Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review
Abstract
:1. Introduction
2. Emission Characteristics and Terminal Treatment
3. Transition Metal Oxide Catalysts for Toluene Purification
3.1. Single Metal Oxides
3.1.1. Manganese Oxides
3.1.2. Cerium Oxides
3.1.3. Cobalt Oxides
3.2. Multi-Oxide Composites
3.2.1. Binary Composites
3.2.2. Perovskite Oxides
3.2.3. Multiple Composites
3.3. Supported Metal Oxide Catalysts
4. Oxidation Kinetics and Catalytic Mechanism
5. Mechanism of Synergistic Removal of Toluene and NO
6. Conclusions and Prospect
- (1)
- Industrial monolithic catalysts with improved VOC reduction should be further developed. Surface modification methods should have easy preparation processes, large scale, and precisely controlled conditions.
- (2)
- Catalyst deactivation is a major defect in industrial applications. The iron sintering flue gas environment is often very complex, and trace contaminants such as water vapor, SO2, chlorine-containing compounds, and heavy metals may be present simultaneously. Therefore, catalysts with high activity, stability, and resistance to poisoning need to be designed. In addition, further understanding of the sources of poisoning or deactivation of different catalysts can enable industrially viable regeneration techniques by establishing correlations between the surface properties of the parent body and its catalytic activity.
- (3)
- In the simultaneous elimination of VOCs and NO, the reactions between NH3/NO, oxygen, and toluene over catalysts are still intricate and in their infancy. Theoretical calculations can be used to understand the reaction pathways, intermediate species migration, and conversion mechanisms for the simultaneous elimination of VOCs and NO at the molecular level.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zheng, J. Blue paper on the prevention and control of atmospheric ozone pollution in China: Professional committee of ozone pollution control. Chin. Soc. Environ. Sci. 2020. Available online: https://mp.weixin.qq.com/s/y9CJhur7v18aBhYcOTvgQA (accessed on 15 February 2023).
- Ding, A.; Huang, X.; Nie, W.; Chi, X.; Xu, Z.; Zheng, L.; Xu, Z.; Xie, Y.; Qi, X.; Shen, Y.; et al. Significant reduction of PM2.5 in eastern China due to regional-scale emission control: Evidence from SORPES in 2011–2018. Atmos. Chem. Phys. 2019, 19, 11791–11801. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ho, S.S.H.; Li, X.; Guo, L.; Chen, A.; Hu, L.; Yang, Y.; Chen, D.; Lin, A.; Fang, X. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Environ. Int. 2021, 156, 106710. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Xie, S. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 2574–2583. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Simayi, M.; Deng, Y.; Xie, S. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. J. Cleaner Prod. 2019, 214, 224–235. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhang, Y.; Rao, X.; Jin, Y. Impact of Technology Innovation on Air Quality-An Empirical Study on New Energy Vehicles in China. Int. J. Environ. Res. Public Health 2021, 18, 4025. [Google Scholar] [CrossRef]
- Kieush, L.; Koveria, A.; Boyko, M.; Yaholnyk, M.; Hrubiak, A.; Molchanov, L.; Moklyak, V. Influence of biocoke on iron ore sintering performance and strength properties of sinter. Min. Miner. Depos. 2022, 16, 55–63. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Q.; Wang, L.; Wang, S.; Li, J.; Zhang, X.; Zhang, S.; Zhao, H.; Zhang, B.; Wang, C.; et al. VOC emissions of coal-fired power plants in China based on life cycle assessment method. Fuel 2021, 292, 120325. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, L.; Shi, Q.; Liu, S.; Qian, L.; Yu, Z.; Wang, H.; Lei, J.; Gao, Z.; Long, H.; et al. Volatile organic compounds (VOC) emissions control in iron ore sintering process: Recent progress and future development. Chem. Eng. J. 2022, 448, 137601. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Li, Z.-Y. Research on the Effect of Chinese Margin Trading on Market Risk: Based on GJR Model and Filtered Historical Simulation. Appl. Econ. and Fin. 2017, 4, 84. