Methanol Steam Reforming over La1-xSrxCeO3-δ Catalysts for Hydrogen Production: Optimization of Operating Parameters
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD, SEM and SEM-EDS
2.2. Catalytic Performance
2.2.1. The Effects of A-Site Doping
2.2.2. The Effects of Reforming Temperature
2.2.3. The Effects of the W/M
2.2.4. The Effects of the LHSV
3. Materials and Methods
3.1. Preparation of La1-xSrxCeO3-δ Perovskite Powders
3.2. Characterization
3.3. Methanol Steam Reforming Experiments
4. Conclusions
- The experimental results showed that La0.6Sr0.4CeO3-δ has the highest methanol conversion and hydrogen production per unit time among the La1-xSrxCeO3-δ. In addition, excessive Sr content led to a decrease in H2 selectivity and H2 yield.
- The results of XRD and SEM-EDS showed that the La0.6Sr0.4CeO3-δ catalyst was successfully synthesized in this study. The catalyst still maintains the original structure after hydrogen reduction treatment and exhibits a very typical perovskite structure because La0.6Sr0.4CeO3-δ perovskite metal oxides are difficult to reduce with hydrogen. The reason for this phenomenon may be that the La0.6Sr0.4CeO3-δ catalyst is a cubic structure, and some studies have confirmed that the cubic perovskite structure is stable in a reducing environment. The results of SEM indicated that the surface morphology of the catalyst sample after reduction treatment did not change significantly compared with that of the fresh sample. The reduced catalyst sample has more uniform particle distribution and roughly the same particle size, so the catalyst activity is more excellent.
- The influence of experimental conditions on the catalytic performance of La0.6Sr0.4CeO3-δ catalyst was investigated in this study, and the optimal reforming temperature, W/M and LHSV were determined to be 700 °C, 3:1 and 20 h−1, respectively. The maximum methanol conversion rate was 82%, and the hydrogen production per unit time could reach 3.2 × 10−3 mol/g(cat)/min. La0.6Sr0.4CeO3-δ is a potential catalyst for methanol steam reforming with good catalytic performance. The potential of methanol to hydrogen depends on the catalyst with high selectivity for hydrogen at low temperatures. Therefore, the steam reforming of methane over the Sr-doped LaCeO3-δ catalyst shows good promise for the development of an efficient, economical and clean hydrogen production system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, M.; Kuo, C.; Huang, C.; Yang, W. Preparation of CuS/PbS/ZnO Heterojunction Photocatalyst for Application in Hydrogen Production. Catalysts 2022, 12, 1677. [Google Scholar] [CrossRef]
- Anandarajah, G.; McDowall, W.; Ekins, P. Decarbonising road transport with hydrogen and electricity: Long term global technology learning scenarios. Int. J. Hydrog. Energy 2013, 38, 3419–3432. [Google Scholar] [CrossRef]
- Dutta, S. A review on production, storage of hydrogen and its utilization as an energy resource. J. Ind. Eng. Chem. 2014, 20, 1148–1156. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, W.; Lan, G.; Sun, X.; Wang, X.; Jiang, C.; Li, Y. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy. J. Energy Chem. 2021, 63, 550–557. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Shen, Q.; Cai, Z.; Shao, Z.; Yang, G.; Li, S. Improved performance of bimetallic oxides CuO-Y2O3 synthesized by sol-gel for methanol steam reforming. J. Am. Ceram. Soc. 2022, 105, 6839–6850. [Google Scholar] [CrossRef]
