Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Catalytic Performance of Catalysts
2.2.1. Effect of Different Reaction Systems
2.2.2. Effect of Calcination Temperature
2.2.3. Effect of Catalyst Dosage
2.2.4. Effect of PMS Dosage
2.2.5. Effect of Initial pH
2.2.6. Effect of Different Anions
2.3. Versatility and Reusability of CoAl2O4
2.4. Activation Mechanism
2.5. Toxicity Evaluation
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of CoAl2O4
3.3. Characterization
3.4. Experimental Procedure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, K.D.; Chen, X.L.; Yan, D.K.; Xu, Z.C.; Hu, P.J.; Li, H.S. Petrochemical and municipal wastewater treatment plants activated sludge each own distinct core bacteria driven by their specific incoming wastewater. Sci. Total Environ. 2022, 826, 153962. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.H.; Chen, M.L.; Xiong, Z.K.; Guo, Y.; Lai, B. Highly efficient degradation of emerging contaminants by magnetic CuO@FexOy derived from natural mackinawite (FeS) in the presence of peroxymonosulfate. Chin. Chem. Lett. 2021, 33, 948–952. [Google Scholar] [CrossRef]
- Manos, D.; Miserli, K.; Konstantinou, I. Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems. Catalysts 2020, 10, 1299. [Google Scholar] [CrossRef]
- Azhar, M.R.; Vijay, P.; Tadé, M.O.; Sun, H.Q.; Wang, S.B. Submicron sized water-stable metal organic framework (bio-MOF-11) for catalytic degradation of pharmaceuticals and personal care products. Chemosphere 2018, 196, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Nie, G.; Ding, Y.B. Metal-free enhanced photocatalytic activation of dioxygen by g-C3N4 doped with abundant oxygen-containing functional groups for selective N-deethylation of Rhodamine B. Catalysts 2019, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.N.; Zhang, F.; Li, J.; Li, D.B.; Liu, D.F.; Li, W.W.; Yu, H.Q. Exclusive extracellular bioreduction of methyl orange by azo reductase-free geobacter sulfurreducens. Environ. Sci. Technol. 2017, 51, 8616–8623. [Google Scholar] [CrossRef]
- Minella, M.; Bertinetti, S.; Hanna, K.; Minero, C.; Vione, D. Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). Environ. Res. 2019, 179, 108750. [Google Scholar] [CrossRef]
- Li, C.Q.; Huang, Y.; Dong, X.B.; Sun, Z.M.; Duan, X.D.; Ren, B.X.; Zheng, S.L.; Dionysiou, D.D. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine. Appl. Catal. B-Environ. 2019, 247, 10–23. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gan, P.F.; Zhao, Z.W.; Ye, J.Y.; Liu, W.; Tong, M.P.; Liang, J.L. Insight into the synergetic effect of photocatalysis and transition metal on sulfite activation: Different mechanisms for carbamazepine and diclofenac degradation. Sci. Total Environ. 2021, 787, 147626. [Google Scholar] [CrossRef]
- Meng, S.; Zhou, P.; Sun, Y.M.; Zhang, P.; Zhou, C.Y.; Xiong, Z.K.; Zhang, H.; Liang, J.; Lai, B. Reducing agents enhanced Fenton-like oxidation (Fe(III)/peroxydisulfate): Substrate specific reactivity of reactive oxygen species. Water Res. 2022, 218, 118412. [Google Scholar] [CrossRef]
- Dong, X.B.; Ren, B.X.; Sun, Z.M.; Li, C.Q.; Zhang, X.W.; Kong, M.H.; Zheng, S.L.; Dionysiou, D.D. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl. Catal. B-Environ. 2019, 253, 206–217. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xie, Y.B.; Chen, C.M.; Duan, X.G.; Sun, H.Q.; Wang, S.B. Synthesis of magnetic carbon supported manganese catalysts for phenol oxidation by activation of peroxymonosulfate. Catalysts 2017, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Wang, H.; Yang, W.; Fida, H.; You, L.M.; Zhou, K. Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Appl. Catal. B-Environ. 2020, 262, 118250. [Google Scholar] [CrossRef]
