Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Characterization
2.2. Catalytic Properties
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Cu2O
3.3. Synthesis of Cu2O@Cu-BDC-NH2
3.4. Synthesis of Cu-BDC-NH2 Nanosheets
3.5. Characterization
3.6. Catalytic Tests for Selective Oxidation of Styrene
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrade, M.A.; Martins, L.M.D.R. Selective Styrene Oxidation to Benzaldehyde over Recently Developed Heterogeneous Catalysts. Molecules 2021, 26, 1680. [Google Scholar] [CrossRef] [PubMed]
- Bhanushali, J.T.; Kainthla, I.; Keri, R.S.; Nagaraja, B.M. Catalytic Hydrogenation of Benzaldehyde for Selective Synthesis of Benzyl Alcohol: A Review. Chemistryselect 2016, 1, 3839–3853. [Google Scholar] [CrossRef]
- Liu, L.; He, W.; Fang, Z.; Yang, Z.; Guo, K.; Wang, Z. From Core-Shell to Yolk-Shell: Improved Catalytic Performance toward CoFe2O4@ Hollow@ Mesoporous TiO2 toward Selective Oxidation of Styrene. Ind. Eng. Chem. Res. 2020, 59, 19938–19951. [Google Scholar] [CrossRef]
- Sheng, J.; Li, W.; Wang, Y.; Lu, W.; Yan, B.; Qiu, B.; Gao, X.; Cheng, S.; He, L.; Lu, A. Coproduction of Styrene and Benzaldehyde over a Boron Nitride-Supported Monomeric MoOx Catalyst. J. Catal. 2021, 400, 265–273. [Google Scholar] [CrossRef]
- Li, Z.; Di, M.; Zhang, Y.; Zhang, B.; Zhang, Z.; Zhang, Z.; Li, A.; Qiao, S. Covalent Triazine Frameworks with Palladium Nanoclusters as Highly Efficient Heterogeneous Catalysts for Styrene Oxidation. ACS Appl. Polym. Mater. 2022, 4, 1047–1054. [Google Scholar] [CrossRef]
- Yang, R.A.; Sarazen, M.L. Reaction Pathways and Deactivation Mechanisms of Isostructural Cr and Fe MIL-101 During Liquid-Phase Styrene Oxidation by Hydrogen Peroxide. Catal. Sci. Technol. 2021, 11, 5282–5296. [Google Scholar] [CrossRef]
- Das, D.R.; Kalita, P.; Talukdar, A.K. Ti/Cr Incorporated Mesoporous MCM-48 for Oxidation of Styrene to Benzaldehyde. J. Porous. Mat. 2020, 27, 893–903. [Google Scholar] [CrossRef]
- Escande, V.; Petit, E.; Garoux, L.; Boulanger, C.; Grison, C. Switchable Alkene Epoxidation/Oxidative Cleavage with H2O2/NaHCO3: Efficient Heterogeneous Catalysis Derived from Biosourced Eco-Mn. ACS Sustain. Chem. Eng. 2015, 3, 2704–2715. [Google Scholar] [CrossRef]
- Gao, Y.; Xing, C.; Hu, S.; Zhang, S. In Situ Exsolved Au Nanoparticles from Perovskite Oxide for Efficient Epoxidation of Styrene. J. Mater. Chem. A 2021, 9, 10374–10384. [Google Scholar] [CrossRef]
- Bregante, D.T.; Flaherty, D.W. Periodic Trends in Olefin Epoxidation over Group IV and V Framework-Substituted Zeolite Catalysts: A Kinetic and Spectroscopic Study. J. Am. Chem. Soc. 2017, 139, 6888–6898. [Google Scholar] [CrossRef]
- Yuan, K.; Song, T.; Wang, D.; Zou, Y.; Li, J.; Zhang, X.; Tang, Z.; Hu, W. Bimetal-Organic Frameworks for Functionality Optimization: MnFe-MOF-74 as a Stable and Efficient Catalyst for the Epoxidation of Alkenes with H2O2. Nanoscale 2018, 10, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liang, X.; Bi, R.; Liu, Y.; He, Y.; Feng, J.; Li, D. Highly Efficient CuCr-MMO Catalyst for a Base-Free Styrene Epoxidation with H2O2 as the Oxidant: Synergistic Effect Between Cu and Cr. Dalton Trans. 2019, 48, 16402–16411. [Google Scholar] [CrossRef]