- Mosinska, M.; Stępińska, N.; Maniukiewicz, W.; Rogowski, J.; Mierczynska-Vasilev, A.; Vasilev, K.; Mierczynski, P. Hydrogen Production on Cu-Ni Catalysts via the Oxy-Steam Reforming of Methanol. Catalysts 2020, 10, 273. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.; Jozsa, P.; Pettersson, L.J. Evaluation of Pd-based catalysts and the influence of operating conditions for autothermal reforming of dimethyl ether. Appl. Catal. B: Environ. 2007, 76, 42–50. [Google Scholar] [CrossRef]
- Vidal Vázquez, F.; Simell, P.; Pennanen, J.; Lehtonen, J. Reactor design and catalysts testing for hydrogen production by methanol steam reforming for fuel cells applications. Int. J. Hydrog. Energy 2016, 41, 924–935. [Google Scholar] [CrossRef]
- Wu, G.; Li, S.; Zhang, C.; Wang, T.; Gong, J. Glycerol steam reforming over perovskite-derived nickel-based catalysts. Appl. Catal. B: Environ. 2014, 144, 277–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Xu, Q.; Zhang, Q.; Li, J.; Ma, Q. Effect of Sr-Doping on the Photocatalytic Performance of LaNiO3−σ. Catalysts 2022, 12, 1434. [Google Scholar] [CrossRef]
- Morales, M.; Segarra, M. Steam reforming and oxidative steam reforming of ethanol over La0.6Sr0.4CoO3−δ perovskite as catalyst precursor for hydrogen production. Appl. Catal. A Gen. 2015, 502, 305–311. [Google Scholar] [CrossRef]
- Ma, F.; Ding, Z.; Chu, W.; Hao, S.; Qi, T. Preparation of LaXCoO3 (X = Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen. Chin. J. Catal. 2014, 35, 1768–1774. [Google Scholar] [CrossRef]
- Cui, Y.; Galvita, V.; Rihko-Struckmann, L.; Lorenz, H.; Sundmacher, K. Steam reforming of glycerol: The experimental activity of La1−xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium. Appl. Catal. B: Environ. 2009, 90, 29–37. [Google Scholar] [CrossRef]
- Gómez-Cuaspud, J.A.; Perez, C.A.; Schmal, M. Nanostructured La0.8Sr0.2Fe0.8Cr0.2O3 Perovskite for the Steam Methane Reforming. Catal. Lett. 2016, 146, 2504–2515. [Google Scholar] [CrossRef]
- Natile, M.M.; Poletto, F.; Galenda, A.; Glisenti, A.; Montini, T.; Rogatis, L.D.; Fornasiero, P. La0.6Sr0.4Co1-yFeyO 3-δ perovskites: Influence of the Co/Fe atomic ratio on properties and catalytic activity toward alcohol steam-reforming. Chem. Mater. 2008, 20, 2314–2327. [Google Scholar] [CrossRef]
- Shao, Z.; Shen, Q.; Ding, H.; Jiang, Y.; Li, S.; Yang, G. Synthesis, characterization, and methanol steam reforming performance for hydrogen production on perovskite-type oxides SrCo1-xCuxO3-δ. Ceram Int. 2022, 48, 11836–11848. [Google Scholar] [CrossRef]
- Shen, Q.; Shao, Z.; Cai, Z.; Yan, M.; Yang, G.; Li, S. Enhancement of hydrogen production performance of novel perovskite LaNi0.4Al0.6O3-δ supported on MOF A520-derived λ-Al2O3. Int. J. Energy Res. 2022, 46, 15709–15721. [Google Scholar] [CrossRef]
- Shen, Q.; Li, S.; Yang, G.; Yuan, J.; Huang, N. Development of microwave-assisted sol-gel rapid synthesis of nano-crystalline perovskites oxygen carrier material in oxyfuel combustion. J. Ceram. Process. Res. 2019, 20, 152–157. [Google Scholar] [CrossRef]
- Mangu, S.; Suares, V.; Gupta, A.; Anantharaman, A.P. Synthesis, characterization and density Functional theory (DFT) study of LaCeO3. Mater. Today: Proc. 2022, 57, 1892–1897. [Google Scholar] [CrossRef]
- Jangam, A.; Das, S.; Pati, S.; Kawi, S. Catalytic reforming of tar model compound over La1-xSrx-Co0.5Ti0.5O3-δ dual perovskite catalysts: Resistance to sulfide and chloride compounds. Appl. Catal. A: Gen. 2021, 613, 118013. [Google Scholar] [CrossRef]
- Xu, X.; Shuai, K.; Xu, B. Review on Copper and Palladium Based Catalysts for Methanol Steam Reforming to Produce Hydrogen. Catalysts 2017, 7, 183. [Google Scholar] [CrossRef]