- Khan, A.; Wang, H.B.; Liu, Y.; Jawad, A.; Ifthikar, J.; Liao, Z.W.; Wang, T.; Chen, Z.Q. Highly efficient α-Mn2O3@α-MnO2-500 nanocomposite for peroxymonosulfate activation: Comprehensive investigation of manganese oxides. J. Mater. Chem. A 2018, 6, 1590–1600. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhao, W.; Li, Z.; Lu, G.; Zhu, M. Visible-light-assisted peroxymonosulfate activation over Fe(II)/V(IV) self-doped FeVO4 nanobelts with enhanced sulfamethoxazole degradation: Performance and mechanism. Chem. Eng. J. 2021, 403, 126384. [Google Scholar] [CrossRef]
- Gao, Y.W.; Zhu, Y.; Chen, Z.H.; Zeng, Q.Y.; Hu, C. Insights into the difference in metal-free activation of peroxymonosulfate and peroxydisulfate. Chem. Eng. J. 2020, 394, 123936. [Google Scholar] [CrossRef]
- Lan, S.Y.; Chen, Y.X.; Zeng, L.X.; Ji, H.D.; Liu, W.; Zhu, M.S. Piezo-activation of peroxymonosulfate for benzothiazole removal in water. J. Hazard. Mater. 2020, 393, 122448. [Google Scholar] [CrossRef]
- Bu, Y.G.; Li, H.C.; Yu, W.J.; Pan, Y.F.; Li, L.J.; Wang, Y.F.; Pu, L.T.; Ding, J.; Gao, G.D.; Pan, B.C. Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants. Environ. Sci. Technol. 2021, 55, 2110–2120. [Google Scholar] [CrossRef]
- Zhao, X.F.; Niu, C.G.; Zhang, L.; Guo, H.; Wen, X.J.; Liang, C.; Zeng, G.M. Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 2018, 204, 11–21. [Google Scholar] [CrossRef]
- Tian, N.; Tian, X.K.; Nie, Y.L.; Yang, C.; Zhou, Z.X.; Li, Y. Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water. Chem. Eng. J. 2018, 352, 469–476. [Google Scholar] [CrossRef]
- Ji, J.H.; Aleisa, R.M.; Duan, H.; Zhang, J.L.; Yin, Y.D.; Xing, M.Y. Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal. iScience 2020, 23, 100861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.G.; Su, C.; Miao, J.; Zhong, Y.J.; Shao, Z.P.; Wang, S.B.; Sun, H.Q. Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Appl. Catal. B-Environ 2018, 220, 626–634. [Google Scholar] [CrossRef]
- Xu, H.D.; Jiang, N.; Wang, D.; Wang, L.H.; Song, Y.F.; Chen, Z.Q.; Ma, J.; Zhang, T. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways. Appl. Catal. B-Environ. 2019, 263, 118350. [Google Scholar] [CrossRef]
- Zhou, G.L.; Sun, H.Q.; Wang, S.B.; Ang, H.M.; Tadé, M.O. Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations. Sep. Purif. Technol. 2011, 80, 626–634. [Google Scholar] [CrossRef]
- Du, W.Y.; Zhang, Q.Z.; Shang, Q.Z.; Shang, Y.N.; Wang, W.; Li, Q.; Yue, Q.Y.; Gao, B.Y.; Xu, X. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Appl. Catal. B-Environ. 2019, 262, 118302. [Google Scholar] [CrossRef]
- Xu, H.D.; Wang, D.; Ma, J.; Zhang, T.; Lu, X.H.; Chen, Z.Q. A superior active and stable spinel sulfide for catalytic peroxymonosulfate oxidation of bisphenol S. Appl. Catal. B-Environ. 2018, 238, 557–567. [Google Scholar] [CrossRef]
- Lu, Y.K.; Li, Z.X.; Xu, Y.L.; Tang, L.Q.; Xu, S.J.; Li, D.; Zhu, J.J.; Jiang, D.L. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 411, 128433. [Google Scholar] [CrossRef]
- Guo, Z.G.; Wang, X.F.; Yang, F.S.; Liu, Z.F. Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance. J. Alloys Compd. 2022, 895, 162614. [Google Scholar] [CrossRef]
- Nie, C.Y.; Dai, Z.H.; Liu, W.J.; Duan, X.G.; Wang, C.Y.; Lai, B.; Ao, Z.M.; Wang, S.B.; An, T.C. Criteria of active sites in nonradical persulfate activation process from integrated experimental and theoretical investigations: Boron–nitrogen-co-doped nanocarbon-mediated peroxydisulfate activation as an example. Environ. Sci. Nano 2020, 7, 1899–1911. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Li, Y.X.; Li, W.; Zhou, L.X.; Lan, Y.Q.; Li, Y. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate. Chem. Eng. J. 2020, 384, 123257. [Google Scholar] [CrossRef]
