Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Activities and Stability
2.2. Morphological and Textural Properties
2.3. Surface Chemical Properties
2.4. Reducibility
2.5. In Situ DRIFTs
3. Materials and Methods
3.1. Preparation of Catalysts
3.2. Catalytic Oxidation Activity Tests
3.3. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katare, S.R.; Patterson, J.E.; Laing, P.M. Diesel aftertreatment modeling: A systems approach to NOx control. Ind. Eng. Chem. Res. 2007, 46, 2445–2454. [Google Scholar] [CrossRef]
- Haaß, F.; Fuess, H. Structural characterization of automotive catalysts. Adv. Eng. Mater. 2005, 7, 899–913. [Google Scholar] [CrossRef]
- Russell, A.; Epling, W.S. Diesel oxidation catalysts. Catal. Rev. 2011, 53, 337–423. [Google Scholar] [CrossRef]
- Walker, A. Future challenges and incoming solutions in emission control for heavy duty diesel vehicles. Top. Catal. 2016, 59, 695–707. [Google Scholar] [CrossRef]
- Pârvulescu, V.I.; Grange, P.; Delmon, B. Catalytic removal of NO. Catal. Today 1998, 46, 233–316. [Google Scholar] [CrossRef]
- Li, Z.; Dai, S.; Ma, L.; Qu, Z.; Yan, N.; Li, J. Synergistic interaction and mechanistic evaluation of NO oxidation catalysis on Pt/Fe2O3 cubes. Chem. Eng. J. 2021, 413, 127447. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Mulla, S.; Weigert, E.; Camm, K.; Ballinger, T.; Cox, J.; Blakeman, P. Cold start concept (CSC™): A novel catalyst for cold start emission control. SAE Int. J. Fuels Lubr. 2013, 6, 372–381. [Google Scholar] [CrossRef]
- Zammit, M.; DiMaggio, C.L.; Kim, C.H.; Lambert, C.; Muntean, G.G.; Peden, C.H.; Parks, J.E.; Howden, K. Future Automotive Aftertreatment Solutions: The 150 °C Challenge Workshop Report. Available online: https://cleers.org/wp-content/uploads/2012_The_150C_Challenge_Workshop_Report.pdf (accessed on 18 April 2022).
- Liotta, L.F.; Wu, H.; Pantaleo, G.; Venezia, A.M. Co3O4 nanocrystals and Co3O4–MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures: A review. Catal. Sci. Technol. 2013, 3, 3085–3102. [Google Scholar] [CrossRef]
- Xie, X.; Li, Y.; Liu, Z.-Q.; Haruta, M.; Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Wang, Y.-G.; Chen, X.; Yu, W.; Sun, K.; Sun, H.; Li, J.; Schwank, J.W. Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts. Appl. Catal. B Environ. 2020, 267, 118371. [Google Scholar] [CrossRef]
- Ma, L.; Geng, Y.; Chen, X.; Yan, N.; Li, J.; Schwank, J.W. Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chem. Eng. J. 2020, 402, 125911. [Google Scholar] [CrossRef]
- Ma, L.; Seo, C.Y.; Chen, X.; Sun, K.; Schwank, J.W. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust. Appl. Catal. B Environ. 2018, 222, 44–58. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatla, S.; Aubert, D.; Agostini, G.; Mathon, O.; Pascarelli, S.; Lunkenbein, T.; Willinger, M.G.; Kaper, H. Room-temperature CO oxidation catalyst: Low-temperature metal–support interaction between platinum nanoparticles and nanosized ceria. ACS Catal. 2016, 6, 6151–6155. [Google Scholar] [CrossRef]
- DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G.W.; Pan, X.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165. [Google Scholar] [CrossRef]
- Lewandowski, M.; Sun, Y.N.; Qin, Z.H.; Shaikhutdinov, S.; Freund, H.J. Promotional effect of metal encapsulation on reactivity of iron oxide supported Pt catalysts. Appl. Catal. A Gen. 2011, 391, 407–410. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, Z.; Dong, F.; Zhang, J. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation. Mol. Catal. 2019, 463, 77–86. [Google Scholar] [CrossRef]