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Liu, H.; Sun, W.; Ding, B.; Zhao, Y.; Chen, P.; Zhu, L.; Li, Z.; Li, N.; et al. Urine proteome of COVID-19 patients. Urine 2020, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, X.; Pei, B.; Li, X.; Ying, D.; Wang, Y.; Jia, J. The ignored emission of volatile organic compounds from iron ore sinter process. J. Environ. Sci. 2019, 77, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Chun, T.; Long, H.; Li, J.; Di, Z.; Meng, Q.; Wang, P. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf. Environ. Prot. 2018, 117, 82–91. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, B.; Hao, R.; Zhao, Y.; Wang, X. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas. Chem. Eng. J. 2019, 378, 122155. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Zhang, J.; He, Z.; Yu, Y. Combustion Kinetics Characteristics of Solid Fuel in the Sintering Process. Processes 2020, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, X.; Cheng, S.; Wang, K.; Cheng, L.; Zhu, J.; Zheng, H.; Duan, W. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Sci. Total Environ. 2022, 809, 151134. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Han, R.; Liu, Q.; Su, Y.; Lu, S.; Yang, L.; Song, C.; Ji, N.; Ma, D.; Lu, X. A review of confined-structure catalysts in the catalytic oxidation of VOCs: Synthesis, characterization, and applications. Catal. Sci. Technol. 2021, 11, 5374–5387. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, W.; Weng, X.; Liu, Y.; Wang, H.; Wu, Z. Active Oxygen Species in Lan+1NinO3n+1 Layered Perovskites for Catalytic Oxidation of Toluene and Methane. J. Phys. Chem. C 2016, 120, 3259–3266. [Google Scholar] [CrossRef]
- Hermiaa, J.; Vigneron, S. Catalytic incineration for odour abatement and VOC destruction. Catal. Today 1993, 17, 349–356. [Google Scholar] [CrossRef]
- Kang, D.; Bian, Y.; Shi, Q.; Wang, J.; Yuan, P.; Shen, B. A Review of Synergistic Catalytic Removal of Nitrogen Oxides and Chlorobenzene from Waste Incinerators. Catalysts 2022, 12, 1360. [Google Scholar] [CrossRef]
- Piumetti, M.; Fino, D.; Russo, N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl. Catal. B Environ. 2015, 163, 277–287. [Google Scholar] [CrossRef]
- Li, K.; Chen, C.; Zhang, H.; Hu, X.; Sun, T.; Jia, J. Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation. Appl. Surf. Sci. 2019, 496, 143662. [Google Scholar] [CrossRef]
- Huang, J.; Fang, R.; Sun, Y.; Li, J.; Dong, F. Efficient α-MnO2 with (2 1 0) facet exposed for catalytic oxidation of toluene at low temperature: A combined in-situ DRIFTS and theoretical investigation. Chemosphere 2021, 263, 128103. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Fang, X.; Cheng, Y. Simple strategy for the construction of oxygen vacancies on α-MnO2 catalyst to improve toluene catalytic oxidation. J. Hazard. Mater. 2021, 409, 125020. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 2012, 46, 4034–4041. [Google Scholar] [CrossRef]
- Lyu, Y.; Li, C.; Du, X.; Zhu, Y.; Zhang, Y.; Li, S. Catalytic oxidation of toluene over MnO2 catalysts with different Mn (II) precursors and the study of reaction pathway. Fuel 2020, 262, 116610. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Song, Z.; Liu, W.; Zhao, J.; Ma, Z.; Zhao, M.; Xing, Y. Insight into the effect of oxygen species and Mn chemical valence over MnO on the catalytic oxidation of toluene. Appl. Surf. Sci. 2019, 493, 9–17. [Google Scholar] [CrossRef]
- Hu, F.; Chen, J.; Peng, Y.; Song, H.; Li, K.; Li, J. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion. Chem. Eng. J. 2018, 331, 425–434. [Google Scholar] [CrossRef]
- Feng, Z.; Ren, Q.; Peng, R.; Mo, S.; Zhang, M.; Fu, M.; Chen, L.; Ye, D. Effect of CeO2 morphologies on toluene catalytic combustion. Catal. Today 2019, 332, 177–182. [Google Scholar] [CrossRef]
- Mi, R.; Li, D.; Hu, Z.; Yang, R.T. Morphology Effects of CeO2 Nanomaterials on the Catalytic Combustion of Toluene: A Combined Kinetics and Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study. ACS Catal. 2021, 11, 7876–7889. [Google Scholar] [CrossRef]
