Degradation of Antibiotics via UV-Activated Peroxodisulfate or Peroxymonosulfate: A Review
Abstract
:1. Introduction
2. Sources of UV
2.1. The Solar Radiation
2.2. Artificial UV Sources
3. Characteristics of Antibiotics
4. Mechanisms of Activated PDS (PMS) with UV
5. Application of UV/PDS (PMS) in Degradation of Antibiotics
5.1. Reactors for UV-Activated PDS (PMS) Systems
5.2. Comparison of UV/PDS and UV/PMS Treatment Effects
5.3. Effect of UV Intensity
5.4. Effect of PDS (PMS) Concentration on Antibiotics Degradation
5.5. Effect of pH on Antibiotics Degradation
5.6. Effect of Anions on Antibiotics Degradation
6. Conclusions and Outlook
- (1)
- The actual mechanism of the UV-activated PDS (PMS) reaction is relatively complex, and the occurrence of the reaction is closely related to water environment conditions. The free radicals generated in the reaction process have chain transfer reactions, so the contribution and mechanism of various types of free radicals to the degradation of antibiotics should be continuously explored.
- (2)
- In small-scale experiments, the effect of various composite water quality parameters on the effect of antibiotic treatment needs to be studied in detail. A continuous flow experiment simulating antibiotic wastewater needs to be performed to obtain optimal operating conditions such as hydraulic load and residence time. On this basis, the treatment of the actual wastewater containing antibiotics needs to be carried out, and the removal efficiency of antibiotics, the degree of mineralization, and the removal ability of resistant groups need more attention.
- (3)
- The enlarged design of the reactor depends on the mode used for disinfection and water treatment, which is a relatively mature technology, but the advent of more energy-saving and environmentally friendly UV-LED lamps makes it possible for us to find more optimized light sources. However, there is no ularization and integration of the light source. The mature industrialization standard of mercury lamps also provides a powerful reference for the standardized application of UV-LED lamps. Moreover, the integration of lamps, the design of reactors, and the evaluation of operating costs and energy consumption need to be continuously improved.
- (4)
- The pollutants in the actual sewage are complex, containing not only antibiotics but also other organic substances. Therefore, a single UV/PDS(PMS) process may not produce suitable results under complex water quality conditions. Combining the UV/PDS(PMS) process with other processes (such as biological treatment, adsorption, photocatalytic oxidation) is a better option. In particular, the photocatalytic oxidation method is essentially an advanced oxidation method, which mainly degrades organic substances by generating hydroxyl radicals. The current continuous development of visible light catalysts provides a new composite direction for PDS(PMS)-based advanced oxidation. The visible light catalyst combined with PDS(PMS) can reduce the consumption of ultraviolet light energy, which is expected to treat antibiotic-containing wastewater efficiently and economically.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ACE | Acetamiprid | NOR | Norfloxacin |
AMX | Amoxicillin | OCBZ | Oxcarbazepine |
AOPs | Advanced oxidation processes | OFLO | Ofloxacin |
AZM | Azithromycin | PDS | Peroxodisulfate |
CAP | Chloramphenicol | PG | Penicillin G |
CBZ | Carbamazepine | PIR | Piroxicam |