- Zhao, S.; Li, T.; Lin, J.; Wu, P.; Li, Y.; Li, A.; Chen, T.; Zhao, Y.; Chen, G.; Yang, L.; et al. Engineering Co3+-rich crystal planes on Co3O4 hexagonal nanosheets for CO and hydrocarbons oxidation with enhanced catalytic activity and water resistance. Chem. Eng. J. 2021, 420, 130448. [Google Scholar] [CrossRef]
- Niu, H.; Wu, Z.; Hu, Z.-T.; Chen, J. Imidazolate-mediated synthesis of hierarchical flower-like Co3O4 for the oxidation of toluene. Mol. Catal. 2021, 503, 111434. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.-S.; Chen, B.; Zhu, X.; Shi, C.; Zhu, A.-M. CO oxidation activity at room temperature over Au/CeO2 catalysts: Disclosure of induction period and humidity effect. ACS Catal. 2014, 4, 3481–3489. [Google Scholar] [CrossRef]
- Gélin, P.; Urfels, L.; Primet, M.; Tena, E. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: Influence of water and sulphur containing compounds. Catal. Today 2003, 83, 45–57. [Google Scholar] [CrossRef]
- Indarto, A. Heterogeneous reactions of HONO formation from NO2 and HNO3: A review. Res. Chem. Intermed. 2012, 38, 1029–1041. [Google Scholar] [CrossRef]
- Willinger, M.G.; Zhang, W.; Bondarchuk, O.; Shaikhutdinov, S.; Freund, H.-J.; Schlögl, R. A case of strong metal–support interactions: Combining advanced microscopy and model systems to elucidate the atomic structure of interfaces. Angew. Chem. Int. Ed. 2014, 53, 5998–6001. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Cabrera-German, D.; Gomez-Sosa, G.; Herrera-Gomez, A. Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: Cobalt spinel. Surf. Interface Anal. 2016, 48, 252–256. [Google Scholar] [CrossRef]
- Langell, M.A.; Kim, J.G.; Pugmire, D.L.; McCarroll, W. Nature of oxygen at rocksalt and spinel oxide surfaces. J. Vac. Sci. Technol. A 2001, 19, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Bai, B.; Arandiyan, H.; Li, J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts. Appl. Catal. B Environ. 2013, 142-143, 677–683. [Google Scholar] [CrossRef]
- Zhou, Y.; Perket, J.M.; Zhou, J. Growth of Pt nanoparticles on reducible CeO2(111) thin films: Effect of nanostructures and redox properties of ceria. J. Phys. Chem. C 2010, 114, 11853–11860. [Google Scholar] [CrossRef]
- Hüfner, S.; Wertheim, G.K. Core-line asymmetries in the X-ray-photoemission spectra of metals. Phys. Rev. B 1975, 11, 678–683. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, F.; Li, J. Hierarchical core–shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion. ACS Catal. 2016, 6, 3433–3441. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, Y.; Zhou, H.; Huang, W.; Zheng, Y.; Li, X. Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts. Appl. Surf. Sci. 2017, 422, 85–93. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Ma, L.; Bhat, A.; Li, Y.; Schwank, J.W. Effect of Ce and La dopants in Co3O4 nanorods on the catalytic activity of CO and C3H6 oxidation. Catal. Sci. Technol. 2019, 9, 1165–1177. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, H.C. Size-controlled growth of Co3O4 nanocubes. Chem. Mater. 2003, 15, 2829–2835. [Google Scholar] [CrossRef]
- Lin, H.-K.; Wang, C.-B.; Chiu, H.-C.; Chien, S.-H. In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide. Catal. Lett. 2003, 86, 63–68. [Google Scholar] [CrossRef]
- Hertl, W. Infrared spectroscopic study of catalytic oxidation reactions over cobalt oxide under steady-state conditions. J. Catal. 1973, 31, 231–242. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I.; Vayssilov, G.N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 2002, 47, 307–511. [Google Scholar]
