Nysfungin Production Improvement by UV Mutagenesis in Streptomyces noursei D-3-14
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of the Chemical and Biological Potency of the Starting Strain Streptomyces noursei D-3-14
2.2. HPLC Analysis of the Starting Strain Streptomyces noursei D-3-14
2.3. Determination of the UV Irradiation Duration of Mutagenesis
2.4. Preliminary and Secondary Screening for Three Consecutive Rounds
2.5. Genetic Stability Experiment
2.6. Single-Factor Evaluation for the Nysfungin Fermentation
2.7. HPLC Analysis for Streptomyces noursei 72-22-1
2.8. Fungicidal Activity of Nystatin A1, A3, and Polyfungin B towards Saccharomyces cerevisiae ATCC 2061
3. Materials and Methods
3.1. Chemicals, Strains, Culture Media, and Growth Conditions
3.2. UV Mutagenesis, Nysfungin Crude Extraction, and HPLC Detection
3.3. Determination of the Chemical and Biological Potencies
3.4. Preliminary Screen and Secondary Screen for Mutants
3.5. Genetic Stability Evaluation
3.6. Single Ingredient Evaluation for the Obtained Nysfungin
3.7. Optimization of the Fermentation Conditions
3.8. Statistical Analysis
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyu, X.; Zhao, C.; Yan, Z.M.; Hua, H. Efficacy of Nystatin for the Treatment of Oral Candidiasis: A Systematic Review and Meta-Analysis. Drug Des. Devel. Ther. 2016, 10, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldino, M.E.L.; Medina-Silva, R.; Sumienski, J.; Figueiredo, M.A.; Salum, F.G.; Cherubini, K. Nystatin effect on chlorhexidine efficacy against Streptococcus mutans as planktnic cells and mixed biofilm with Candida albicans. Clin. Oral Investig. 2022, 26, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Brescansin, E.G.; Portilho, M.; Pessine, F.B.T. Physical and chemical analysis of commercial nystatin. Acta Sci. Health Sci. 2013, 35, 215–221. [Google Scholar] [CrossRef]
- Hazen, E.L.; Brown, R. Fungicidin, an Antibiotic Produced by a Soil Actinomycete. Proc. Soc. Exp. Biol. Med. 1951, 76, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Ling, D.; Chen, S.; Wang, S.; Sun, Z.; Ma, J. Structure identification of two major ingredients in the domestic Fungicidin. Acta Pharm. Sin. 1986, 21, 454–457. [Google Scholar]
- Ma, J.; Liu, Y.; Wen, D.; Zhu, F.; Wang, S.; Ling, D. Isolation, preparation, identification and rename of the Chinese nystatin multi major ingredients. Antibiotics 1987, 12, 83–90. [Google Scholar]
- Thomas, A.H.; Pharm, B.; Newland, P.; Quinlan, G.J. Identification and determination of the qualitative composition of nystatin using thin-layer chromatography and high-performance liquid chromatography. J. Chromatogr. A 1981, 216, 367–373. [Google Scholar] [CrossRef]
- Paterson, G.R. The british pharmacopoeia 1980. Drug Ther. Bull. 1980, 18, 100. [Google Scholar]
- Thomas, A.H.; Newland, P.; Sharma, N.R. The heterogeneous composition of pharmaceutical-grade nystatin. Analyst 1982, 107, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, P.; Hogan, M.; Song, Y.H. New Glycosylated Polyene Macrolides: Refining the Ore from Genome Mining. Antibiotics 2022, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Helal, S.H.; Abdel-Aziz, H.M.M.; El-Zayat, M.M.; Hasaneen, M.N.A. Preparation, characterization and properties of three different nanomaterials either alone or loaded with nystatin or fluconazole antifungals. Sci. Rep. 2022, 12, 22110. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.-S.; Lo, C.-H.; Tseng, Y.-L.; Kuo, S.L.; Chiang, C.-P.; Chiang, M.-L. Efficacy of oral nystatin treatment for patients with oral mucosal dysesthesia but without objective oral mucosal manifestations and necessity of Candida culture test before oral nystatin treatment. J. Dent. Sci. 2022, 17, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Quindós, G.; Gil-Alonso, S.; Marcos-Arias, C.; Sevillano, E.; Mateo, E.; Jauregizar, N.; Eraso, E. Therapeutic tools for oral candidiasis: Current and new antifungal drugs. Med. Oral Patol. Oral Cir. Buccal 2019, 24, e172–e180. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.N.; Rickards, R.W. Macrolide antibiotic studies. XVI. The structure of nystatin. Tetrahedron Lett. 1970, 11, 5145–5148. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, J.; Jereczek, E.; Sowinski, P.; Falkowski, L.; Rudowski, A.; Borowski, E. The structure of a novel sugar component of polyene macrolide antibiotics: 2,6-dideoxy-L-ribohexopyranose. J. Antibiot. 1979, 32, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Department of Health. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 1990; pp. 36–38. [Google Scholar]
- Ruiz, N.Q.; Campo, Y.C.; Stashenko, E.E.; Fuentes, J.L. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species. Photochem. Photobiol. 2017, 93, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Yang, G.; Han, J.; Thomsen, L.; Pan, K. Breeding 3 elite strains of Nannochloropsis oceanica by nitrosoguanidine mutagenesis and robust screening. Algal Res. 2016, 19, 104–108. [Google Scholar] [CrossRef]
- Hauer, M.H.; Gasser, S.M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev. 2017, 31, 2204–2221. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; pp. 3401–3402. [Google Scholar]
- The United States Pharmacopeial Convention. United State Pharmacopeia, 40th ed.; The United States Pharmacopeial Convention: Rockville, MD, USA, 2017; pp. 5400–5401. [Google Scholar]
- Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations; FDA: Silver Spring, MD, USA, 2022.