CIP | Ciprofloxacin | PMS | Peroxymonosulfate |
ENR | Enrofloxacin | SMP | Sulfamethoxypyridazine |
FLU | Flumequine | SMT | Sulfamethazine |
HPUV | High-pressure mercury vapor lamps | SMX | Sulfamethoxazole |
LEV | Levofloxacin | TC | Tetracycline |
LPUV | Low-pressure mercury vapor lamps | UV | Ultraviolet |
MNZ | Metronidazole | UV-LED | UV light-emitting diodes |
MPUV | Medium-pressure mercury vapor lamps | WWTPs | Wastewater treatment plants |
References
- Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar]
- Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010, 44, 4295–4323. [Google Scholar]
- Baquero, F.; Martínez, J.L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar]
- Song, W.; Li, J.; Wang, Z.; Zhang, X. A mini review of activated methods to persulfate-based advanced oxidation process. Water Sci. Technol. 2019, 79, 573–579. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar]
- Qi, C.; Liu, X.; Lin, C.; Zhang, X.; Ma, J.; Tan, H.; Ye, W. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chem. Eng. J. 2014, 249, 6–14. [Google Scholar] [CrossRef]
- Gao, F.; Li, Y.; Xiang, B. Degradation of bisphenol A through transition metals activating persulfate process. Ecotoxicol. Environ. Saf. 2018, 158, 239–247. [Google Scholar] [CrossRef]
- Xiao, P.F.; An, L.; Wu, D.D. The use of carbon materials in persulfate-based advanced oxidation processes: A review. New Carbon Mater. 2020, 35, 667–683. [Google Scholar] [CrossRef]
- Sarathy, S.R.; Mohseni, M. An overview of UV-based advanced oxidation processes for drinking water treatment. IUVA News 2006, 8, 16–27. [Google Scholar]
- Buthiyappan, A.; Aziz, A.R.A.; Daud, W.M.A.W. Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments. Rev. Chem. Eng. 2015, 31, 263–302. [Google Scholar]
- Wang, W.L.; Wu, Q.Y.; Huang, N.; Xu, Z.B.; Lee, M.Y.; Hu, H.Y. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products. Water Res. 2018, 141, 109–125. [Google Scholar] [PubMed]
- Amaro-Soriano, A.; Hernández-Aldana, F.; Rivera, A. Photochemical treatments (UV/H2O2, UV/O3 and UV/H2O2/O3) and inverse osmosis in wastewater: Systematic review. World J. Adv. Res. Rev. 2021, 10, 229–240. [Google Scholar]
- Pirsaheb, M.; Hossaini, H.; Janjani, H. An overview on ultraviolet persulfate based advances oxidation process for removal of antibiotics from aqueous solutions: A systematic review. Desalinat. Water Treat. 2019, 165, 382–395. [Google Scholar]
- Tokode, O.; Prabhu, R.; Lawton, L.A.; Robertson, P.K. UV LED sources for heterogeneous photocatalysis. In Environmental Photochemistry Part III; Springer: Berlin/Heidelberg, Germany, 2014; pp. 159–179. [Google Scholar]
- Liu, X.; Gu, S.; Zhao, Y.; Zhou, G.; Li, W. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review. J. Mater. Sci. Technol. 2020, 56, 45–68. [Google Scholar]
- Shafiq, I.; Hussain, M.; Rashid, R.; Shafique, S.; Akhter, P.; Yang, W.; Ahmed, A.; Nawaz, Z.; Park, Y.K. Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel. Chem. Eng. J. 2021, 420, 130529. [Google Scholar]
- Shafiq, I.; Hussain, M.; Shafique, S.; Akhter, P.; Ahmed, A.; Ashraf, R.S.; Khan, M.A.; Jeon, B.H.; Park, Y.K. Systematic assessment of visible-light-driven microspherical V2O5 photocatalyst for the removal of hazardous organosulfur compounds from diesel. Nanomaterials 2021, 11, 2908. [Google Scholar]
- Li, R.; Li, T.; Zhou, Q. Impact of titanium dioxide (TiO2) modification on its application to pollution treatment-a review. Catalysts 2020, 10, 804. [Google Scholar]