- Yan, D.; Mo, S.; Sun, Y.; Ren, Q.; Feng, Z.; Chen, P.; Wu, J.; Fu, M.; Ye, D. Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion. Chemosphere 2020, 247, 125860. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Yu, E.; Cai, S.; Jia, H.; Chen, J.; Liang, P. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion. Chem. Eng. J. 2018, 344, 469–479. [Google Scholar] [CrossRef]
- Ren, Q.; Feng, Z.; Mo, S.; Huang, C.; Li, S.; Zhang, W.; Chen, L.; Fu, M.; Wu, J.; Ye, D. 1D-Co3O4, 2D-Co3O4, 3D-Co3O4 for catalytic oxidation of toluene. Catal. Today 2019, 332, 160–167. [Google Scholar] [CrossRef]
- Ren, Q.; Mo, S.; Peng, R.; Feng, Z.; Zhang, M.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene. J. Mater. Chem. A 2018, 6, 498–509. [Google Scholar] [CrossRef]
- Han, W.; Dong, F.; Han, W.; Yao, J.; Meng, Y.; Tang, Z. A new strategy for designing highly efficient Co3O4 catalyst with the molecular space configurations for toluene catalytic combustion. Chem. Eng. J. 2022, 435, 134953. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, Z.; Dong, F.; Zhang, J. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation. Mol. Catal. 2019, 463, 77–86. [Google Scholar] [CrossRef]
- Lei, J.; Wang, S.; Li, J. Mesoporous Co3O4 derived from Co-MOFs with different morphologies and ligands for toluene catalytic oxidation. Chem. Eng. Sci. 2020, 220, 115654. [Google Scholar] [CrossRef]
- Yang, R.; Fan, Y.; Ye, R.; Tang, Y.; Cao, X.; Yin, Z.; Zeng, Z. MnO2 -Based Materials for Environmental Applications. Adv. Mater. 2021, 33, e2004862. [Google Scholar] [CrossRef]
- Hou, Z.; Feng, J.; Lin, T.; Zhang, H.; Zhou, X.; Chen, Y. The performance of manganese-based catalysts with Ce0.65Zr0.35O2 as support for catalytic oxidation of toluene. Appl. Surf. Sci. 2018, 434, 82–90. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, Y.; Xue, M.; Li, J. Roles of Oxygen Vacancies in the Bulk and Surface of CeO2 for Toluene Catalytic Combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef]
- Li, Y.; Chen, T.; Zhao, S.; Wu, P.; Chong, Y.; Li, A.; Zhao, Y.; Chen, G.; Jin, X.; Qiu, Y.; et al. Engineering Cobalt Oxide with Coexisting Cobalt Defects and Oxygen Vacancies for Enhanced Catalytic Oxidation of Toluene. ACS Catal. 2022, 12, 4906–4917. [Google Scholar] [CrossRef]
- Liu, W.; Liu, R.; Zhang, X. Controllable synthesis of 3D hierarchical Co3O4 catalysts and their excellent catalytic performance for toluene combustion. Appl. Surf. Sci. 2020, 507, 145174. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Q.; Shen, B.; Hu, Z.; Zhang, X. MIL-100(Fe) supported Mn-based catalyst and its behavior in Hg0 removal from flue gas. J. Hazard. Mater. 2019, 381, 121003. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Wang, S.; Li, J.; Xu, Y.; Li, S. Different effect of Y (Y = Cu, Mn, Fe, Ni) doping on Co3O4 derived from Co-MOF for toluene catalytic destruction. Chem. Eng. Sci. 2022, 251, 117436. [Google Scholar] [CrossRef]
- Yan, Q.; Li, X.; Zhao, Q.; Chen, G. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J. Hazard. Mater. 2012, 209–210, 385–391. [Google Scholar] [CrossRef]
- Shi, Q.; Shen, B.; Zhang, X.; Lyu, H.; Wang, J.; Li, S.; Kang, D. Insights into synergistic oxidation mechanism of Hg0 and chlorobenzene over MnCo2O4 microsphere with oxygen vacancy and acidic site. J. Hazard. Mater. 2023, 443, 130179. [Google Scholar] [CrossRef]
- Wu, P.; Jin, X.; Qiu, Y.; Ye, D. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286. [Google Scholar] [CrossRef]
- Hu, W.; Huang, J.; Xu, J.; Cheng, S.; Lyu, Y.; Xie, D.; Wang, Z. Insights into the superior performance of mesoporous MOFs-derived Cu-Mn oxides for toluene total catalytic oxidation. Fuel Process. Technol. 2022, 236, 107424. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, Q.; Zhang, D.; Wang, J.; Tang, T.; Wang, H.; Liu, X.; Song, Z.; Ning, P. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: The mechanism study. Appl. Surf. Sci. 2019, 497, 143777. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Cui, R.; Song, Z.; Zhang, X. Enhancement of catalytic combustion of toluene over CuMnOx hollow spheres prepared by oxidation method. Microporous Mesoporous Mater. 2021, 326, 111370. [Google Scholar] [CrossRef]