- Tan, K.; Iqbal, A.; Adam, F.; Abu Bakar, N.H.H.; Ahmad, M.N.; Yusop, R.M.; Pauzi, H. Influence of Mg/CTAB Ratio on the Structural, Physicochemical Properties and Catalytic Activity of Amorphous Mesoporous Magnesium Silicate Catalysts. RSC Adv. 2019, 9, 38760–38771. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Wang, H.; Lu, B.; Zhao, J.; Cai, Q. SO42–-Fe-V/ZrO2 Composite for Selective Oxidation of Styrene to Benzaldehyde in H2O2 Aqueous Solution. Ind. Eng. Chem. Res. 2020, 59, 4411–4418. [Google Scholar] [CrossRef]
- Paul, B.; Sharma, S.K.; Khatun, R.; Adak, S.; Singh, G.; Joshi, V.; Poddar, M.K.; Bordoloi, A.; Sasaki, T.; Bal, R. Development of Highly Efficient and Durable Three-Dimensional Octahedron NiCo2O4 Spinel Nanoparticles toward the Selective Oxidation of Styrene. Ind. Eng. Chem. Res. 2019, 58, 18168–18177. [Google Scholar] [CrossRef]
- Jurca, B.; Tirsoaga, A.; Granger, P.; Parvulescu, V.I. Impact of Deactivation Phenomena on Kinetics of the C-N Coupling Reaction over Supported Cu2O Catalysts in Continuous-Flow Conditions. J. Phys. Chem. C 2015, 119, 18422–18433. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, H.; Luan, D.; Lou, X. Exposing Unsaturated Cu1-O2 Sites in Nanoscale Cu-MOF for Efficient Electrocatalytic Hydrogen Evolution. Sci. Adv. 2021, 7, eabg2580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, G.; Yang, M.; Luan, Y.; Dong, W.; Dang, R.; Gao, H.; Yu, J. Synthesis of a Fe3O4-CuO@ meso-SiO2 Nanostructure as a Magnetically Recyclable and Efficient Catalyst for Styrene Epoxidation. Catal. Sci. Technol. 2014, 4, 3082–3089. [Google Scholar] [CrossRef]
- Wu, H.; Kong, X.Y.; Wen, X.; Chai, S.P.; Lovell, E.C.; Tang, J.; Ng, Y.H. Metal-Organic Framework Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4. Angew. Chem. Int. Edit. 2021, 60, 8455–8459. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Dao, X.; Cheng, X.; Sun, W. Cu2O@Cu@UiO-66-NH2 Ternary Nanocubes for Photocatalytic CO2 Reduction. ACS Appl. Nano Mater. 2020, 3, 10437–10445. [Google Scholar] [CrossRef]
- Tombesi, A.; Pettinari, C. Metal Organic Frameworks as Heterogeneous Catalysts in Olefin Epoxidation and Carbon Dioxide Cycloaddition. Inorganics 2021, 9, 81. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal-Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allendorf, M.D.; Stavila, V.; Witman, M.; Brozek, C.K.; Hendon, C.H. What Lies beneath a Metal-Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. J. Am. Chem. Soc. 2021, 143, 6705–6723. [Google Scholar] [CrossRef] [PubMed]
- Cirujano, F.G.; Martin, N.; Wee, L.H. Design of Hierarchical Architectures in Metal-Oganic Frameworks for Catalysis and Adsorption. Chem. Mater. 2020, 32, 10268–10295. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, W.; Luan, Y.; Yang, M.; Tan, L.; Guo, Y.; Gao, H.; Tang, Y.; Dang, R.; Li, J.; et al. Highly Efficient Sulfonated-Polystyrene-Cu(II)@Cu3(BTC)2 Core-Shell Microsphere Catalysts for Base-free Aerobic Oxidation of Alcohols. J. Mater. Chem. A 2015, 3, 4266–4273. [Google Scholar] [CrossRef]
- Jatoi, Y.F.; Fiaz, M.; Athar, M. Synthesis of Efficient TiO2/Al2O3@Cu(BDC) Composite for Water Splitting and Photodegradation of Methylene Blue. J. Aust. Ceram. Soc. 2021, 57, 489–496. [Google Scholar] [CrossRef]
- Alamgholiloo, H.; Zhang, S.; Ahadi, A.; Rostamnia, S.; Banaei, R.; Li, Z.; Liu, X.; Shokouhimehr, M. Synthesis of Bimetallic 4-PySI-Pd@Cu(BDC) via Open Metal Site Cu-MOF: Effect of Metal and Support of Pd@Cu-MOFs in H2 Generation from Formic Acid. Mol. Catal. 2019, 467, 30–37. [Google Scholar] [CrossRef]