- Alshaikh, H.; Al-Hajji, L.A.; Mahmoud, M.H.H.; Ismail, A.A. Visible-light-driven S-scheme mesoporous Ag3VO4/C3N4 heterojunction with promoted photocatalytic performances. Sep. Purif. Technol. 2021, 272, 118914. [Google Scholar]
- Raeiszadeh, M.; Adeli, B. A critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations. ACS Photonics 2020, 7, 2941–2951. [Google Scholar]
- Würtele, M.A.; Kolbe, T.; Lipsz, M.; Külberg, A.; Weyers, M.; Kneissl, M.; Jekel, M. Application of GaN-based ultraviolet-C light emitting diodes -UV LEDs -for water disinfection. Water Res. 2011, 45, 1481–1489. [Google Scholar]
- Autin, O.; Romelot, C.; Rust, L.; Hart, J.; Jarvis, P.; MacAdam, J.; Parsons, S.A.; Jefferson, B. Evaluation of a UV-light emitting diodes unit for the removal of micropollutants in water for low energy advanced oxidation processes. Chemosphere 2013, 92, 745–751. [Google Scholar] [PubMed]
- Song, K.; Mohseni, M.; Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016, 94, 341–349. [Google Scholar] [PubMed]
- Diffey, B.L. Sources and measurement of ultraviolet radiation. Methods 2002, 28, 4–13. [Google Scholar]
- Eadie, E.; Hiwar, W.; Fletcher, L.; Tidswell, E.; O’Mahoney, P.; Buonanno, M.; Welch, D.; Adamson, C.S.; Brenner, D.J.; Noakes, C.; et al. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber. Sci. Rep. 2022, 12, 4373. [Google Scholar]
- Hickerson, R.P.; Conneely, M.P.; Tsutsumi, S.H.; Wood, K.; Jackson, D.N.; Ibbotson, S.H.; Eadie, E. Minimal, superficial DNA damage in human skin from filtered far-ultraviolet C. Br. J. Dermatol. 2021, 184, 1197–1199. [Google Scholar]
- Welch, D.; Buonanno, M.; Grilj, V.; Shuryak, I.; Crickmore, C.; Bigelow, A.W.; Randers-Pehrson, G.; Johnson, G.W.; Brenner, D.J. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep. 2018, 8, 2752. [Google Scholar] [PubMed]
- Huang, C.H.; Renew, J.E.; Smeby, K.L.; Pinkston, K.; Sedlak, D.L. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. J. Contemp. Water Res. Educ. 2011, 120, 4. [Google Scholar]
- Moore, D. Antibiotic Classification and Mechanism. Available online: https://www.orthobullets.com/basic-science/9059/antibiotic-classification-and-mechanism (accessed on 1 July 2022).
- Gothwal, R.; Shashidhar, T. Antibiotic pollution in the environment: A review. Clean–Soil Air Water 2015, 43, 479–489. [Google Scholar]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China–a systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar]
- Fernandes, R.; Amador, P.; Prudêncio, C. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev. Med. Microbiol. 2013, 24, 7–17. [Google Scholar]
- Sukul, P.; Spiteller, M. Sulfonamides in the environment as veterinary drugs. Rev. Environ. Contam. Toxicol. 2006, 67–101. [Google Scholar] [CrossRef]
- Retsema, J.; Fu, W. Macrolides: Structures and microbial targets. Int. J. Antimicrob. Agents 2001, 18, 3–10. [Google Scholar] [CrossRef]
- Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Dibene, K.; Yahiaoui, I.; Yahia Cherif, L.; Aitali, S.; Amrane, A.; Aissani-Benissad, F. Paracetamol degradation by photo-activated peroxydisulfate process (UV/PDS): Kinetic study and optimization using central composite design. Water Sci. Technol. 2020, 82, 1404–1415. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Ma, M.; Li, D. Removal of di-(2-ethylhexyl) phthalate from aqueous solution by UV/peroxymonosulfate: Influencing factors and reaction pathways. Chem. Eng. J. 2017, 314, 182–191. [Google Scholar] [CrossRef]