- Liu, W.; Xiang, W.; Chen, X.; Song, Z.; Gao, C.; Tsubaki, N.; Zhang, X. A novel strategy to adjust the oxygen vacancy of CuO/MnO2 catalysts toward the catalytic oxidation of toluene. Fuel 2022, 312, 122975. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; He, C. Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway. J. Colloid Interface Sci. 2021, 591, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Cheng, Y.; Peng, X.; Pan, W. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene. Chem. Eng. J. 2019, 369, 758–765. [Google Scholar] [CrossRef]
- Du, J.; Qu, Z.; Dong, C.; Song, L.; Qin, Y.; Huang, N. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl. Surf. Sci. 2018, 433, 1025–1035. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Song, Z.; Liu, W.; Zhao, H.; Zhao, M.; Xing, Y.; Ma, Z.; Du, H. The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes. J. Colloid Interface Sci. 2020, 562, 170–181. [Google Scholar] [CrossRef]
- Liao, Y.; Fu, M.; Chen, L.; Wu, J.; Huang, B.; Ye, D. Catalytic oxidation of toluene over nanorod-structured Mn–Ce mixed oxides. Catal. Today 2013, 216, 220–228. [Google Scholar] [CrossRef]
- Li, L.; Jing, F.; Yan, J.; Jing, J.; Chu, W. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion. Catal. Today 2017, 297, 167–172. [Google Scholar] [CrossRef]
- Dong, C.; Qu, Z.; Qin, Y.; Fu, Q.; Sun, H.; Duan, X. Revealing the Highly Catalytic Performance of Spinel CoMn2O4 for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS Catal. 2019, 9, 6698–6710. [Google Scholar] [CrossRef]
- Qu, Z.; Gao, K.; Fu, Q.; Qin, Y. Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn–Co oxides prepared by two-step hydrothermal method. Catal. Commun. 2014, 52, 31–35. [Google Scholar] [CrossRef]
- Liu, W.; Xiang, W.; Guan, N.; Cui, R.; Cheng, H.; Chen, X.; Song, Z.; Zhang, X.; Zhang, Y. Enhanced catalytic performance for toluene purification over Co3O4/MnO2 catalyst through the construction of different Co3O4/MnO2 interface. Sep. Purif. Technol. 2021, 278, 119590. [Google Scholar] [CrossRef]
- Ren, Q.; Mo, S.; Fan, J.; Feng, Z.; Zhang, M.; Chen, P.; Gao, J.; Fu, M.; Chen, L.; Wu, J.; et al. Enhancing catalytic toluene oxidation over MnO2@Co3O4 by constructing a coupled interface. Chin. J. Catal. 2020, 41, 1873–1883. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, J.; Zhang, J.-Y.; Chen, Y.; Yang, X.; Song, W.; Wei, L.; Li, W. Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts. Chem. Eng. J. 2020, 388, 124244. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Jing, M.; Song, W.; Liu, J.; Ge, M. Defective MnxZr1-xO2 solid solution for the catalytic oxidation of toluene: Insights into the oxygen vacancy contribution. ACS Appl. Mater. Interfaces 2018, 11, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, G.; Wang, L.; Xu, H.; Huang, W.; Yan, N.; Qu, Z. Dual confinement strategy based on metal-organic frameworks to synthesize MnOx@ZrO2 catalysts for toluene catalytic oxidation. Fuel 2022, 320, 123983. [Google Scholar] [CrossRef]
- Zhou, G.; Lan, H.; Yang, X.; Du, Q.; Xie, H.; Fu, M. Effects of the structure of Ce-Cu catalysts on the catalytic combustion of toluene in air. Ceram. Int. 2013, 39, 3677–3683. [Google Scholar] [CrossRef]
- Song, B.; Li, C.; Du, X.; Li, S.; Zhang, Y.; Lyu, Y.; Zhou, Q. Superior performance of Cu-Ce binary oxides for toluene catalytic oxidation: Cu-Ce synergistic effect and reaction pathways. Fuel 2021, 306, 121654. [Google Scholar] [CrossRef]
- Carabineiro, S.; Chen, X.; Konsolakis, M.; Psarras, A.; Tavares, P.; Órfão, J.; Pereira, M.; Figueiredo, J.L. Catalytic oxidation of toluene on Ce–Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods. Catal. Today 2015, 244, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.; Li, M.; Zahid, M.; Fan, L.; Zhang, C.; Li, Z.; Zhu, Y. Effect of strong interaction between Co and Ce oxides in CoxCe1-xO2-δ oxides on its catalytic oxidation of toluene. Mol. Catal. 2021, 502, 111356. [Google Scholar] [CrossRef]
- Xu, W.; Chen, X.; Chen, J.; Jia, H. Bimetal oxide CuO/Co3O4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation. J. Hazard. Mater. 2021, 403, 123869. [Google Scholar] [CrossRef] [PubMed]