- Huang, K.; Xu, Y.; Wang, L.; Wu, D. Heterogeneous Catalytic Wet Peroxide Oxidation of Simulated Phenol Wastewater by Copper Metal-Organic Frameworks. RSC Adv. 2015, 5, 32795–33283. [Google Scholar] [CrossRef]
- Silva, B.C.E.; Irikura, K.; Frem, R.C.G.; Zanoni, M.V.B. Effect of Cu(BDC-NH2) MOF Deposited on Cu/Cu2O Electrode and Its Better Performance in Photoelectrocatalytic Reduction of CO2. J. Electroanal. Chem. 2021, 880, 114856. [Google Scholar] [CrossRef]
- Jiang, D.; Xue, J.; Wu, L.; Zhou, W.; Zhang, Y.; Li, X. Photocatalytic Performance Enhancement of CuO/Cu2O Heterostructures for Photodegradation of Organic Dyes: Effects of CuO Morphology. Appl. Catal. B Environ. 2017, 211, 199–204. [Google Scholar] [CrossRef]
- Gou, L.; Murphy, C.J. Solution-Phase Synthesis of Cu2O Nanocubes. Nano Lett. 2003, 3, 231–234. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, C.W.; Sohn, J.H.; Lee, K.J.; Jung, M.H.; Kim, M.G.; Kang, Y.S. Ferromagnetism of Single-Crystalline Cu2O Induced through Poly(N-viny-l-2-pyrrolidone) Interaction Triggering d-Orbital Alteration. J. Phys. Chem. C 2015, 119, 13350–13356. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220. [Google Scholar] [CrossRef]
- Hua, Q.; Cao, T.; Gu, X.; Lu, J.; Jiang, Z.; Pan, X.; Luo, L.; Li, W.; Huang, W. Crystal-Plane-Controlled Selectivity of Cu2O Catalysts in Propylene Oxidation with Molecular Oxygen. Angew. Chem. Int. Edit. 2014, 53, 4856–4861. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Fan, L.; Zhao, F.; Huang, Z.; Chen, B.; Yang, X.; Zhou, S. Fabrication of Ultrathin 2D Cu-BDC Nanosheets and the Derived Integrated MOF Nanocomposites. Adv. Funct. Mater. 2019, 29, 1806720. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Zhao, H.; Li, A.; Luo, L.; Guo, L. Subnano-FeOx Clusters Anchored in an Ultrathin Amorphous Al2O3 Nanosheet for Styrene Epoxidation. ACS Catal. 2021, 11, 11542–11550. [Google Scholar] [CrossRef]
- Vithalani, R.; Patel, D.S.; Modi, C.K.; Sharma, V.; Jha, P.K. Graphene Oxide Supported Oxovanadium (IV) Complex for Catalytic Peroxidative Epoxidation of Styrene: An Eye-Catching Impact of Solvent. Appl. Organomet. Chem. 2020, 34, e5500. [Google Scholar] [CrossRef]
- Tan, K.; Iqbal, A.; Adam, F.; Abu Bakar, N.H.H.; Yusop, R.M.; Ahmad, M.N. Synthesis and Characterization of Bubble Wrap-like Hollow Barium Silicate-Carbonate Nanospheres for the Epoxidation of Styrene. J. Mater. Res. Technol. 2020, 9, 11087–11098. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Jian, P.; Jian, R. Highly Selective Oxidation of Styrene to Benzaldehyde over A Tailor-Made Cobalt Oxide Encapsulated Zeolite Catalyst. J. Colloid Interf. Sci. 2018, 517, 144–154. [Google Scholar] [CrossRef]
- Liu, B.; Wang, P.; Lopes, A.; Jin, L.; Zhong, W.; Pei, Y.; Sui, S.L.; He, J. Au-Carbon Electronic Interaction Mediated Selective Oxidation of Styrene. ACS Catal. 2017, 7, 3483–3488. [Google Scholar] [CrossRef]
- Fu, H.; Huang, K.; Yang, G.; Cao, Y.; Wang, H.; Peng, F.; Wang, Q.; Yu, H. Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene. ACS Catal. 2019, 10, 129–137. [Google Scholar] [CrossRef]