- Xie, P.; Ma, J.; Liu, W.; Zou, J.; Yue, S.; Li, X.; Wiesner, M.R.; Fang, J. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals. Water Res. 2015, 69, 223–233. [Google Scholar] [CrossRef]
- Lei, X.; Lei, Y.; Zhang, X.; Yang, X. Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: A review. J. Hazard. Mater. 2021, 408, 124435. [Google Scholar]
- Xu, M.; Deng, J.; Cai, A.; Ma, X.; Li, J.; Li, Q.; Li, X. Comparison of UVC and UVC/persulfate processes for tetracycline removal in water. Chem. Eng. J. 2020, 384, 123320. [Google Scholar]
- Qu, X.; Wu, H.; Zhang, T.; Liu, Q.; Wang, M.; Yateh, M.; Tang, Y. Degradation of Chloramphenicol Using UV-LED Based Advanced Oxidation Processes: Kinetics, Mechanisms, and Enhanced Formation of Disinfection By-Products. Water 2021, 13, 3035. [Google Scholar] [CrossRef]
- Yadav, M.P.; Neghi, N.; Kumar, M.; Varghese, G.K. Photocatalytic-oxidation and photo-persulfate-oxidation of sulfadiazine in a laboratory-scale reactor: Analysis of catalyst support, oxidant dosage, removal-rate and degradation pathway. J. Environ. Manag. 2018, 222, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Malakootian, M.; Asadzadeh, S.N. Removal of tetracycline from aqueous solution by ultrasound and ultraviolet enhanced persulfate oxidation. Desalination Water Treat. 2020, 197, 191–199. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, M.S. Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor. J. Photochem. Photobiol. A Chem. 2014, 285, 1–6. [Google Scholar] [CrossRef]
- Wang, B.; Fu, T.; An, B.; Liu, Y. UV light-assisted persulfate activation by Cu0-Cu2O for the degradation of sulfamerazine. Sep. Purif. Technol. 2020, 251, 117321. [Google Scholar] [CrossRef]
- Ghauch, A.; Baalbaki, A.; Amasha, M.; El Asmar, R.; Tantawi, O. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chem. Eng. J. 2017, 317, 1012–1025. [Google Scholar] [CrossRef]
- Norzaee, S.; Bazrafshan, E.; Djahed, B.; Kord Mostafapour, F.; Khaksefidi, R. UV activation of persulfate for removal of penicillin G antibiotics in aqueous solution. Sci. World J. 2017, 2017, 3519487. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Y.; Chen, Y.; Ye, G.; Sun, X. Comparison of ciprofloxacin degradation in reclaimed water by UV/chlorine and UV/persulfate advanced oxidation processes. Water Environ. Res. 2019, 91, 1576–1588. [Google Scholar] [CrossRef]
- Mahdi-Ahmed, M.; Chiron, S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater. J. Hazard. Mater. 2014, 265, 41–46. [Google Scholar] [CrossRef]
- Ao, X.; Liu, W. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chem. Eng. J. 2017, 313, 629–637. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Wang, Q.; Ye, Q.; Xu, H.; Zhou, G.; Lu, J. Efficient degradation of tetracycline by ultraviolet-based activation of peroxymonosulfate and persulfate. Water Sci. Technol. 2019, 79, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.R.; Mayor-Smith, I.; Linden, K.G. Rethinking the concepts of fluence (UV dose) and fluence rate: The importance of photon-based units—A systemic review. Photochem. Photobiol. 2015, 91, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Yang, Y.; Zhou, L.; Wang, L.; Lu, J.; Ferronato, C.; Chovelon, J.M. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes. Water Res. 2018, 133, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Milh, H.; Yu, X.; Cabooter, D.; Dewil, R. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci. Total Environ. 2021, 764, 144510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, L.; Pan, Z.; Zhu, Y.; Shao, Y.; Wang, Y.; Yu, K. Degradation of sulfamethoxazole by UV/persulfate in different water samples: Influential factors, transformation products and toxicity. Chem. Eng. J. 2020, 379, 122354. [Google Scholar] [CrossRef]