- Sihaib, Z.; Puleo, F.; Garcia-Vargas, J.; Retailleau, L.; Descorme, C.; Liotta, L.; Valverde, J.; Gil, S.; Giroir-Fendler, A. Manganese oxide-based catalysts for toluene oxidation. Appl. Catal. B Environ. 2017, 209, 689–700. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Guo, Y.; Lu, G.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B Environ. 2014, 148–149, 490–498. [Google Scholar] [CrossRef]
- Liu, L.; Sun, J.; Ding, J.; Zhang, Y.; Jia, J.; Sun, T. Catalytic Oxidation of VOCs over SmMnO3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorg. Chem. 2019, 58, 14275–14283. [Google Scholar] [CrossRef]
- Chen, S.; Hao, Y.; Chen, R.; Su, Z.; Chen, T. Hollow multishelled spherical PrMnO3 perovskite catalyst for efficient catalytic oxidation of CO and toluene. J. Alloys Compd. 2021, 861, 158584. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Y.; Zhao, C.; Zhao, D.; Liu, F.; Wang, K.; Dionysiou, D.D. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies. Chem. Eng. J. 2016, 300, 300–305. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Yang, X.; Song, S.; Li, J.; Jing, F.; Chu, W. Enhanced catalytic performances of in situ-assembled LaMnO3/δ-MnO2 hetero-structures for toluene combustion. Catal. Today 2019, 327, 19–27. [Google Scholar] [CrossRef]
- Suárez-Vázquez, S.; Gil, S.; García-Vargas, J.; Cruz-López, A.; Giroir-Fendler, A. Catalytic oxidation of toluene by SrTi1-XBXO3 (B = Cu and Mn) with dendritic morphology synthesized by one pot hydrothermal route. Appl. Catal. B Environ. 2018, 223, 201–208. [Google Scholar] [CrossRef]
- Dula, R.; Janik, R.; Machej, T.; Stoch, J.; Grabowski, R.; Serwicka, E.M. Mn-containing catalytic materials for the total combustion of toluene: The role of Mn localisation in the structure of LDH precursor. Catal. Today 2007, 119, 327–331. [Google Scholar] [CrossRef]
- Lu, H.; Kong, X.; Huang, H.; Zhou, Y.; Chen, Y. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene. J. Environ. Sci. 2015, 32, 102–107. [Google Scholar] [CrossRef]
- Hu, F.; Chen, J.; Zhao, S.; Li, K.; Si, W.; Song, H.; Li, J. Toluene catalytic combustion over copper modified Mn0.5Ce0.5Ox solid solution sponge-like structures. Appl. Catal. A 2017, 540, 57–67. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Q.; Yang, G.; Xiong, S.; Li, X.; Peng, Y.; Li, J.; Crittenden, J. Rational tuning towards A/B-sites double-occupying cobalt on tri-metallic spinel: Insights into its catalytic activity on toluene catalytic oxidation. Chem. Eng. J. 2020, 399, 125792. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, R.; Zhao, C.; Liu, F.; Liu, C.; Han, F. Effects of Ce in the catalytic combustion of toluene on CuxCe1-xFe2O4. Colloids Surf. A 2018, 540, 90–97. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Zhang, H.; Li, L.; Zhou, P.; Meng, X.; Guo, M.; Jia, J.; Sun, T. In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. J. Hazard. Mater. 2019, 362, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, Y.; Wu, Z. Low-temperature catalytic oxidation of toluene over mesoporous MnO–CeO2/TiO2 prepared by sol–gel method. Catal. Commun. 2010, 11, 788–791. [Google Scholar] [CrossRef]
- He, Y.; Rui, Z.; Ji, H. In situ DRIFTS study on the catalytic oxidation of toluene over V2O5/TiO2 under mild conditions. Catal. Commun. 2011, 14, 77–81. [Google Scholar] [CrossRef]
- Pozan, G.S. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion. J. Hazard. Mater. 2012, 221–222, 124–130. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Y.; Han, Y.; Lu, C.; Wan, H.; Xu, Z.; Zheng, S. Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu-O-Mn/γ-Al2O3 catalysts. Appl. Surf. Sci. 2017, 420, 260–266. [Google Scholar] [CrossRef]
- Saqer, S.; Kondarides, D.; Verykios, X.E. Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation. Top. Catal. 2009, 52, 517–527. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Xia, Q.; Liu, Z.; Li, Z. Catalytic oxidation of toluene over copper and manganese based catalysts: Effect of water vapor. Catal. Commun. 2011, 14, 15–19. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, K.; Zheng, J.; Zuo, S. Studies of sulfur poisoning process via ammonium sulfate on MnO2/γ-Al2O3 catalyst for catalytic combustion of toluene. Appl. Catal. B Environ. 2021, 298, 120595. [Google Scholar] [CrossRef]