- Walker, K.L.; Dornan, L.M.; Zare, R.N.; Waymouth, R.M.; Muldoon, M.J. Mechanism of Catalytic Oxidation of Styrenes with Hydrogen Peroxide in the Presence of Cationic Palladium(II) Complexes. J. Am. Chem. Soc. 2017, 139, 12495–12503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, B.K.; Moitra, D.; Chandel, M.; Lulla, H.; Ghosh, N.N. Ag Nanoparticle Immobilized Mesoporous TiO2-Cobalt Ferrite Nanocatalyst: A Highly Active, Versatile, Magnetically Separable and Reusable Catalyst. Mater. Res. Bull. 2017, 94, 361–370. [Google Scholar] [CrossRef]
- Gunam Resul, M.F.M.; López Fernández, A.M.; Rehman, A.; Harvey, A.P. Development of a Selective, Solvent-Free Epoxidation of Limonene Using Hydrogen Peroxide and a Tungsten-Based Catalyst. React. Chem. Eng. 2018, 3, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yang, Z.; Lu, S.; Su, L.; Wang, C.; Huang, J.; Zhou, J.; Tang, J.; Huang, M. Nano-Porous Bimetallic CuCo-MOF-74 with Coordinatively Unsaturated Metal sites for Peroxymonosulfate Activation to Eliminate Organic Pollutants: Performance and Mechanism. Chemosphere 2021, 273, 129643. [Google Scholar] [CrossRef] [PubMed]
Year | Catalysts | Conversion (%) | Selectivity (%) | Temp. (°C) | Time (h) | Ref. | |
---|---|---|---|---|---|---|---|
Benzaldehyde | Styrene Oxide | ||||||
2022 | Cu2O@Cu-BDC-NH2 | 85 | 76 | 40 | 10 | This work | |
2022 | DCP-CTF@Pd-MC | 95 | 95 | 65 | 8 | [5] | |
2021 | Al2O3-FeOx | 80 | - | 80 | 60–85 | 6 | [37] |
2020 | Ti-MCM-48 | 78.9 | 85.2 | 60 | 12 | [7] | |
2020 | CoFe2O4/TiO2 | 96.3 | 46.6 | 90 | 12 | [3] | |
2020 | SO42−-Fe-V/ZrO2 | 62.3 | 74 | 80 | 4 | [14] | |
2019 | CuCr-MMO | 82.8 | - | 79.7 | 60 | 5 | [12] |
2019 | NiCo2O4 | 78 | 30 | 67 | 70 | 10 | [15] |
Entry | Catalyst | Reaction Time (h) | Conversion (%) | Selectivity (%) |
---|---|---|---|---|
1 | — | 10 | 19 | 72 |
2 | Cu2O | 10 | 31 | 82 |
3 | Cu2O@Cu-BDC-NH2-4h | 10 | 38 | 78 |
4 | Cu2O@Cu-BDC-NH2-8h | 10 | 85 | 76 |
5 | Cu2O@Cu-BDC-NH2-12h | 10 | 88 | 65 |
6 | Cu2O@Cu-BDC-NH2-20h | 10 | 91 | 56 |
7 | Cu-BDC-NH2 | 10 | 92 | 43 |
Entry | Solvent | Dielectric Constant | Boiling Point (°C) | Conversion (%) | Selectivity (%) |
---|---|---|---|---|---|
1 | CH3CN | 37.5 | 82 | 85 | 76 |
2 | DMF | 37.6 | 153 | 93 | 58 |
3 | Methanol | 33.6 | 64 | 72 | 46 |
4 | Ethanol | 24.3 | 78 | 69 | 75 |
5 | Acetone | 20.7 | 56 | 38 | 81 |
Entry | Catalyst | Conversion (%) | Selectivity (%) | |
---|---|---|---|---|
Benzaldehyde | Styrene Oxide | |||
1 | od-Cu2O@Cu-BDC-NH2 | 85 | 76 | 7 |
2 | cod-Cu2O@Cu-BDC-NH2 | 83 | 64 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Tang, X.; Wang, P.; Zhao, Z.; Ba, X.; Jiang, Y.; Zhang, X. Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene. Catalysts 2022, 12, 487. https://doi.org/10.3390/catal12050487
Han M, Tang X, Wang P, Zhao Z, Ba X, Jiang Y, Zhang X. Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene. Catalysts. 2022; 12(5):487. https://doi.org/10.3390/catal12050487
Chicago/Turabian StyleHan, Mengyi, Xue Tang, Peng Wang, Zhiyong Zhao, Xiaohua Ba, Yu Jiang, and Xiaowei Zhang. 2022. "Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene" Catalysts 12, no. 5: 487. https://doi.org/10.3390/catal12050487
APA StyleHan, M., Tang, X., Wang, P., Zhao, Z., Ba, X., Jiang, Y., & Zhang, X. (2022). Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene. Catalysts, 12(5), 487. https://doi.org/10.3390/catal12050487