- Avisar, D.; Lester, Y.; Mamane, H. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water. J. Hazard. Mater. 2010, 175, 1068–1074. [Google Scholar] [CrossRef]
- Rasoulifard, M.H.; Majidzadeh, H.; Demneh, F.T.; Babaei, E.; Rasoulifard, M.H. Photocatalytic degradation of tylosin via ultraviolet-activated persulfate in aqueous solution. Int. J. Ind. Chem. 2012, 3, 16. [Google Scholar] [CrossRef]
- Zhou, L.; Ferronato, C.; Chovelon, J.M.; Sleiman, M.; Richard, C. Investigations of diatrizoate degradation by photo-activated persulfate. Chem. Eng. J. 2017, 311, 28–36. [Google Scholar] [CrossRef]
- Boudriche, L.; Safaei, Z.; Ramasamy, D.; Sillanpää, M.; Boudjemaa, A. Sulfaquinoxaline oxidation by UV-C activated sodium persulfate: Degradation kinetics and toxicological evaluation. Water Environ. Res. 2019, 91, 1412–1419. [Google Scholar] [CrossRef]
- Zarei, A.A.; Tavassoli, P.; Bazrafshan, E. Evaluation of UV/S2O82− process efficiency for removal of metronidazole (MNZ) from aqueous solutions. Water Sci. Technol. 2018, 2017, 126–133. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Lu, S.; Wang, Z.; Wang, Y.; Zhang, G.; Guo, X.; Guo, W.; Zhang, T.; Xi, B. Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism. Chem. Eng. J. 2020, 385, 123987. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ghanbari, F.; Alvarez, A.; Martinez, S.S. UV-LEDs assisted peroxymonosulfate/Fe2+ for oxidative removal of carmoisine: The effect of chloride ion. Korean J. Chem. Eng. 2017, 34, 2154–2161. [Google Scholar] [CrossRef]
- Shad, A.; Chen, J.; Qu, R.; Dar, A.A.; Bin-Jumah, M.; Allam, A.A.; Wang, Z. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways. Chem. Eng. J. 2020, 398, 125357. [Google Scholar] [CrossRef]
- Ao, X.; Liu, W.; Sun, W.; Cai, M.; Ye, Z.; Yang, C.; Lu, Z.; Li, C. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity. Chem. Eng. J. 2018, 345, 87–97. [Google Scholar] [CrossRef]
- Qi, Y.; Qu, R.; Liu, J.; Chen, J.; Al-Basher, G.; Alsultan, N.; Wang, Z.; Huo, Z. Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways. Chemosphere 2019, 237, 124484. [Google Scholar] [CrossRef]
- Ao, X.; Sun, W.; Li, S.; Yang, C.; Li, C.; Lu, Z. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chem. Eng. J. 2019, 361, 1053–1062. [Google Scholar] [CrossRef]
- Tan, J.; Li, Z.; Li, J.; Wu, J.; Yao, X.; Zhang, T. Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: A review on materials design and mechanisms. Chemosphere 2021, 262, 127675. [Google Scholar] [CrossRef]
- Tan, C.; Fu, D.; Gao, N.; Qin, Q.; Xu, Y.; Xiang, H. Kinetic degradation of chloramphenicol in water by UV/persulfate system. J. Photochem. Photobiol. A Chem. 2017, 332, 406–412. [Google Scholar] [CrossRef]
- Chen, L.; Cai, T.; Cheng, C.; Xiong, Z.; Ding, D. Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study. Chem. Eng. J. 2018, 351, 1137–1146. [Google Scholar] [CrossRef]
