Synthesis, Characterization, and Solar Photo-Activation of Chitosan-Modified Nickel Magnetite Bio-Composite for Degradation of Recalcitrant Organic Pollutants in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization Studies
2.1.1. FTIR
2.1.2. EDX
2.1.3. SEM
2.1.4. TGA-DTGA
2.1.5. Optical Analysis
2.2. Point of Zero Charge (pHPZC)
2.3. Photocatalytic Degradation of MB and MR
2.3.1. Kinetics Studies
2.3.2. Effect of pH
2.3.3. Effect of Catalyst Dose
2.3.4. Effect of Temperature
2.3.5. Recycling of the CS-NM Bio-Composite
2.3.6. Comparison with Other Bio-Composite-Based Photocatalysts
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Nickel Magnetite Nanoparticles
3.3. Synthesis of Chitosan-Modified Nickel Magnetite (CS-NM) Bio-Composite
3.4. Characterizations
3.5. Photocatalytic Degradation Experiments
3.6. Kinetics Studies
3.7. Recycling Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Guo, W.; Li, Y.; He, S.; He, C. Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light. J. Environ. Chem. Eng. 2018, 6, 59–67. [Google Scholar] [CrossRef]
- Wang, W.; Lu, T.; Chen, Y.; Tian, G.; Sharma, V.K.; Zhu, Y.; Zong, L.; Wang, A. Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants. Sci. Total Environ. 2019, 696, 133955. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, Y.; Zhu, T.; Wang, A.; Lu, Y.; Lv, L.; Zhang, K.; Li, Z. Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Sci. Total Environ. 2018, 634, 616. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Gao, B.; Tian, X.; Yue, Q.; Zhang, P.; Shen, X.; Xu, X. Synthesis of polyaluminium chloride/papermaking sludge-based organic polymer composites for removal of disperse yellow and reactive blue by flocculation. Chemosphere 2019, 231, 337–348. [Google Scholar] [CrossRef]
- Amanulla, B.; Sannasi, S.; Abubakker AK, M.; Ramaraj, S.K. A magnetically recoverable bimetallic Au-FeNPs decorated on g-C3N4 for efficient photocatalytic degradation of. organic contaminants. J. Mol. Liq. 2018, 249, 754–763. [Google Scholar] [CrossRef]
- John, S.M.; Johansen, J.D.; Rustemeyer, T.; Elsner, P.; Maibach, H.I. Kanerva’s Occupational Dermatology; Springer: Cham, Switzerland, 2020; pp. 2325–2341. [Google Scholar]
- Nasirian, M.; Mehrvar, M. Photocatalytic degradation of aqueous Methyl Orange using nitrogen-doped TiO2 photocatalyst prepared by novel method of ultraviolet-assisted thermal synthesis. J. Environ. Sci. 2018, 66, 81–93. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Wang, Y.; Xia, C.; Hong, E.; Bai, L.; Li, T.; Wang, B. Study on the controlled synthesis and photocatalytic performance of rare earth Nd deposited on mesoporous TiO2 photocatalysts. Sci. Total Environ. 2019, 652, 85–92. [Google Scholar] [CrossRef]
- Hammami, A.; Charcosset, C.; Amar, R.R.B. Performances of continuous adsorption-ultrafiltration hybrid process for AO7 dye removal from aqueous solution and real textile wastewater treatment. J. Membr. Sci. Technol. 2017, 7, 1–5. [Google Scholar] [CrossRef]
- Xiao, X.; Li, T.; Lu, X.; Feng, X.; Han, X.; Li, W.; Li, Q.; Yu, H. A simple method for assaying anaerobic biodegradation of dyes. Bioresour. Technol. 2018, 521, 204–209. [Google Scholar] [CrossRef]