Expt. No | OD319 | Chemical Potency (U/mL) | Average Chemical Potency (U/mL) |
---|---|---|---|
1 | 0.295 | 3709 | |
2 | 0.249 | 3116 | 3464 |
3 | 0.284 | 3567 |
Expt. No | Inhibition Diameter (mm) 80 U/mL Reference | Inhibition Diameter (mm) 40 U/mL Reference | Inhibition Diameter (mm) 80 U/mL Sample | Inhibition Diameter (mm) 40 U/mL Sample | Biological Potency (U/mL) | Average Biological Potency (U/mL) |
---|---|---|---|---|---|---|
1 | 23.42 | 19.00 | 21.64 | 17.50 | 2658 | |
2 | 21.98 | 18.44 | 20.26 | 17.18 | 2538 | 2703 |
3 | 23.22 | 18.94 | 22.16 | 17.88 | 2914 |
Strain No. | Chemical Potency (U/mL) | Biological Potency (U/mL) | Polyfugin B Content (%) |
---|---|---|---|
74-14-8 | 5783 | 4626 | 33.63 |
74-14-61 | 5177 | 3467 | 27.64 |
74-14-67 | 5101 | 3825 | 21.61 |
Strain No. | Chemical Potency (U/mL) | Biological Potency (U/mL) | Polyfugin B Content (%) |
---|---|---|---|
72-22-1 | 8912 | 5557 | 53.63 |
72-22-3 | 5328 | 3467 | 47.64 |
72-22-5 | 7214 | 5679 | 31.61 |
72-22-10 | 5912 | 3578 | 44.72 |
72-22-11 | 6879 | 4344 | 35.11 |
72-22-14 | 6020 | 4684 | 36.79 |
72-22-19 | 5829 | 3689 | 32.77 |
72-22-20 | 5741 | 4121 | 33.04 |
72-22-49 | 5311 | 3877 | 28.64 |
Strain No. | Chemical Potency (U/mL) | Biological Potency (U/mL) | Polyfugin B Content (%) |
---|---|---|---|
112-24-11 | 8692 | 6945 | 39.66 |
112-24-23 | 4463 | 5007 | 27.46 |
112-24-38 | 4353 | 5010 | 26.10 |
112-24-63 | 11,097 | 10,751 | 31.86 |
112-24-70 | 7837 | 9044 | 27.92 |
112-24-78 | 5545 | 8539 | 22.14 |
112-24-97 | 7340 | 2951 | 23.37 |
Expt. No. | Inhibition Zone Diameter of Nystatin A1 (mm) | Inhibition Zone Diameter of Nystatin A3 (mm) | Inhibition Zone Diameter of Polyfugin B (mm) |
---|---|---|---|
1 | 20.68 | 16.44 | 21.62 |
2 | 19.26 | 16.84 | 21.18 |
3 | 18.56 | 15.84 | 19.12 |
4 | 19.76 | 16.60 | 20.18 |
5 | 19.14 | 16.52 | 20.08 |
Average Value | 19.48 ± 0.71 | 16.45 ± 0.33 | 20.44 ± 0.88 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; He, W.; Cai, S.; Wang, F.; Xu, W.; Xu, W. Nysfungin Production Improvement by UV Mutagenesis in Streptomyces noursei D-3-14. Catalysts 2023, 13, 247. https://doi.org/10.3390/catal13020247
Song M, He W, Cai S, Wang F, Xu W, Xu W. Nysfungin Production Improvement by UV Mutagenesis in Streptomyces noursei D-3-14. Catalysts. 2023; 13(2):247. https://doi.org/10.3390/catal13020247
Chicago/Turabian StyleSong, Ming, Wubing He, Sulan Cai, Fuju Wang, Weizhuo Xu, and Wei Xu. 2023. "Nysfungin Production Improvement by UV Mutagenesis in Streptomyces noursei D-3-14" Catalysts 13, no. 2: 247. https://doi.org/10.3390/catal13020247
APA StyleSong, M., He, W., Cai, S., Wang, F., Xu, W., & Xu, W. (2023). Nysfungin Production Improvement by UV Mutagenesis in Streptomyces noursei D-3-14. Catalysts, 13(2), 247. https://doi.org/10.3390/catal13020247