- Saqer, S.; Kondarides, D.; Verykios, X. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Appl. Catal. B Environ. 2011, 103, 275–286. [Google Scholar] [CrossRef]
- Palacio, L.; Silva, E.; Catalao, R.; Silva, J.; Hoyos, D.; Ribeiro, F.; Ribeiro, M.F. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. J. Hazard. Mater. 2008, 153, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, X.; Zhang, J.; Bian, C.; Pan, S.; Chen, F.; Meng, X.; Zheng, X.; Gao, X.; Xiao, F.-S. Superior performance in catalytic combustion of toluene over mesoporous ZSM-5 zeolite supported platinum catalyst. Catal. Today 2015, 258, 190–195. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, H.; Li, G.; Wang, L.; Song, L.; Li, X. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts. Catal. Today 2019, 327, 374–381. [Google Scholar] [CrossRef]
- Rokicińska, A.; Drozdek, M.; Dudek, B.; Gil, B.; Michorczyk, P.; Brouri, D.; Dzwigaj, S.; Kuśtrowski, P. Cobalt-containing BEA zeolite for catalytic combustion of toluene. Appl. Catal. B Environ. 2017, 212, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Soylu, G.; Özçelik, Z.; Boz, İ. Total oxidation of toluene over metal oxides supported on a natural clinoptilolite-type zeolite. Chem. Eng. J. 2010, 162, 380–387. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, M.; Wang, J.X. Catalytic combustion of toluene on Cu-Mn/MCM-41 catalysts: Influence of calcination temperature and operating conditions on the catalytic activity. Catal. Today 2008, 137, 340–344. [Google Scholar] [CrossRef]
- Ma, W.; Huang, Q.; Xu, Y.; Chen, Y.; Zhu, S.; Shen, S.B. Catalytic combustion of toluene over Fe–Mn mixed oxides supported on cordierite. Ceram. Int. 2013, 39, 277–281. [Google Scholar] [CrossRef]
- Liang, X.; Qi, F.; Liu, P.; Wei, G.; Su, X.; Ma, L.; He, H.; Lin, X.; Xi, Y.; Zhu, J.; et al. Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: The effect of Fe on catalytic activity. Appl. Clay Sci. 2016, 132–133, 96–104. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, Z.; Li, J.; Zuo, S.; Yang, P. Mesoporous silica-pillared clays supported nanosized Co3O4-CeO2 for catalytic combustion of toluene. Appl. Surf. Sci. 2018, 459, 32–39. [Google Scholar] [CrossRef]
- Bakardjieva, S.; Šubrt, J.; Štengl, V.; Dianez, M.; Sayagues, M.J. Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B Environ. 2005, 58, 193–202. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, L.; Zhang, Z.; Li, N.; Yan, B.; He, C.; Hao, Z.; Chen, G. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit. Rev. Environ. Sci. Technol. 2020, 52, 311–355. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, X.; Peng, R.; Zhao, M.; Ye, D. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal. Appl. Surf. Sci. 2017, 405, 20–28. [Google Scholar] [CrossRef]
- Yang, W.; Peng, Y.; Wang, Y.; Wang, Y.; Liu, H.; Su, Z.; Yang, W.; Chen, J.; Si, W.; Li, J. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: Active heterostructure interfaces. Appl. Catal. B Environ. 2020, 278, 119279. [Google Scholar] [CrossRef]
- Su, Z.; Si, W.; Liu, H.; Xiong, S.; Chu, X.; Yang, W.; Peng, Y.; Chen, J.; Cao, X.; Li, J. Boosting the Catalytic Performance of CeO2 in Toluene Combustion via the Ce-Ce Homogeneous Interface. Environ. Sci. Technol. 2021, 55, 12630–12639. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Wang, Y.; Yin, R.; Yang, W.; Wang, G.; Si, W.; Peng, Y.; Li, J. Interaction Mechanism for Simultaneous Elimination of Nitrogen Oxides and Toluene over the Bifunctional CeO2–TiO2 Mixed Oxide Catalyst. Environ. Sci. Technol. 2022, 56, 4467–4476. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Yan, X.; Chen, D.; Chen, D.; Chen, X.; Fang, P.; Cen, C. Performance of toluene oxidation over MnCe/HZSM-5 catalyst with the addition of NO and NH3. Appl. Surf. Sci. 2021, 567, 150836. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, Y.; Zhang, J.; Jiang, L.; Wang, Y. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chem. Eng. J. 2020, 397, 125419. [Google Scholar] [CrossRef]