- Guo, X.; Rao, L.; Wang, P.; Wang, C.; Ao, Y.; Jiang, T.; Wang, W. Photocatalytic properties of P25-doped TiO2 compositefilm synthesized via sol-gel method on cement substrate. J. Environ. Sci. 2018, 66, 71–80. [Google Scholar] [CrossRef]
- Gui, L.; Peng, J.; Li, P.; Peng, R.; Yu, P.; Luo, Y. Electrochemical degradation of dye on TiO2 nanotube array constructed anode. Chemosphere 2019, 235, 1189–1196. [Google Scholar] [CrossRef]
- Sayed, M.; Tabassum, S.; Shah, N.S.; Khan, J.A.; Shah, L.A.; Rehman, F.; Khan, S.U.; Khan, H.M.; Ullah, M. Acid fuchsin dosimeter: A potential dosimeter for food irradiation dosimetry. J. Food Meas. Charact. 2019, 13, 707–715. [Google Scholar] [CrossRef]
- Cinperi, N.C.; Ozturk, E.; Yigit, N.O.; Kitis, M. Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J. Clean. Prod. 2019, 233, 837–848. [Google Scholar] [CrossRef]
- Kociołek-Balawejder, E.; Stanisławska, E.; Winiarska, K.; Winiarski, J.; Hasiak, M.; Szczygieł, B.; Szczygieł, I. Hybrid ion exchangers containing Fe(III)-Cu(II) binary oxides obtained using macroreticular anion exchanger. React. Funct. Polym. 2018, 127, 129–138. [Google Scholar] [CrossRef]
- Khan, S.; Han, C.; Sayed, M.; Sohail, M.; Jan, S.; Sultana, S.; Khan, H.M.; Dionysiou, D.D. Exhaustive photocatalytic lindane degradation by combined simulated solar light-activated nanocrystalline TiO2 and inorganic oxidants. Catalysts 2019, 9, 425. [Google Scholar] [CrossRef]
- Dias, N.C.; Bassin, J.P.; Sant’Anna, G.L., Jr.; Dezotti, M. Ozonation of the dye reactive red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: Revealing reaction products and degradation pathways. Int. Biodeterior. Biodegrad. 2019, 144, 104742. [Google Scholar] [CrossRef]
- Park, Y.; Kim, S.; Kim, J.; Khan, S.; Han, C. UV/TiO2 Photocatalysis as an Efficient Livestock Wastewater Quaternary Treatment for Antibiotics Removal. Water 2022, 18, 958. [Google Scholar] [CrossRef]
- Khan, S.; Sohail, M.; Han, C.; Khan, J.A.; Khan, H.M.; Dionysiou, D.D. Degradation of highly chlorinated pesticide, lindane, in water using UV/persulfate: Kinetics and mechanism, toxicity evaluation, and synergism by H2O2. J. Hazard. Mater. 2021, 402, 123558. [Google Scholar] [CrossRef]
- Sohail, M.; Khan, M.S.; Omer, M.; Marwat, I.U.; Khattak, N.S.; Khan, S.U.; Ullah, Z.; Rahman, S.U. Synthesis, morphology, structural, and rheological studies of Fe0. 01Al0. 5La. 0.01 Zn0. 98O-based polyaniline composite materials. J. Aust. Ceram. Soc. 2019, 55, 25–36. [Google Scholar] [CrossRef]
- Khan, S.; Han, C.; Khan, H.M.; Boccelli, D.L.; Nadagouda, M.N.; Dionysiou, D.D. Efficient degradation of lindane by visible and simulated solar light-assisted S-TiO2/peroxymonosulfate process: Kinetics and mechanistic investigations. Mol. Catal. 2017, 428, 9–16. [Google Scholar] [CrossRef]
- Xiao, J.; Huang, W.; Hu, Y.; Zeng, F.; Huang, Q.; Zhou, B.; Pan, A.; Li, K.; Huang, G. Facile situ synthesis of wurtzite ZnS/ZnO core/shell heterostructure with highly efficient visible-light photocatalytic activity and photostability. J. Phys. D Appl. Phys. 2018, 51, 075501. [Google Scholar] [CrossRef]