- Frontistis, Z. Degradation of the nonsteroidal anti-inflammatory drug piroxicam from environmental matrices with UV-activated persulfate. J. Photochem. Photobiol. A Chem. 2019, 378, 17–23. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Gao, N.Y.; Chu, W.H.; Zhang, Y.F.; Zhang, J.; Yin, D.Q. UV-activated persulfate oxidation of sulfamethoxypyridazine: Kinetics, degradation pathways and impact on DBP formation during subsequent chlorination. Chem. Eng. J. 2019, 370, 706–715. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Dai, C.; Zhang, Y.; Zhou, X. Degradation of carbamazepine and toxicity evaluation using the UV/persulfate process in aqueous solution. J. Chem. Technol. Biotechnol. 2015, 90, 701–708. [Google Scholar] [CrossRef]
- Bu, L.; Zhou, S.; Shi, Z.; Deng, L.; Li, G.; Yi, Q.; Gao, N. Degradation of oxcarbazepine by UV-activated persulfate oxidation: Kinetics, mechanisms, and pathways. Environ. Sci. Pollut. Res. 2016, 23, 2848–2855. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ke, T.; Gao, N.; Liu, Y.; Cheng, X. Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: Kinetics, pathways and deactivation. Chem. Eng. J. 2017, 316, 471–480. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Dong, X.; Li, Q.; Yang, Z.; Ding, M. Potential of the base-activated persulfate for polymer-plugging removal in low temperature reservoirs. J. Pet. Sci. Eng. 2020, 189, 107000. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Gao, N.Y.; Deng, Y.; Yang, Y.Q.; Ma, Y. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chem. Eng. J. 2012, 195, 248–253. [Google Scholar] [CrossRef]
- Sadeghi, M.; Sadeghi, R.; Ghasemi, B.; Mardani, G.; Ahmadi, A. Removal of Azithromycin from aqueous solution using UV-light alone and UV plus Persulfate (UV/Na2S2O8) processes. Iran. J. Pharm. Res. IJPR 2018, 17 (Suppl. 2), 54–67. [Google Scholar]
UV Sources | Pressure (Pa) | Wavelength (nm) | Wall Plug Efficiency (%) | Life Time(h) | Electrical Input(W) | Operating Temperature (°C) |
---|---|---|---|---|---|---|
LPUV | 1–10 | Monochromatic 254 | 35–38 | 8000–10,000 | 8–100 | 40 |
MPUV | 10–100 | Polychromatic 200–500 | 10–20 | 4000–8000 | 100–60,000 | 600–900 |
HPUV | 100–105 | 315–450 | - | 1000 | 100–25,000 | - |
UV-LED | - | Any from 240 | 75 | 100,000 | Up to 1 | Same as process water |
Xenon lamps | 19,000–26,600 | Pulsed UV, 100–1000 | - | 1000 | 75–6000 | - |
Far-UVC excimer lamps | - | 200–230 | - | 3000–10,000 | 20 | - |
Antibiotics (Representative Drugs) | Structural Features | Chemical Structures of Representative Drugs |
---|---|---|
β-Ls (penicillins: penicillin G, penicillin V, amoxicillin, ampicillin. cephalosporins: cefotaxime, ceftizoxime, ceftriaxone, ceftazidime, cefpirome, cefazolam) | Of the β-Ls antibiotics that are currently available, all feature the reactive β-lactam ring system, a highly strained and reactive cyclic amide [33]. Penicillins possess a basic bicyclic structure, 6-aminopenicillanic acid or 6-APA. The β-lactam ring of cephalosporins is fused to a seven-membered ring (7-aminocephalosporanic acid or 7-ACA). | |
SAs (sulfamethoxazole, sulfamethazine, sulfadiazine, sulfadimethoxine, sulfamethoxypyridazine, sulfapyridine, sulfadiazine) | SAs contain a 4-aminobenzene sulfonamide core and differ from each other in theN-substituent of the sulfonamide linkage [34]. | |
MLs (clarithromycin, erythromycin, roxithromycin, spiramycin, tylosin) | MLs have various amino sugars attached to one macrolide ring, which can be classified according to the number of carbon atoms in the macrocycle, such as 14-, 15- and 16-membered-ring compounds [35]. | |
TCs (tetracycline, chlortetracycline, doxycycline, oxytetracycline) | TCs all contain a tetraphenyl skeleton. | |
QNs (ofloxacin, ciprofloxacin, norfloxacin) | The basic structure of QNs is a quinolone ring to which fluorine and other substituents are added to produce fluoroquinolones [36]. |