- Xiao, G.; Guo, Z.; Li, J.; Du, Y.; Zhang, Y.; Xiong, T.; Lin, B.; Fu, M.; Ye, D.; Hu, Y. Insights into the effect of flue gas on synergistic elimination of toluene and NO over V2O5-MoO3(WO3)/TiO2 catalysts. Chem. Eng. J. 2022, 435, 134914. [Google Scholar] [CrossRef]
- Liu, L.; Shen, B.; Lu, F.; Peng, X. Highly efficient Mn-Fe bimetallic oxides for simultaneous oxidation of NO and toluene: Performance and mechanism. Fuel 2023, 332, 126143. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, L.; Jiang, S.; Huang, Y.; Zhang, J.; Li, J. Effect of Transition-Metal Oxide M (M = Co, Fe, and Mn) Modification on the Performance and Structure of Porous CuZrCe Catalysts for Simultaneous Removal of NO and Toluene at Low–Medium Temperatures. Energy Fuels 2022, 36, 4439–4455. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, L.; Huang, Y.; Zhang, J.; Tang, J.; Li, C. Mechanism investigation of three-dimensional porous A-site substituted La1-xCoxFeO3 catalysts for simultaneous oxidation of NO and toluene with H2O. Appl. Surf. Sci. 2022, 578, 151977. [Google Scholar] [CrossRef]
- Shao, J.; Wang, Z.; Liu, P.; Lin, F.; Zhu, Y.; He, Y.; Cen, K. Interplay effect on simultaneous catalytic oxidation of NO and toluene over different crystal types of MnO2 catalysts. Proc. Combust. Inst. 2021, 38, 5433–5441. [Google Scholar] [CrossRef]
- Yang, S.; Xiong, S.; Liao, Y.; Xiao, X.; Qi, F.; Peng, Y.; Fu, Y.; Shan, W.; Li, J. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Environ. Sci. Technol. 2014, 48, 10354–10362. [Google Scholar] [CrossRef]
- Chen, S.; Vasiliades, M.; Yan, Q.; Yang, G.; Du, X.; Zhang, C.; Li, Y.; Zhu, T.; Wang, Q.; Efstathiou, A.M. Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies. Appl. Catal. B: Environ. 2020, 277, 119186. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Yan, X.; Chen, X.; Fang, P.; Chen, D.; Chen, D.; Cen, C. N2O inhibition by toluene over Mn-Fe spinel SCR catalyst. J. Hazard. Mater. 2021, 414, 125468. [Google Scholar] [CrossRef]
- Ye, L.; Lu, P.; Chen, X.; Fang, P.; Peng, Y.; Li, J.; Huang, H. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Appl. Catal. B: Environ. 2020, 277, 119257. [Google Scholar] [CrossRef]
Catalysts | Synthesis Method | Toluene Concentration | WHSV or GHSV (mL·g−1·h−1 or h−1) | Activity T90 (°C) | Ref. |
---|---|---|---|---|---|
Mn3O4 | Solution combustion synthesis | 1000 ppm | 19,100 h−1 | 250 | [22] |
Mn2O3 | 268 | ||||
MnxOy | 291 | ||||
δ-MnO2 | Hydrothermal process | 1000 mg·m−3 | 36,000 mL·g−1·h−1 | 233 | [23] |
γ-MnO2 | 283 | ||||
α-MnO2 | 309 | ||||
β-MnO2 | 325 | ||||
α-MnO2 (1 1 0) | Hydrothermal method | 500 ppm | 15,000 mL·g−1·h−1 | 109 | [24] |
α-MnO2 (3 1 0) | 170 | ||||
α-MnO2 (2 1 0) | 170 | ||||
α-MnO2-60 | Redox precipitation | 1000 ppm | 30,000 h−1 | 203 | [25] |
Rod-like α-MnO2 | Hydrothermal or solution method | 1000 ppm | 20,000 mL·g−1·h−1 | 225 | [26] |
Tube-like α-MnO2 | 233 | ||||
Flower-like Mn2O3 | 238 | ||||
Wire-like α-MnO2 | 245 | ||||
MnO2-manganese acetate | Redox reaction method | 1000 ppm | 90,000 mL·g−1·h−1 | 200 | [27] |
MnO2-manganese nitrate | 210 | ||||
MnO2-manganese chloride | 225 | ||||
MnO2-manganese sulfate | 236 | ||||
MnOx-(NH4)2CO3 | Co-precipitation | 500 ppm | 60,000 mL·g−1·h−1 | 260 | [28] |
Mn-Na2CO3 | 281 | ||||
Mn-NaOH | 326 | ||||
Mn-NH3·H2O | 331 | ||||
CeO2 microspheres | Polymer-modified hydrothermal method | 1000 ppm | 60,000 mL·g−1·h−1 | 210 | [29] |
CeO2 hollow spheres | Hydrothermal method | 1000 ppm | 48,000 mL·g−1·h−1 | 207 | [30] |
CeO2 nanorods | 239 | ||||
CeO2 cubes | 296 | ||||
CeO2 nanopolyhedra | Hydrothermal method | 1000 ppm | 24,000 mL·g−1·h−1 | 394 | [31] |
CeO2 nanorods | 400 | ||||
CeO2 nanocubes | >400 | ||||
CeO2 nanobelt | Conducted electrospinning | 100 ppm | 60,000 mL·g−1·h−1 | 230 | [32] |
CeO2 nanotube | 255 | ||||
CeO2 wire-in-nanotube | 345 | ||||
CeO2-MOF | Sacrificial precursor | 1000 ppm | 20,000 mL·g−1·h−1 | 223 | [33] |
1D-Co3O4-nanoneedle | Hydrothermal method | 1000 ppm | 48,000 mL·g−1·h−1 | 257 | [34] |
2D-Co3O4-nanoplate | 249 | ||||
3D-Co3O4-nanoflower | 238 | ||||