- Finocchio, E.; Busca, G.; Lorenzelli, V.; Escribano, V.S. FTIR studies on the selective oxidation and combustion of light hydrocarbons at metal oxide surfaces. Part 2.—Propane and propene oxidation on Co3O4. J. Chem. Soc. Faraday Trans. 1996, 92, 1587–1593. [Google Scholar] [CrossRef]
- Busca, G.; Lamotte, J.; Lavalley, J.C.; Lorenzelli, V. FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces. J. Am. Chem. Soc. 1987, 109, 5197–5202. [Google Scholar] [CrossRef]
- Zaera, F.; Chrysostomou, D. Propylene on Pt(111). Surf. Sci. 2000, 457, 71–88. [Google Scholar] [CrossRef]
- Li, Z.; Geng, Y.; Ma, L.; Chen, X.; Li, J.; Chang, H.; Schwank, J.W. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption. Front. Environ. Sci. Eng. 2020, 14, 65. [Google Scholar] [CrossRef]
- Ho, P.H.; Woo, J.-W.; Feizie Ilmasani, R.; Han, J.; Olsson, L. The role of Pd–Pt interactions in the oxidation and sulfur resistance of bimetallic Pd–Pt/γ-Al2O3 diesel oxidation catalysts. Ind. Eng. Chem. Res. 2021, 60, 6596–6612. [Google Scholar] [CrossRef]
- Glover, L.; Douglas, R.; McCullough, G.; Keenan, M.; Revereault, P.; McAtee, C. Performance characterisation of a range of diesel oxidation catalysts: effect of Pt:Pd ratio on light off behaviour and nitrogen species formation. SEA Int. 2011. [Google Scholar] [CrossRef]
- Hazlett, M.J.; Moses-Debusk, M.; Parks II, J.E.; Allard, L.F.; Epling, W.S. Kinetic and mechanistic study of bimetallic Pt-Pd/Al2O3 catalysts for CO and C3H6 oxidation. Appl. Catal. B Environ. 2017, 202, 404–417. [Google Scholar] [CrossRef] [Green Version]
Samples | Binding Energy (eV) | FWHM (eV) | Relative Area (%) | Assignment | |
---|---|---|---|---|---|
Co 2p3/2 | Pt/Co3O4-F | 779.4 | 1.47 | 42.1 | Co2+ and Co3+ |
780.6 | 1.72 | 27.2 | Co3+ | ||
781.9 | 2.16 | 18.1 | Co2+ | ||
785.7 | 6.97 | 8.9 | Shake-up satellite | ||
789.9 | 2.73 | 3.7 | Shake-up satellite | ||
Co 2p3/2 | Co3O4-F | 779.1 | 1.47 | 44.4 | Co2+ and Co3+ |
780.3 | 1.73 | 28.7 | Co3+ | ||
781.6 | 2.14 | 15.5 | Co2+ | ||
784.9 | 4.98 | 6.5 | Shake-up satellite | ||
789.3 | 3.01 | 4.9 | Shake-up satellite | ||
O 1s | Pt/Co3O4-F | 529.9 | 0.97 | 49.9 | Lattice oxygen in spinel |
531.2 | 2.72 | 50.1 | Chemisorbed and surface oxygen | ||
O 1s | Co3O4-F | 529.5 | 0.94 | 61.4 | Lattice oxygen in spinel |
530.9 | 2.6 | 38.6 | Chemisorbed and surface oxygen |
Catalysts | Deconvoluted Peaks | Peak Area Ratio of II/I | ||
---|---|---|---|---|
Peak No. | Center (°C) | Area | ||
Co3O4-F | I | 281.9 | 1.15 | 3.29 |
310.3 | 1.31 | |||
340.7 | 2.73 | |||
II | 392.5 | 6.10 | ||
431.0 | 8.48 | |||
460.2 | 2.51 | |||
Pt/Co3O4-F | I | 110.0 | 2.32 | 1.90 |
136.2 | 2.60 | |||
160.1 | 3.01 | |||
II | 256.4 | 7.33 | ||
318.5 | 5.54 | |||
353.7 | 2.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, X.; Chen, J.; Chang, H.; Ma, L.; Yan, N. Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust. Catalysts 2022, 12, 527. https://doi.org/10.3390/catal12050527
Li Z, Chen X, Chen J, Chang H, Ma L, Yan N. Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust. Catalysts. 2022; 12(5):527. https://doi.org/10.3390/catal12050527
Chicago/Turabian StyleLi, Zihao, Xianhuai Chen, Jinghuan Chen, Huazhen Chang, Lei Ma, and Naiqiang Yan. 2022. "Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust" Catalysts 12, no. 5: 527. https://doi.org/10.3390/catal12050527
APA StyleLi, Z., Chen, X., Chen, J., Chang, H., Ma, L., & Yan, N. (2022). Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust. Catalysts, 12(5), 527. https://doi.org/10.3390/catal12050527