- Niu, P.; Li, C.H.; Jia, C.X.; Wang, D.Q.; Liu, S.W. Facile synthesis of CoFe2O4 magnetic nanomaterial by natural cellulose template and catalytic performance in heterogeneous activation of peroxymonosulfate. J. Sol-Gel Sci. Technol. 2020, 93, 419–427. [Google Scholar] [CrossRef]
- Zhang, W.; Su, Y.; Zhang, X.M.; Yang, Y.; Guo, X.H. Facile synthesis of porous NiCo2O4 nanoflakes as magnetic recoverable catalysts towards the efficient degradation of RhB. RSC Adv. 2016, 6, 64626–64633. [Google Scholar] [CrossRef]
- Zhang, A.J.; Mu, B.; Luo, Z.H.; Wang, A.Q. Bright blue halloysite/CoAl2O4 hybrid pigments: Preparation, characterization and application in water-based painting. Dyes Pigment. 2017, 139, 473–481. [Google Scholar] [CrossRef]
- Liu, W.J.; Du, T.; Ru, Q.X.; Zuo, S.X.; Yang, X.Y.; Yao, C.; Kong, Y. Facile synthesis and characterization of 2D kaolin/CoAl2O4: A novel inorganic pigment with high near-infrared reflectance for thermal insulation. Appl. Clay Sci. 2018, 153, 239–245. [Google Scholar] [CrossRef]
- Mu, B.; Wang, Q.; Wang, A. Effect of different clay minerals and calcination temperature on the morphology and color of clay/CoAl2O4 hybrid pigments. RSC Adv. 2015, 5, 102674–102681. [Google Scholar] [CrossRef]
- Yang, H.; Mu, B.; Li, S.; Wang, X.W.; Wang, A.Q. Preparation and coloring mechanism of MAl2O4/CoAl2O4/quartz sand (M = Ca or Ba) composite pigments. Mate. Chem. Phys. 2022, 276, 125413. [Google Scholar] [CrossRef]
- Kim, J.H.; Son, B.R.; Yoon, D.H.; Hwang, K.T.; Noh, H.G.; Cho, W.S.; Kim, U.S. Characterization of blue CoAl2O4 nano-pigment synthesized by ultrasonic hydrothermal method. Ceram. Int. 2012, 38, 5707–5712. [Google Scholar] [CrossRef]
- Guo, S.; Tang, H.L.; You, L.M.; Zhang, H.L.; Li, J.; Zhou, K. Combustion synthesis of mesoporous CoAl2O4 for peroxymonosulfate activation to degrade organic pollutants. Chin. Chem. Lett. 2021, 32, 2828–2832. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, J.F.; Hu, Z.B.; Zhang, J.; Yan, J.; Sheng, J.W. Novel fabrication of rod-like CoAl2O4/halloysite hybrid pigment derived from Co-MOF/nano-clay and mechanism exploration. Dyes Pigment. 2022, 201, 110216. [Google Scholar] [CrossRef]
- Wei, P.P.; Liang, J.; Liu, Q.; Xie, L.S.; Tong, X.; Ren, Y.C.; Li, T.S.; Luo, Y.S.; Li, N.; Tang, B.; et al. Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. J. Colloid Interface Sci. 2022, 615, 636–642. [Google Scholar] [CrossRef]
- Wang, D.L.; Hu, J.P.; Liu, B.C.; Hou, H.J.; Yang, J.K.; Li, Y.X.; Zhu, Y.; Sha, L.; Xiao, K.K. Degradation of refractory organics in dual-cathode electro-Fenton using air-cathode for H2O2 electrogeneration and microbial fuel cell cathode for Fe2+ regeneration. J. Hazard. Mater. 2021, 412, 125269. [Google Scholar] [CrossRef]
- Xue, W.D.; Zhou, Q.X.; Li, F.X.; Ondon, B.S. Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells. J. Power Sources 2019, 423, 9–17. [Google Scholar] [CrossRef]
- Wang, S.F.; Gao, H.J.; Chen, C.L.; Wei, Y.; Zhao, X.X. Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1–xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances. J. Sol-Gel Sci. Technol. 2019, 92, 186–199. [Google Scholar] [CrossRef]
- Basaleh, A.; Mahmoud, M.H.H. CoAl2O4-g-C3N4 nanocomposite photocatalysts for powerful visible-light-driven hydrogen production. ACS Omega 2021, 6, 10428–10436. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Zaki, Z.I. CoAl2O4–TiO2 nanocomposite photocatalyst for effective destruction of herbicide imazapyr under visible light. Appl. Nanosci. 2021, 11, 1009–1019. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Y.J.; Ji, Q.Y.; Li, T.Z.; Xu, C.M.; Qi, C.D.; He, H.; Yang, S.G.; Li, S.Y.; Yan, S.C.; et al. Understanding spatial effects of tetrahedral and octahedral cobalt cations on peroxymonosulfate activation for efficient pollution degradation. Appl. Catal. B-Environ. 2021, 291, 120072. [Google Scholar] [CrossRef]