Chemical Name | CAS Number | Formula | Molecular Weight (g·mol−1) | O-O Bond Dissociation Energy (kJ·mol−1) | Color | Solubility (20 °C) (g L−1) | Redox Potential (V) |
---|---|---|---|---|---|---|---|
Sodium PS | 7775-27-1 | Na2S2O8 | 238.10 | 92 | White to yellow | 550 | 2.01 |
Potassium PS | 7727-21-1 | K2S2O8 | 270.32 | 92 | White | 520 | 2.01 |
ammonium PS | 7727-54-0 | (NH4)2S2O8 | 228.20 | 92 | White to yellow | 582 | 2.01 |
PMS (Oxone) | 37222-66-5 | H3K5O18S4 | 614.74 | 377 | White | >250 | 1.82 |
Anion | Oxidation System | Parameter | Impact | Reference |
---|---|---|---|---|
Cl− | UV/PDS/CAP | [CAP] = 0.03 mM, [PDS] = 1 mM. | [Cl−] = 1–5 mM: Accelerated CAP degradation. | [70] |
Cl− | UV/PDS/ACE | [ACE] = 90 µM, [PDS] = 1.5 mM, pH = 7, T = 25 °C. | [Cl−] = 5–15 mM: Inhibited ACE degradation. | [71] |
Cl− | UV/PDS/PIR | [PIR] = 1000 μg/L, [SPS] = 5 mg/L, ultrapure water, inherent pH. | [Cl−] = 100–250 mg/L: No significant effect on PIR degradation. | [72] |
Cl− | UV/PDS/CBZ | - | [Cl−] = 0.1–2.0 mM: No significant effect on CBA degradation. [Cl−] = 2.0–10 mM: CBA degradation rate was inhibited. | [74] |
Cl− | UV/PMS/SMX | - | [Cl−] = 0.6–30 mM: The SMX degradation rate increased. | [52] |
Cl− | UV/PMS/CIP | [CIP] = 3.02 μM, [PMS] = 0.2 mM. | [Cl−] = 0.1–0.5 mM: No significant effect on CIP degradation. [Cl−] = 2.0–10.0 mM: CIP degradation rate was obviously improved. | [66] |
Cl− | UV/PMS/TC | [TC] = 11.25 μM, [PMS] = 0.2 mM, no pH adjustment. | [Cl−] = 0.1–0.5 mM: TC degradation rate changed a little. [Cl−] = 2.0–5.0 mM: TC degradation rate was visibly improved. | [68] |
HCO3− | UV/PMS/FLU | [FLU] = 76.0 μM, [PMS]: [FLU] = 1:1, pH = 7.0 ± 0.1, T = 25 ± 2 °C. | [HCO3−] = 0.5–5.0 mM: Decreased the degradation efficiency of FLU. | [67] |
CO32− | UV/PMS/SMX | [SMX] = 23.69 μ M; [PMS] = 1 mM; 2.8 kW MPUV. | [CO32−] = 0.6 mM: Slightly inhibited the degradation of SMX. [CO32−] = 3–30 mM: Improved the degradation of SMX. | [52] |
CO32− | UV/PMS/CIP | [CIP] = 3.02 μM, [PMS] = 0.2 mM. | [CO32−] = 0.1–10 mM: Accelerated the degradation of CIP. | [66] |
NO3− | UV/PMS/SMX | [SMX] = 23.69 μ M, [PMS] = 1 mM, 2.8 kW MPUV. | [NO3−] = 0.6–30 mM: Increased the degradation of PRO. | [52] |
NO3− | UV/PDS/CAP | [CAP] = 0.03 mM, [PDS] = 1 mM. | [NO3−] = 1–10 mM: Slightly enhanced CAP removal. | [70] |
NO3− | UV/PDS/CBZ | - | [NO3−] = 0.1–10 mM: No significant effect on CBZ degradation. [NO3−] = 20 mM: Inhibited the degradation of CBZ. | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Li, G.; Hu, R.; Liu, Y.; Liu, H.; Gao, Y. Degradation of Antibiotics via UV-Activated Peroxodisulfate or Peroxymonosulfate: A Review. Catalysts 2022, 12, 1025. https://doi.org/10.3390/catal12091025
Song T, Li G, Hu R, Liu Y, Liu H, Gao Y. Degradation of Antibiotics via UV-Activated Peroxodisulfate or Peroxymonosulfate: A Review. Catalysts. 2022; 12(9):1025. https://doi.org/10.3390/catal12091025
Chicago/Turabian StyleSong, Tiehong, Guanqiao Li, Ruihua Hu, Ying Liu, Hongxu Liu, and Yanjiao Gao. 2022. "Degradation of Antibiotics via UV-Activated Peroxodisulfate or Peroxymonosulfate: A Review" Catalysts 12, no. 9: 1025. https://doi.org/10.3390/catal12091025
APA StyleSong, T., Li, G., Hu, R., Liu, Y., Liu, H., & Gao, Y. (2022). Degradation of Antibiotics via UV-Activated Peroxodisulfate or Peroxymonosulfate: A Review. Catalysts, 12(9), 1025. https://doi.org/10.3390/catal12091025