- Xiong, D.N.; Huang, G.F.; Zhou, B.X.; Chang, S.; Wang, F.; Huang, W.Q. Enhanced photocatalytic activity of hexagonalflake-like Bi2S3/ZnS composites with a large percentage of reactive facets. J. Phys. D Appl. Phys. 2016, 49, 305105. [Google Scholar] [CrossRef]
- Mishra, P.; Patnaik, S.; Parida, K. An overview of recent progress on noble metal modified magnetic Fe3O4 for photocatalytic pollutant degradation and H2 evolution. Catal. Sci. Technol. 2019, 9, 916–941. [Google Scholar] [CrossRef]
- Jacinto, M.J.; Ferreira, L.F.; Silva, V.C. Magnetic materials for photocatalytic application-A review. J. Sol-Gel Sci. Technol. 2020, 96, 1–14. [Google Scholar] [CrossRef]
- Aziz, A.; Ali, N.; Khan, A.; Bilal, M.; Malik, S.; Ali, N.; Khan, H. Chitosan-zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int. J. Biol. Macromol. 2020, 153, 502–512. [Google Scholar] [CrossRef]
- Atla, S.B.; Lin, W.; Chien, T.; Tseng, M.; Shu, J.; Chen, C.; Chen, C. Fabrication of Fe3O4/ZnO magnetite core shell and its application in photocatalysis using sunlight. Mater. Chem. Phys. 2018, 216, 380–386. [Google Scholar] [CrossRef]
- Xia, J.; Wang, A.; Liu, X.; Su, Z. Preparation and characterization of bifunctional, Fe3O4/ZnO nanocomposites and their use as photocatalysts. Appl. Surf. Sci. 2011, 257, 9724–9732. [Google Scholar] [CrossRef]
- Podasca, V.E.; Buruiana, T.; Buruiana, E.C. Photocatalytic degradation of Rhodamine B dye by polymericfilms containing ZnO, Ag nanoparticles and polypyrrole. J. Photochem. Photobiol. A Chem. 2019, 371, 188–195. [Google Scholar] [CrossRef]
- Ren, G.; Clancy, C.; Tamer, T.M.; Schaller, B.; Walker, G.M.; Collins, M.N. Cinnamyl O-amine functionalized chitosan as a new excipient in direct compressed tablets with improved drug delivery. Inter. J. Biol. Macromol. 2019, 141, 936–946. [Google Scholar] [CrossRef]
- Ali, N.; Khan, A.; Bilal, M.; Malik, S.; Badshah, S.; Iqbal, H.M. Chitosan-based bio-composite modified with thiocarbamate moiety for decontamination of cations from the aqueous media. Molecules 2020, 25, 226. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Badshah, S.; Airoldi, C. Environmentally benign modified biodegradable chitosan for cation removal. Polym. Bull. 2015, 72, 353–370. [Google Scholar] [CrossRef]
- Kumar, M.; Dosanjh, H.S.; Singh, H. Magnetic zinc ferrite-chitosan bio-composite: Synthesis, characterization and adsorption behavior studies for cationic dyes in single and binary systems. J. Inorg. Organomet. Polym. Mater. 2018, 28, 880–898. [Google Scholar] [CrossRef]
- Nawaz, A.; Khan, A.; Ali, N.; Ali, N.; Bilal, M. Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye. Environ. Technol. Innov. 2020, 20, 101079. [Google Scholar] [CrossRef]
- Abdelwahab, N.; Morsy, E. Synthesis and characterization of methyl pyrazolone functionalized magnetic chitosan composite for visible light photocatalytic degradation of methylene blue. Int. J. Biol. Macromol. 2018, 108, 1035–1044. [Google Scholar] [CrossRef]
- Qin, S.; Liu, Y.; Zhou, Y.; Chai, T.; Guo, J. Synthesis and photochemical performance of CdS nanoparticles photocatalysts for photodegradation of organic dye. J. Mater. Sci. 2017, 28, 7609–7614. [Google Scholar] [CrossRef]
