd. 2018, 769, 611–619. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, S.; Pal, B. Freely standing MgAl-layered double hydroxides nanosheets and their derived metal oxides on g-C3N4 thin-layer designed for obtaining synergic effect of adsorption and photocatalysis. J. Appl. Clay Sci. 2019, 178, 105131. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Wang, Z.C. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Zhang, R.; Evans, D.G.; Duan, X. Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps. J. Chem. Mater. 2002, 14, 4286–4291. [Google Scholar] [CrossRef]
- Lin, B.; An, H.; Yan, X.; Zhang, T.; Wei, J.; Yang, G. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. J. Appl. Catal. B Environ. 2017, 210, 173–183. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Huang, W.; Kong, Q.; Fan, X.; Wang, M.; Shi, J. N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under UV-visible light. Carbon 2016, 99, 111–117. [Google Scholar] [CrossRef]
- Duan, H.Z.; Zeng, H.Y.; Xiao, H.M.; Chen, C.R.; Xiao, G.F.; Zhao, Q. Optimization of ammonia nitrogen removal by SO42− intercalated hydrotalcite using response surface methodology. J. RSC Adv. 2016, 6, 48329–48335. [Google Scholar] [CrossRef]
- Jo, W.K.; Tonda, S. Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with noTable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants. J. Hazard. Mater. 2019, 368, 778–787. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous Ge and Si. J. Mat. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Jo, W.K.; Kumar, S.; Yadav, P.; Tonda, S. In situ phase transformation synthesis of unique Janus Ag2O/Ag2CO3 heterojunction photocatalyst with improved photocatalytic properties. Appl. Surf. Sci. 2018, 445, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guan, W.; Sun, Y.; Dong, F.; Zhou, Y.; Ho, W.K. Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale 2015, 7, 2471–2479. [Google Scholar] [CrossRef]
- Yang, X.; Qian, F.; Zou, G.; Li, M.L.; Lu, J.R.; Li, Y.M.; Bao, M. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under UV-visible light irradiation. J. Appl. Catal. B Environ. 2016, 193, 22–35. [Google Scholar] [CrossRef]
- Guo, S.; Chi, L.; Zhao, T.; Nan, Y.B.; Sun, X.; Huang, Y.L.; Hou, B.R.; Wang, X.T. Construction of MOF/TiO2 nanocomposites with efficient visible-light-driven photocathodic protection. J. Electro. Chem. 2021, 880, 114915. [Google Scholar] [CrossRef]
- Van Pham, V.; Mai, D.Q.; Bui, D.P.; Man, T.V.; Zhu, B.C.; Zhang, L.Y.; Sangkawore, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T.M. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ. Pollut. 2021, 286, 117510. [Google Scholar] [CrossRef] [PubMed]
- Vinh, T.H.T.; Thi, C.M.; Van Viet, P. Enhancing photocatalysis of NO gas degradation over g-C3N4 modified α-Bi2O3 microrods composites under visible light. Mater. Lett. 2020, 281, 128637. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Dang, M.; Wang, Y.; Zhang, B.X.; Ren, H.J.; Lv, L.; Xia, A. Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4− x heterojunction for photocatalytic NO removal and organic pollutant degradation. J. Colloid Interface Sci. 2021, 582, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Z.; Li, S.Q.; Xiao, J.Y. Synergetic Effect of Na–Ca for Enhanced Photocatalytic Performance in NOx Degradation by g-C3N4. Catal. Lett. 2021, 151, 370–381. [Google Scholar] [CrossRef]
- Luo, J.; Dong, G.; Zhu, Y.; Yang, Z.; Wang, C. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. Appl. Catal. B Environ. 2017, 214, 46–56. [Google Scholar] [CrossRef]
- Hu, J.; Chen, D.; Li, N.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Appl. Catal. B Environ. 2018, 236, 45–52. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin. J. Catal. 2021, 42, 69–77. [Google Scholar] [CrossRef]
- Yang, L.; Wang, P.; Yin, J.; Wang, C.Y.; Dong, G.H.; Wang, Y.H.; Ho, W.K. Engineering of reduced graphene oxide on nanosheet–g-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance. Appl. Catal. B Environ. 2019, 250, 42–51. [Google Scholar] [CrossRef]
- Zhou, Q. Preparation and Properties of Cementitious Carbon Nitride Composite Photocatalytic Materials. Master’s Thesis, Nanjing University of Technology, Nanjing, China, 2017. [Google Scholar]
- Pan, D.; Zhang, J.; Li, Z.; Wu, M.H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Qian, H.; Liu, P.F.; Ma, J.Y. Fabrication of durability superhydrophobic LDH coating on zinc sheet surface via NH4F-assisted in-situ growth and post-modification for enhancing anti-corrosion and anti-icing. Appl. Clay Sci. 2019, 180, 105182. [Google Scholar] [CrossRef]
- Italian Standards UNI 11259:2008; Determination of the Photocatalytic Activity of Hydraulic Binders-Rodammina Test Method. Ente Nazionale Italiano di Unificazione: Milan, Italy, 2008.
