Zero-Valent Copper-Mediated Peroxymonosulfate Activation for Efficient Degradation of Azo Dye Orange G
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Analytical Method
2.3. Degradation Experiment
3. Results and Analysis
3.1. Characterization
3.2. Catalytic Performance of ZVC
3.3. Quenching Experiment
3.4. Effect of Initial OG Concentration
3.5. Effect of PMS Concentration
3.6. Effect of Catalyst Dosage
3.7. Effect of Co-existing Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, S.; Vasquez, L.; Costa, D.; Santos, A. Oxidation of Orange G by persulfate activated by Fe (II), Fe (III) and zero valent iron (ZVI). Chemosphere 2014, 101, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, V.; Karthika, T.S.; Mansiya, C.; Alagar, M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 2021, 1224, 129195. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Peng, H.; Yang, J.C.E.; Fu, M.L.; Yuan, B. Nanocrystalline ferrihydrite activated peroxymonosulfate for butyl-4-hydroxybenzoate oxidation: Performance and mechanism. Chemosphere 2020, 242, 125140. [Google Scholar] [CrossRef]
- Mahdi-Ahmed, M.; Chiron, S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J. Hazard. Mater. 2014, 265, 41–46. [Google Scholar] [CrossRef]
- Liu, G.; Li, C.; Stewart, B.A.; Liu, L.; Zhang, M.; Yang, M.; Lin, K. Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid. Chem. Eng. J. 2020, 399, 125722. [Google Scholar] [CrossRef]
- Wei, Z.; Villamena, F.A.; Weavers, L.K. Kinetics and mechanism of ultrasonic activation of persulfate: An in situ EPR spin trapping study. Environ. Sci. Technol. 2017, 51, 3410–3417. [Google Scholar] [CrossRef]
- Xu, X.R.; Li, X.Z. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep. Purif. Technol. 2010, 72, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.C.; Lo, S.L.; Kuo, J.; Huang, C.H. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. J. Hazard. Mater. 2013, 261, 463–469. [Google Scholar] [CrossRef]
- Segura, Y.; Martínez, F.; Melero, J.; Fierro, J. Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chem. Eng. J. 2015, 269, 298–305. [Google Scholar] [CrossRef]
- Liang, C.; Guo, Y.-Y. Mass Transfer and Chemical Oxidation of Naphthalene Particles with Zerovalent Iron Activated Persulfate. Environ. Sci. Technol. 2010, 44, 8203–8208. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, P.; Fu, Q.; Li, R.; He, C.; Yao, W.; Wang, L.; Xie, S.; Xie, Z.; Ma, J.; et al. Strong degradation of orange II by activation of peroxymonosulfate using combination of ferrous ion and zero-valent copper. Sep. Purif. Technol. 2021, 278, 119509. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, J.; Liu, J.; Zhang, Y.; Liang, J.; Liu, Y.; Liu, B.; Zhang, W. Degradation of organic contaminants by activated persulfate using zero valent copper in acidic aqueous conditions. RSC Adv. 2016, 6, 99532–99539. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.; Zeng, H.; Liang, Y.; Ma, J.; Lu, X. Ultrasound-enhanced zero-valent copper activation of persulfate for the degradation of bisphenol AF. Chem. Eng. J. 2019, 378, 122143. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, J.; Zhang, Y.; Zhang, G.; Li, W.; Wei, C.; Liang, J.; Liu, Y.; Shu, S. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J. Hazard. Mater. 2018, 344, 1209–1219. [Google Scholar] [CrossRef]
- Giri, A.K.; Mukherjee, A.; Talukder, G.; Sharma, A. In vivo cytogenetic studies on mice exposed to Orange G, a food colourant. Toxicol. Lett. 1988, 44, 253–261. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, J.; Yang, B.; Huang, W.; Ma, L. Copper–catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: The mechanism and superoxide-mediated cycling of copper species. Chemosphere 2017, 166, 89–95. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Zhou, Y.; Zhu, W.; Jiang, L.-P.; Lin, Y. Controlled synthesis of EDTA-modified porous hollow copper microspheres for high-efficiency conversion of CO2 to multicarbon products. Nano Lett. 2020, 20, 4823–4828. [Google Scholar] [CrossRef]
- Du, H.; Liu, L.-X.; Cai, Y.; Wang, Y.; Zhang, J.-R.; Min, Q.; Zhu, W. In situ formed N-containing copper nanoparticles: A high-performance catalyst toward carbon monoxide electroreduction to multicarbon products with high faradaic efficiency and current density. Nanoscale 2022, 14, 7262–7268. [Google Scholar] [CrossRef]
- Liu, J.; Cai, Y.; Song, R.; Ding, S.; Lyu, Z.; Chang, Y.-C.; Tian, H.; Zhang, X.; Du, D.; Zhu, W.; et al. Recent progress on single-atom catalysts for CO2 electroreduction. Mater. Today 2021, 48, 95–114. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, K.; Zhou, H.; Hu, Y.; Sergei, P.; Wu, H.; Wei, C. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater. J. Environ. Manag. 2018, 224, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, Y.; Quan, X.; Chen, S. Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep. Purif. Technol. 2010, 71, 302–307. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Wen, G.; Wang, S.-J.; Ma, J.; Huang, T.-L.; Liu, Z.-Q.; Zhao, L.; Xu, J.-L. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. J. Hazard. Mater. 2015, 275, 193–199. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH /•O− in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef]
- Duan, S.; Hou, P.; Yuan, X.; Stanić, M.H.; Qiang, Z.; Dong, H. Homogeneous activation of bisulfite by transition metals for micro-pollutant degradation: Mn(VII) versus Cr(VI). Chem. Eng. J. 2020, 394, 124814. [Google Scholar] [CrossRef]
- Yuan, R.; Ramjaun, S.N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011, 196, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, Y.; Lu, B.; Xiao, B.; Chen, R.; Liu, H. Efficient activation of peroxymonosulfate and degradation of Orange G in iron phosphide prepared by pickling waste liquor. Chemosphere 2021, 269, 129398. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Li, Z.; Zhang, S. Zero-Valent Copper-Mediated Peroxymonosulfate Activation for Efficient Degradation of Azo Dye Orange G. Catalysts 2022, 12, 700. https://doi.org/10.3390/catal12070700
Yu B, Li Z, Zhang S. Zero-Valent Copper-Mediated Peroxymonosulfate Activation for Efficient Degradation of Azo Dye Orange G. Catalysts. 2022; 12(7):700. https://doi.org/10.3390/catal12070700
Chicago/Turabian StyleYu, Bowen, Zhijun Li, and Silu Zhang. 2022. "Zero-Valent Copper-Mediated Peroxymonosulfate Activation for Efficient Degradation of Azo Dye Orange G" Catalysts 12, no. 7: 700. https://doi.org/10.3390/catal12070700
APA StyleYu, B., Li, Z., & Zhang, S. (2022). Zero-Valent Copper-Mediated Peroxymonosulfate Activation for Efficient Degradation of Azo Dye Orange G. Catalysts, 12(7), 700. https://doi.org/10.3390/catal12070700