- Iranmanesh, P.; Saeednia, S.; Nourzpoor, M. Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chin. Phys. B. 2015, 24, 046104. [Google Scholar] [CrossRef]
- Adnan, K.; Samina, B.; Nauman, A.; Sabir, K.; Sajjad, H.; Maria, D.P.T.S. Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution. Water Sci. Technol. 2017, 75, 2034–2046. [Google Scholar]
- Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O.P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review. Adv. Colloid Interface Sci. 2019, 272, 102009. [Google Scholar] [CrossRef]
- Khan, A.; Badshah, S.; Airoldi, C. Dithiocarbamated chitosan as a potent biopolymer for toxic cation remediation. Colloids Surf. B 2011, 87, 88–95. [Google Scholar] [CrossRef]
- Vinuthna, C.H.; Ravinder, D.; Madhusudan, R.; Ravinder, D. Characterization of Co1–XZnxFe2O4 nano spinal ferrites prepared by citrate precursor method. Int. J. Eng. Res. Appl. 2013, 3, 654–660. [Google Scholar]
- Shah, S.J.; Khan, A.; Naz, N.; Ismail, A.; Zahid, M.; Khan, M.S.; Awais; Ismail, M.; Bakhtiar, S.U.H.; Khan, I.; et al. Synthesis of CoCrFeO4-chitosan beads sun-light-driven photocatalyst with well recycling for efficiently degrading high-concentration dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 236, 118314. [Google Scholar] [CrossRef]
- Khan, S.; He, X.; Khan, H.M.; Boccelli, D.; Dionysiou, D.D. Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2016, 316, 37–43. [Google Scholar] [CrossRef]
- Soltani, T.; Entezari, M.H. Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J. Mol. Catal. A Chem. 2013, 377, 197–203. [Google Scholar] [CrossRef]
- Ahmed, Y.; Yaakob, Z.; Akhtar, P. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal. Sci. Technol. 2016, 6, 1222–1232. [Google Scholar] [CrossRef]
- Singh, N.K.; Saha, S.; Pal, A. Methyl red degradation under UV illumination and catalytic action of commercial ZnO: A parametric study. Desalination Water Treat. 2015, 56, 1066–1076. [Google Scholar] [CrossRef]
- Singh, N.K.; Saha, S.; Pal, A. Solar light-induced photocatalytic degradation of methyl red in an aqueous suspension of commercial ZnO: A green approach. Desalination Water Treat. 2015, 53, 501–514. [Google Scholar] [CrossRef]
- da Silva, C.G.; Faria, J.L. Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. A Chem. 2013, 155, 133–143. [Google Scholar] [CrossRef]
- Yatmaz, H.C.; Akyol, A.; Bayramoglu, M. Kinetics of the photocatalytic decolorization of an azo reactive dye in aqueous ZnO suspensions. Ind. Eng. Chem. Res. 2004, 43, 6035–6039. [Google Scholar] [CrossRef]
- Vadivel, S.; Maruthamani, D.; Habibi-Yangjeh, A.; Paul, B.; Dhar, S.S.; Selvam, K. Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation. J. Colloid Interface Sci. 2016, 480, 126–136. [Google Scholar] [CrossRef]
- Adeel, M.; Saeed, M.; Khan, I.; Muneer, M.; Akram, N. Synthesis and characterization of Co-ZnO and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega 2021, 6, 1426–1435. [Google Scholar] [CrossRef]
- Khan, S.; Sayed, M.; Sohail, M.; Shah, L.A.; Raja, M.A. Advanced oxidation and reduction processes. Adv. Water Purif. Tech. 2019, 135–164. [Google Scholar] [CrossRef]