- Luan, X.; Qi, L.; Zheng, Z.; Gao, Y.; Xue, Y.; Li, Y. Step by Step Induced Growth of Zinc-Metal Interface on Graphdiyne for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2023. [Google Scholar] [CrossRef]
- Shen, Q.; Li, S.; Yang, G.; Sunden, B.; Yuan, J. Effect of A-/B-site Doping on Oxygen Non-Stoichiometry, Structure characteristics, and O2 Releasing Behavior of La1−xCaxCo1−yFeyO3−δ Perovskites. Energies 2019, 12, 410. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Li, N.; Teng, J.; Wu, J.; Ma, H. Influence of A-site cation in La0.7M0.3Ni0.7Fe0.3O3 (M = Pr, Y, Sr, Zr, Ce) perovskite-type oxides on the catalytic performance. Chem. Res. Appl. 2018, 30, 1979–1985. [Google Scholar]
- Shen, Q.; Dong, S.; Li, S.; Yang, G.; Pan, X. A Review on the Catalytic Decomposition of NO by Perovskite-Type Oxides. Catalysts 2021, 11, 622. [Google Scholar] [CrossRef]
- Mukai, D.; Izutsu, Y.; Sekine, Y. Highly and stably dispersed Pt catalysts supported over La1−xSrxAlO3−0.5x perovskite for oxidative methane activation and their structures. Appl. Catal. A Gen. 2013, 458, 71–81. [Google Scholar] [CrossRef]
- Da Silva Veras, T.; Mozer, T.S.; da Costa Rubim Messeder dos Santos, D.; da Silva César, A. Hydrogen: Trends, production and characterization of the main process worldwide. Int. J. Hydrog. Energy 2017, 42, 2018–2033. [Google Scholar] [CrossRef]
- Yang, E.; Noh, Y.; Hong, G.; Moon, D. Combined steam and CO2 reforming of methane over La1-xSrxNiO3 perovskite oxides. Catal. Today 2018, 299, 242–250. [Google Scholar] [CrossRef]
- Shen, Q.; Zheng, Y.; Luo, C.; Ding, N.; Zheng, C.; Thern, M. Effect of A/B-site substitution on oxygen production performance of strontium cobalt based perovskites for CO2 capture application. RSC Adv. 2015, 5, 39785–39790. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Shen, Q.; Jiang, Y.; Li, S.; Yang, G.; Zhang, H.; Zhang, Z.; Pan, X. Hydrogen production by ethanol steam reforming over Ni-doped LaNixCo1−xO3−δ perovskites prepared by EDTA-citric acid sol–gel method. J. Sol-Gel Sci. Technol. 2021, 99, 420–429. [Google Scholar] [CrossRef]
- Ding, H.; Xu, Y.; Luo, C.; Wang, Q.; Li, S.; Cai, G.; Zhnag, L.; Zhang, Y.; Shen, Q. Oxygen desorption behavior of sol-gel derived perovskite-type oxides in a pressurized fixed bed reactor. Chem Eng. J. 2017, 323, 340–346. [Google Scholar] [CrossRef]
Elements | Standard Atomic Ratio | Atomic Ratio of the Fresh La0.6Sr0.4CeO3-δ | Atomic Ratio of the La0.6Sr0.4CeO3-δ Reduced by H2 |
---|---|---|---|
La | 9 | 8.76 | 3.64 |
Sr | 6 | 5.87 | 1.82 |
Ce | 15 | 15.10 | 6.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Shen, Q.; Zhang, X.; Cai, Z.; Shao, Z.; Li, S.; Yang, G. Methanol Steam Reforming over La1-xSrxCeO3-δ Catalysts for Hydrogen Production: Optimization of Operating Parameters. Catalysts 2023, 13, 248. https://doi.org/10.3390/catal13020248
Chen G, Shen Q, Zhang X, Cai Z, Shao Z, Li S, Yang G. Methanol Steam Reforming over La1-xSrxCeO3-δ Catalysts for Hydrogen Production: Optimization of Operating Parameters. Catalysts. 2023; 13(2):248. https://doi.org/10.3390/catal13020248
Chicago/Turabian StyleChen, Gaokui, Qiuwan Shen, Xin Zhang, Zhongwen Cai, Zicheng Shao, Shian Li, and Guogang Yang. 2023. "Methanol Steam Reforming over La1-xSrxCeO3-δ Catalysts for Hydrogen Production: Optimization of Operating Parameters" Catalysts 13, no. 2: 248. https://doi.org/10.3390/catal13020248
APA StyleChen, G., Shen, Q., Zhang, X., Cai, Z., Shao, Z., Li, S., & Yang, G. (2023). Methanol Steam Reforming over La1-xSrxCeO3-δ Catalysts for Hydrogen Production: Optimization of Operating Parameters. Catalysts, 13(2), 248. https://doi.org/10.3390/catal13020248