- Gauvin, F.; Caprai, V.; Yu, Q.L.; Brouwers, H.J.H. Effect of the morphology and pore structure of porous building materials on photocatalytic oxidation of air pollutants. J. Appl. Catal. B Environ. 2018, 227, 123–131. [Google Scholar] [CrossRef]
Sample | Crystallite Size (nm) | a (nm) | c (nm) |
---|---|---|---|
g-C3N4/CoAl-LDH0.75 | 3.034 | 3.079 | 22.790 |
g-C3N4/CoAl-LDH1.25 | 2.930 | 3.079 | 22.906 |
g-C3N4/CoAl-LDH1.5 | 2.615 | 3.076 | 22.907 |
Photocatalyst | NO (ppm) | Amount (mg) | Degradation Rate η(%) | Incident Light (nm) | References |
---|---|---|---|---|---|
g-C3N4/CoAl-LDH1.5 | 0.5 | 25 | 89.62 | 320~780 nm | This work |
g-C3N4/SnO2 | 0.5 | 200 | 44.17 | >325 nm | [43] |
Bi2O3/g-C3N4 | 0.5 | 200 | 39.1 | \ | [44] |
W18O49/g-C3N4−x | 0.6 | 50 | 83.55 | Simulated sunlight | [45] |
GNC−0.3 (Na–Ca co-doped g-C3N4) | 1.339 | 300 | 59.1 | >400 nm | [46] |
p-type g-C3N4 | 0.6 | 50 | 80 | >420 nm | [47] |
g-C3N4 QDs/InVO4 | 0.6 | 50 | 65 | Visible light | [48] |
Sb2WO6/g-C3N4 | 0.4 | 50 | 68 | Visible light | [49] |
g-C3N4/PI/rGO | 0.6 | 20 | 60 | >420 nm | [50] |
Sample | g-C3N4 (g/L) | Al(NO3)3·9H2O (mol) | Co(NO3)2·6H2O (mol) | Urea (mol) | NH4F (g/L) |
---|---|---|---|---|---|
CoAl-LDH | 0 | 0.0075 | 0.0225 | 0.27 | 1 |
g-C3N4/CoAl-LDH0.75 | 0.75 | 0.0075 | 0.0225 | 0.27 | 1 |
g-C3N4/CoAl-LDH1.25 | 1.25 | 0.0075 | 0.0225 | 0.27 | 1 |
g-C3N4/CoAl-LDH1.5 | 1.5 | 0.0075 | 0.0225 | 0.27 | 1 |
Sample | Cement (g) | Sand (g) | g-C3N4/CoAl-LDH (g) | g-C3N4 (g) | w/c |
---|---|---|---|---|---|
MC | 152 | 450 | 0.2 | 0.5 | |
ML | 170 | 450 | 0.05 | 0.5 | |
MM | 150 | 450 | 0.37 | 0.5 | |
CNMM | 150 | 450 | 0.37 | 0.5 |
Parameter | Value |
---|---|
Temperature (°C) | 25 |
Relative humidity (%) | 50 |
Initial NO concentration (ppmv) | 0.5 |
Flow rate of gas mixtures (L/min) | 3 |
Light intensity on the sample surface (mW/cm2) | 85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Yang, Z.; Lu, L.; Xu, J.; Wang, W.; Yang, C. The Preparation of g-C3N4/CoAl-LDH Nanocomposites and Their Depollution Performances in Cement Mortars under UV-Visible Light. Catalysts 2022, 12, 443. https://doi.org/10.3390/catal12040443
Huang M, Yang Z, Lu L, Xu J, Wang W, Yang C. The Preparation of g-C3N4/CoAl-LDH Nanocomposites and Their Depollution Performances in Cement Mortars under UV-Visible Light. Catalysts. 2022; 12(4):443. https://doi.org/10.3390/catal12040443
Chicago/Turabian StyleHuang, Mengya, Zhengxian Yang, Lin Lu, Jiankun Xu, Wencheng Wang, and Can Yang. 2022. "The Preparation of g-C3N4/CoAl-LDH Nanocomposites and Their Depollution Performances in Cement Mortars under UV-Visible Light" Catalysts 12, no. 4: 443. https://doi.org/10.3390/catal12040443
APA StyleHuang, M., Yang, Z., Lu, L., Xu, J., Wang, W., & Yang, C. (2022). The Preparation of g-C3N4/CoAl-LDH Nanocomposites and Their Depollution Performances in Cement Mortars under UV-Visible Light. Catalysts, 12(4), 443. https://doi.org/10.3390/catal12040443