- Khan, A.; Naeem, A.; Mahmood, T. Kinetic Studies of Methyl Orange and Congo Red Adsorption and Photocatalytic Degradation onto PVP-Functionalized ZnO. Kinet. Catal. 2020, 61, 730–739. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Khosa, M.K.K.; Akram, N.; Khalid, S.; Adeel, M.; Nisar, A.; Sherazi, S. Azadirachta indica leaves extract assisted green synthesis of Ag-TiO2 for degradation of Methylene blue and Rhodamine B dyes in aqueous medium. Green Process. Synth. 2019, 8, 659–666. [Google Scholar] [CrossRef]
- Siddique, M.; Khan, N.M.; Saeed, M. Photocatalytic activity of bismuth ferrite nanoparticles synthesized via sol-gel route. Z. Phys. Chem. 2019, 233, 595–607. [Google Scholar] [CrossRef]
- Nisar, A.; Saeed, M.; Muneer, M.; Usman, M.; Khan, I. Synthesis and characterization of ZnO decorated reduced graphene oxide (ZnO-rGO) and evaluation of its photocatalytic activity toward photodegradation of methylene blue. Environ. Sci. Pollut. Res. 2021, 29, 418–430. [Google Scholar] [CrossRef]
- Ajithkumar, P.; Mohana, S.; Sumathi, S. Synthesis, characterization, optical and photocatalytic activity of yttrium and copper co-doped zinc ferrite under visible light. J. Mater. Sci. Mater. 2020, 31, 1168–1182. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Akram, N.; ul Haq, A.; Afzal, N.; Hamayun, M. Synthesis and characterization of silver loaded alumina and evaluation of its photo catalytic activity on photo degradation of methylene blue dye. Chem. Eng. Res. Des. 2019, 148, 218–226. [Google Scholar] [CrossRef]
- Altynbaeva, L.S.; Barsbay, M.; Aimanova, N.A.; Jakupova, Z.Y.; Nurpeisova, D.T.; Zdorovets, M.V.; Mashentseva, A.A. A Novel Cu2O/ZnO@PET Composite Membrane for the Photocatalytic Degradation of Carbendazim. Nanomaterials 2022, 12, 1724. [Google Scholar] [CrossRef]
- Mphahlele, L.L.; Ajibade, P.A. Synthesis and crystal structure of bis (morpholino dithiocarbamato) Cd (II) complex and its use as precursor for CdS quantum dots using different capping agents. J. Sulfur Chem. 2019, 40, 648–663. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, J.; Ke, Y. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. J. Hazard. Mater. 2010, 177, 750–754. [Google Scholar] [CrossRef]
- Khan, A.; Shah, S.J.; Mehmood, K.; Ali, N.; Khan, H. Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight. J. Mater. Sci. Mater. 2019, 30, 406–414. [Google Scholar] [CrossRef]
- Khan, H.; Khalil, A.K.; Khan, A.; Saeed, K.; Ali, N. Photocatalytic degradation of bromophenol blue in aqueous medium using chitosan conjugated magnetic nanoparticles. Korean J. Chem. Eng. 2016, 33, 2802–2807. [Google Scholar] [CrossRef]
- Mashentseva, A.; Barsbay, M.; Aimanova, N.; Zdorovets, M. Application of Silver-Loaded Composite Track-Etched Membranes for Photocatalytic Decomposition of Methylene Blue under Visible Light. Membranes 2021, 11, 60. [Google Scholar] [CrossRef]
- Hamad, H.; Bassyouni, D.; El-Ashtoukhy, E.S.; Amin, N.; Abd El-Latif, M. Electrocatalytic degradation and minimization of specific energy consumption of synthetic azo dye from wastewater by anodic oxidation process with an emphasis on enhancing economic efficiency and reaction mechanism. Ecotoxicol. Environ. Saf. 2018, 148, 501–512. [Google Scholar] [CrossRef]