- Bao, Y.P.; Oh, W.D.; Lim, T.T.; Wang, R.; Webster, R.D.; Hu, X. Surface-nucleated heterogeneous growth of zeolitic imidazolate framework—A unique precursor towards catalytic ceramic membranes: Synthesis, characterization and organics degradation. Chem. Eng. J. 2018, 353, 69–79. [Google Scholar] [CrossRef]
- Duan, X.L.; Pan, M.; Yu, F.P.; Yuan, D.R. Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals. J. Alloys Compd. 2011, 509, 1079–1083. [Google Scholar] [CrossRef]
- Deng, J.; Xu, M.Y.; Qiu, C.G.; Chen, Y.; Ma, X.Y.; Gao, N.Y.; Li, X.Y. Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: Performance, mechanism and application feasibility. Appl. Surf. Sci. 2018, 459, 138–147. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, J. CoMn2O4 embedded hollow activated carbon nanofibers as a novel peroxymonosulfate activator. Chem. Eng. J. 2021, 406, 127158. [Google Scholar] [CrossRef]
- Zhong, X.; Cai, Y.H.; Bai, H.P.; Huang, W.; Zhou, B.X. Visible light driven spherical CuBi2O4 with surface oxygen vacancy enhanced photocatalytic activity: Catalyst fabrication, performance, and reaction mechanism. Catalysts 2020, 10, 945. [Google Scholar] [CrossRef]
- Okoye, P.U.; Wang, S.; Xu, L.L.; Li, S.X.; Wang, J.Y.; Zhang, L.N. Promotional effect of calcination temperature on structural evolution, basicity, and activity of oil palm empty fruit bunch derived catalyst for glycerol carbonate synthesis. Energy Convers. Manag. 2019, 179, 192–200. [Google Scholar] [CrossRef]
- Ren, J.; Jiang, L.S.; Li, Y.; Zhang, G.K. Cobalt doped bismuth oxysulfide with abundant oxygen vacancies towards tetracycline degradation through peroxymonosulfate activation. Sep. Purif. Technol. 2021, 275, 119100. [Google Scholar] [CrossRef]
- Hung, C.M.; Chen, C.W.; Huang, C.P.; Dong, C.D. Activation of peroxymonosulfate by nitrogen-doped carbocatalysts derived from brown algal (Sargassum duplicatum) for the degradation of polycyclic aromatic hydrocarbons in marine sediments. J. Environ. Chem. Eng. 2021, 9, 106420. [Google Scholar] [CrossRef]
- Ji, R.C.; Chen, J.B.; Liu, T.C.; Zhou, X.F.; Zhang, Y.L. Critical review of perovskites-based advanced oxidation processes for wastewater treatment: Operational parameters, reaction mechanisms, and prospects. Chin. Chem. Lett. 2022, 33, 643–652. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B-Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Yan, Y.; Zhao, X.G.; Yan, J.F.; Zhang, Y.H.; Lai, B.; Chen, X.; Song, L.P. Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles. Chem. Eng. J. 2019, 369, 403–413. [Google Scholar] [CrossRef]
- Sun, B.J.; Ma, W.J.; Wang, N.; Xu, P.; Zhang, L.J.; Wang, B.N.; Zhao, H.H.; Lin, K.Y.A.; Du, Y.C. Polyaniline: A new metal-free catalyst for peroxymonosulfate activation with highly efficient and durable removal of organic pollutants. Environ. Sci. Technol. 2019, 53, 9771–9780. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, Z.X.; Zhang, H.L.; Yang, W.; Li, J.; Zhou, K. Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate. J. Mater. Sci. Technol. 2020, 62, 34–43. [Google Scholar] [CrossRef]
- Wang, K.; Ma, E.H.; Wang, H. Biotemplated shell micromotors for efficient degradation of antibiotics via enhanced peroxymonosulfate activation. Adv. Mater. Interfaces 2022, 9, 2200271. [Google Scholar] [CrossRef]