Cube-stacked Co3O4 microspheres | Hydrothermal method | 1000 ppm | 48,000 mL·g−1·h−1 | 248 | [35] |
Plate-stacked Co3O4 flower | 254 | ||||
Needle-stacked Co3O4 two-spheres | 259 | ||||
Sheet-stacked fan-shaped Co3O4 | >260 | ||||
NH/Am-Co3O4 | ZIF template induction | 3000 ppm | 30,000 mL·g−1·h−1 | 220 | [36] |
Hollow Co3O4 polyhedron | ZIF-67 template | 12,000 ppm | 21,000 mL·g−1·h−1 | 258 | [37] |
ZSA-1 Co3O4 | Co-MOFs template | - | 20,000 mL·g−1·h−1 | 240 | [38] |
Catalyst | Synthesis Method | Toluene Conc. | WHSV or GHSV (mL·g−1·h−1 or h−1) | Activity T90 (°C) | Ref. |
---|---|---|---|---|---|
1Cu1Mn | MOF template | 1000 ppm | 60,000 mL·g−1·h−1 | 208 | [50] |
CuO-MnOx-500 | Sol–gel | 600 ppm | 19,800 mL·g−1·h−1 | 228 | [51] |
CuMnOx-HS | Oxidation method | 500 ppm | 60,000 mL·g−1·h−1 | 212 | [52] |
CuO/MnO2-R-10 | Solid-state redox strategy | 500 ppm | 60,000 mL·g−1·h−1 | 234 | [53] |
MnCu0.5 | Hydrothermal–redox | 1000 ppm | 20,000 mL·g−1·h−1 | 210 | [54] |
Tunneled Cu-Mn | Hydrothermal method | 1000 ppm | 10,000 h−1 | 169 | [55] |
L-to-T Cu-Mn | 199 | ||||
Layered Cu-Mn | 221 | ||||
Mn0.6Ce0.4O2 | Redox–precipitation and hydrothermal | 500 ppm | 22,500 h−1 | 207 | [56] |
Ce-Mn-Ox | Hydrothermal method | 500 ppm | 60,000 h−1 | 246 | [57] |
Citrate sol–gel | 249 | ||||
Co-precipitation | 259 | ||||
Impregnation | 261 | ||||
Mn0.85Ce0.15 | Co-precipitation and hydrothermal | 1000 ppm | 32,000 mL·g−1·h−1 | 216 | [58] |
Mn12Ce1-SW | SPT process | 1000 ppm | 15,000 mL·g−1·h−1 | 277 | [59] |
CoMn2O4 | Sol–gel | 500 ppm | 22,500 mL·g−1·h−1 | 210 | [60] |
Nanocrystal-like Mn1Co2 | Hydrothermal method | 1000 ppm | 30,000 mL·g−1·h−1 | 240 | [61] |
Co3O4/α-MnO2 | Solvothermal method | 500 ppm | 60,000 h−1 | 248 | [62] |
MnO2@ Co3O4 | ZIF-derived Co3O4 template | 1000 ppm | 48,000 mL·g−1·h−1 | 229 | [63] |
Ni-MnO2 | EG reduction strategy | 1000 ppm | 20,000 mL·g−1·h−1 | 199 | [64] |
Cu-MnO2 | 217 | ||||
Co-MnO2 | 218 | ||||
Mn0.3Zr0.7O2 | Impregnation | 1000 ppm | 60,000 mL·g−1·h−1 | 235 | [65] |
MnOx@ZrO2-NA | MOF template | 1000 ppm | 60,000 mL·g−1·h−1 | 260 | [66] |
CeCu-HT | Hard template | 10,000 ppm | 66,000 mL·g−1·h−1 | 225 | [67] |
CeCu-CA | Complex method | 270 | |||
Cu1Ce3 | Co-precipitation | 1000 ppm | 30,000 h−1 | 180 | [68] |
Ce1Co2 | Carbon xerogel template | 1000 ppm | 60,000 h−1 | 241 | [69] |
Co0.2Ce0.8O2-δ | Hydrothermal | 1000 ppm | 20,000 mL·g−1·h−1 | 230 | [70] |
Co1Cu1Ox | Co-MOF template | 1000 ppm | 20,000 mL·g−1·h−1 | 208 | [46] |
Co1Mn1Ox | 227 | ||||
Co3O4 | 239 | ||||
Co1Fe1Ox | 234 | ||||
Co1Ni1Ox | 246 |
Catalyst | Synthesis Method | Toluene Conc. (ppm) | WHSV or GHSV (mL·g−1·h−1 or h−1) | Activity T90 (°C) | Ref. |
---|---|---|---|---|---|
9.5MnO2/α-Al2O3 | Impregnation | 1000 | 15,000 h−1 | 289 | [87] |
Cu0.5Mn0.75/α-Al2O3 | Impregnation | 1000 | 120,000 h−1 | 332 | [88] |
CuMn(y)Ox/γ-Al2O3 | Impregnation | 1200 | 15,000 h−1 | 229 | [89] |
CuO/Al2O3 | Impregnation | 1000 | 200,000 mL·g−1·h−1 | 320 | [90] |
CuV/ZSM-5 | Hydrothermal method | 800 | 15,000 h−1 | 315 | [93] |
10%MnOx/HZSM-5 | Impregnation | 1000 | 15,000 mL·g−1·h−1 | 261 | [95] |
9.5MnO2/clinoptilolite-type zeolite | Impregnation | 1000 | 15,000 h−1 | 297 | [97] |
Fe-Ti-PILC | Impregnation | 1000 | 60,000 mL·g−1·h−1 | 347 | [100] |
10%Co-5%Ce/SPC | Soft template | 1000 | 20,000 h−1 | 175 | [101] |
10%Co-5%Ce/MMT | 208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Q.; Kang, D.; Wang, Y.; Zhang, X. Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review. Catalysts 2023, 13, 429. https://doi.org/10.3390/catal13020429
Shi Q, Kang D, Wang Y, Zhang X. Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review. Catalysts. 2023; 13(2):429. https://doi.org/10.3390/catal13020429
Chicago/Turabian StyleShi, Qiqi, Dongrui Kang, Yuting Wang, and Xiao Zhang. 2023. "Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review" Catalysts 13, no. 2: 429. https://doi.org/10.3390/catal13020429
APA StyleShi, Q., Kang, D., Wang, Y., & Zhang, X. (2023). Emission Control of Toluene in Iron Ore Sintering Using Catalytic Oxidation Technology: A Critical Review. Catalysts, 13(2), 429. https://doi.org/10.3390/catal13020429