Element | Weight % | Atomic % |
---|---|---|
C | 36.35 | 49.67 |
O | 43.24 | 43.36 |
Fe | 18.91 | 5.56 |
Ni | 1.50 | 1.41 |
Total | 100 | 100 |
Dye | Rate Constant, k (min−1) | Activation Energy, Ea (kJ mol−1) | Entropy of Activation (∆S#, J mol K−1) | Enthalpy of Activation (∆H#, kJ mol−1) |
---|---|---|---|---|
Methylene blue | 0.077 | 10.82 | −5.9 | 37.73 |
Methyl red | 0.072 | 11.64 | −6.14 | 41.23 |
Number of Batches | 1st | 2nd | 3rd | 4th |
---|---|---|---|---|
Dyes | Photocatalytic degradation of azo dyes (%) | |||
Methylene blue | 99 | 97 | 94 | 93 |
Methyl red | 96 | 95 | 93 | 92 |
Catalyst | Light Source | Dye | Conc. mg/L | %D & k (min−1) | Reaction Time (min) | Ref. |
---|---|---|---|---|---|---|
CS-ZnS-NPs | UV light | Acid black 234 acid brown 98 | 10 | 97, 0.04096 93, 0.01464 | 100 | [26] |
ZnO–PVP | UV light | Methyl orange Congo red | 100 | 82, 0.20 (g.min−1.mol−1) 76, 14.3 (g.min−1.mol−1) | 120 | [53] |
CdS | UV light | Methyl orange | 10 | 99 | 90 | [36] |
CoCrFeO4-CB | Sunlight | Acid brown, acid black Congo red | 50 | 100 93 85 | 100 | [42] |
yttrium doped zinc ferrite (ZFY) and yttrium and copper co-doped zinc ferrite (CZFY) | Visible light | Methylene blue | 10 | 95, 0.00497 89, 0.00471 | 180 | [57] |
Ag-Al2O3 | Visible light | Methylene blue | 100 | 100, 0.08 | 120 | [58] |
Ni/TiO2 (UV) | UV light | Methyl orange | 5 | 85, 0.0098 | 120 | [61] |
copper sulfide nanoparticles chitosan beads (CuS-CB) | Sunlight/Day light | Malachite green | 50 | 95, 0.033 | 180 | [62] |
Co-CCMN, Ni-CCMN Fe-CCMN | UV light | Bromophenol blue | 30 | 85, 0.0047 83, 0.0034 95, 0.0040 | 600 | [63] |
Ag/PET TeMs | Visible light | Methylene blue | 1 | 61, 0.9 | 60 | [64] |
Ni-Fe3O4-CS | Sunlight | Methylene blue Methyl red | 50 | 99, 0.077 96, 0.072 | 90 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ara, A.; Khattak, R.; Khan, M.S.; Begum, B.; Khan, S.; Han, C. Synthesis, Characterization, and Solar Photo-Activation of Chitosan-Modified Nickel Magnetite Bio-Composite for Degradation of Recalcitrant Organic Pollutants in Water. Catalysts 2022, 12, 983. https://doi.org/10.3390/catal12090983
Ara A, Khattak R, Khan MS, Begum B, Khan S, Han C. Synthesis, Characterization, and Solar Photo-Activation of Chitosan-Modified Nickel Magnetite Bio-Composite for Degradation of Recalcitrant Organic Pollutants in Water. Catalysts. 2022; 12(9):983. https://doi.org/10.3390/catal12090983
Chicago/Turabian StyleAra, Asmat, Rozina Khattak, Muhammad Sufaid Khan, Bushra Begum, Sanaullah Khan, and Changseok Han. 2022. "Synthesis, Characterization, and Solar Photo-Activation of Chitosan-Modified Nickel Magnetite Bio-Composite for Degradation of Recalcitrant Organic Pollutants in Water" Catalysts 12, no. 9: 983. https://doi.org/10.3390/catal12090983
APA StyleAra, A., Khattak, R., Khan, M. S., Begum, B., Khan, S., & Han, C. (2022). Synthesis, Characterization, and Solar Photo-Activation of Chitosan-Modified Nickel Magnetite Bio-Composite for Degradation of Recalcitrant Organic Pollutants in Water. Catalysts, 12(9), 983. https://doi.org/10.3390/catal12090983