- Wang, Y.T.; Xue, Y.D.; Zhang, C.H. Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance. Sci. Total Environ. 2020, 712, 136501. [Google Scholar] [CrossRef]
- Hong, Y.C.; Zhou, H.Y.; Xiong, Z.K.; Liu, Y.; Yao, G.; Lai, B. Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways. Chem. Eng. J. 2019, 391, 123604. [Google Scholar] [CrossRef]
- Chen, G.F.; Qiao, Y.X.; Liu, F.; Zhang, X.B.; Liao, H.; Zhang, R.Y.; Dong, J.N. Effects of fertilization on the triafamone photodegradation in aqueous solution: Kinetic, identification of photoproducts and degradation pathway. Ecotox. Environ. Saf. 2020, 194, 110363. [Google Scholar] [CrossRef]
- Liao, S.; Zhu, F.W.; Zhao, X.Y.; Yang, H.; Chen, X.Q. A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion. Sens. Actuator B-Chem. 2018, 260, 156–164. [Google Scholar] [CrossRef]
- Cai, C.; Liu, J.; Zhang, Z.Y.; Zheng, Y.Y.; Zhang, H. Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep. Purif. Technol. 2016, 165, 42–52. [Google Scholar] [CrossRef]
- Peng, G.L.; You, W.Q.; Zhou, W.; Zhou, G.M.; Qi, C.D.; Hu, Y. Activation of peroxymonosulfate by phosphite: Kinetics and mechanism for the removal of organic pollutants. Chemosphere 2020, 266, 129016. [Google Scholar] [CrossRef]
- Li, J.Q.; Zhao, S.Y.; Zhang, L.J.; Jiang, S.P.; Yang, S.Z.; Wang, S.B.; Sun, H.Q.; Liu, S.M. Cobalt single atoms embedded in Nitrogen-doped graphene for selective oxidation of benzyl alcohol by activated peroxymonosulfate. Small 2021, 17, 2004579. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Fan, W.C.; Tian, Y.; Zhao, X. The synthesis of novel Co-Al2O3 nanofibrous membranes with efficient activation of peroxymonosulfate for bisphenol A degradation. Environ. Sci. Nano 2018, 5, 1933–1942. [Google Scholar] [CrossRef]
- Peng, J.L.; Zhou, H.Y.; Liu, W.; Ao, Z.M.; Ji, H.D.; Liu, Y.; Su, S.J.; Yao, G.; Lai, B. Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism. Chem. Eng. J. 2020, 397, 125387. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, W.J.; Zheng, F.Y.; Zhang, S.W.; Liu, S.W. Phytotoxicity of iron-bed materials in mung bean: Seed germination tests. Chemosphere 2020, 251, 126432. [Google Scholar] [CrossRef]
- Kannan, A.; Upreti, R.K. Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. J. Hazard. Mater. 2008, 153, 609–615. [Google Scholar] [CrossRef]
Order | Catalyst | RhB (mg/L) | Catalyst (g/L) | PMS (g/L) | Removal Efficiency | pH Range | Reference |
---|---|---|---|---|---|---|---|
1 | MnFe2O4 | 5 | 0.2 | 0.06 | 90.0% (30 min) | 4–10 | [49] |
2 | CoMn2O4 | 24 | 0.08 | 1.8 | 100% (40 min) | 2.7–7.2 | [50] |
3 | CuBi2O4 | 20 | 1.0 | 0.60 | 96.6% (60 min) | 4.9–8.8 | [51] |
4 | NiCo2O4 | 0.2 | 0.2 | 0.30 | 100% (30 min) | 3.28 | [31] |
5 | CoFe2O4 | 20 | 0.5 | 0.50 | 96.5% (40 min) | 3–10 | [32] |
6 | CoAl2O4 | 10 | 0.1 | 0.10 | 99.0% (120 min) | 3.4–10.2 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Zhang, L.; Chen, M.; Ahmad, F.; Fida, H.; Zhang, H. Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants. Catalysts 2022, 12, 847. https://doi.org/10.3390/catal12080847
Guo S, Zhang L, Chen M, Ahmad F, Fida H, Zhang H. Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants. Catalysts. 2022; 12(8):847. https://doi.org/10.3390/catal12080847
Chicago/Turabian StyleGuo, Sheng, Lijuan Zhang, Meng Chen, Fawad Ahmad, Hussain Fida, and Huali Zhang. 2022. "Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants" Catalysts 12, no. 8: 847. https://doi.org/10.3390/catal12080847
APA StyleGuo, S., Zhang, L., Chen, M., Ahmad, F., Fida, H., & Zhang, H. (2022). Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants. Catalysts, 12(8), 847. https://doi.org/10.3390/catal12080847