The Catalytic Performance of Nanorod Nickel Catalyst in the Hydrolysis of Lithium Borohydride and Dimethylamine Borane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Effect of the Amount of the Nickel Catalyst on Hydrogen Production
2.3. Effect of Substrate Concentration on Hydrogen Generation
2.4. Effect of Temperature of the Nickel Catalyst on Hydrogen Generation
2.5. Investigation of the Reusability of the Catalyst
3. Materials and Methods
3.1. Preparation of Nanorod Nickel Catalyst
3.2. Hydrolysis Experiments
3.3. Characterization
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Diaz, D.F.R.; Chen, K.S.; Wang, Z.; Adroher, X.C. Materials, technological status, and fundamentals of PEM fuel cells—A review. Mater. Today 2020, 32, 178–203. [Google Scholar] [CrossRef]
- Kallem, P.; Yanar, N.; Choi, H. Nanofiber-based proton exchange membranes: Development of aligned electrospun nanofibers for polymer electrolyte fuel cell applications. ACS Sustain. Chem. Eng. 2018, 7, 1808–1825. [Google Scholar] [CrossRef]
- Dai, P.; Zhao, X.; Xu, D.; Wang, C.; Tao, X.; Liu, X. Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor. Int. J. Hydrogen Energy 2019, 44, 28463–28470. [Google Scholar] [CrossRef]
- Krishnan, P.; Hsueh, K.L.; Yim, S.D. Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells. Appl. Catal. B Environ. 2007, 77, 206–214. [Google Scholar] [CrossRef]
- Simagina, V.I.; Ozerova, A.M.; Komova, O.V.; Netskina, O.V. Recent advances in applications of Co-B catalysts in NaBH4-based portable hydrogen generators. Catalysts 2021, 11, 268. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Fu, F.; Astruc, D. Hydrogen generation upon nanocatalyzed hydrolysis of hydrogen-rich boron derivatives: Recent developments. Acc. Chem. Res. 2020, 53, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Liu, M.; Chen, K.; Liu, J.; Wang, H.; Zhu, M. Recent progress on hydrogen generation from the hydrolysis of light metals and hydrides. J. Alloys Compd. 2022, 910, 164831. [Google Scholar] [CrossRef]
- Li, C.; Peng, P.; Zhou, D.W.; Wan, L. Research progress in LiBH4 for hydrogen storage: A review. Int. J. Hydrogen Energy 2011, 36, 14512–14526. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen storage methods: Review and current status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Pal, P.; Kumari, P.; Wang, Y.; Isobe, S.; Kumar, M.; Ichikawa, T. Destabilization of LiBH4 by the infusion of Bi2X3 (X = S, Se, Te): An in situ TEM investigation. J. Mater. Chem. A 2020, 8, 25706–25715. [Google Scholar] [CrossRef]
- Mauron, P.; Buchter, F.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Zwicky, C.N. Stability and reversibility of LiBH4. J. Phys. Chem. B 2008, 112, 906–910. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Xu, F.; Liu, Z. Improved hydrogen storage of LiBH4 and NH3BH3 by catalysts. J. Mater. Chem. A 2018, 6, 7293–7309. [Google Scholar] [CrossRef]
- Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086. [Google Scholar] [CrossRef]
- Tunç, N.; Rakap, M. Surfactant-aided synthesis of RhCo nanoclusters as highly effective and recyclable catalysts for the hydrolysis of methylamine borane and dimethylamine borane. Catal. Sci. Technol. 2020, 10, 7865–7874. [Google Scholar] [CrossRef]
- Karatas, Y.; Acidereli, H.; Gulcan, M.; Sen, F. A novel highly active and reusable carbon based platinum-ruthenium nanocatalyst for dimethylamine-borane dehydrogenation in water at room conditions. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Loghmani, M.H.; Shojaei, A.F.; Khakzad, M. Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants. Energy 2017, 126, 830–840. [Google Scholar] [CrossRef]
- Yu, Y.; Kang, L.; Sun, L.; Xu, F.; Pan, H.; Sang, Z. Bimetallic Pt-Ni nanoparticles confined in porous titanium oxide cage for hydrogen generation from NaBH4 hydrolysis. Nanomaterials 2022, 12, 2550. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Zhao, X.; Dai, P.; Wang, C.; Gao, J. Stability and kinetic studies of MOF-derived carbon-confined ultrafine Co catalyst for sodium borohydride hydrolysis. Int. J. Energy Res. 2019, 43, 3702–3710. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Guo, Q.; Ji, S. Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel Process. Technol. 2011, 92, 1606–1610. [Google Scholar] [CrossRef]
- Lu, Z.H.; Li, J.; Feng, G.; Yao, Q.; Zhang, F.; Zhou, R. Synergistic catalysis of MCM-41 immobilized Cu–Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane. Int. J. Hydrogen Energy 2014, 39, 13389–13395. [Google Scholar] [CrossRef]
- Ji, Z.; Shen, X.; Zhu, G.; Zhou, H.; Yuan, A. Reduced graphene oxide/nickel nanocomposites: Facile synthesis, magnetic and catalytic properties. J. Mater. Chem. 2012, 22, 3471–3477. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, B.H.; Hsueh, C.L.; Ku, J.R.; Jeng, M.S.; Tsau, F. Hydrogen generation from hydrolysis of sodium borohydride using Ni–Ru nanocomposite as catalysts. Int. J. Hydrogen Energy 2009, 34, 2153–2163. [Google Scholar] [CrossRef]
- Lai, Q.; Aguey-Zinsou, K.F.; Demirci, U.B. Nanosizing ammonia borane with nickel–An all-solid and all-in-one approach for H2 generation by hydrolysis. Int. J. Hydrogen Energy 2018, 43, 14498–14506. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiao, L.; Liu, Y.; Guo, L.; Li, L.; Liu, H. A synergistic effect between nanoconfinement of carbon aerogels and catalysis of CoNiB nanoparticles on dehydrogenation of LiBH4. Int. J. Hydrogen Energy 2014, 39, 917–926. [Google Scholar] [CrossRef]
- Yousef, A.; Barakat, N.A.; El-Newehy, M.; Kim, H.Y. Chemically stable electrospun NiCu nanorods@ carbon nanofibers for highly efficient dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2012, 37, 17715–17723. [Google Scholar] [CrossRef]
- Yousef, A.; Barakat, N.A.; Khalil, K.A.; Unnithan, A.R.; Panthi, G.; Pant, B. Photocatalytic release of hydrogen from ammonia borane-complex using Ni (0)-doped TiO2/C electrospun nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 59–65. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, C.; Xiong, P.; Li, Y.; Wei, M. Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2014, 2, 19005–19010. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Liu, H.; Dong, Z.; Cao, G.; Yan, M. Exploration of hydrogen generation from an Mg–LiBH4 system improved by NiCl2 addition. J. Power Sources 2014, 251, 459–465. [Google Scholar] [CrossRef]
- Chen, K.; Ouyang, L.; Wang, H.; Liu, J.; Shao, H.; Zhu, M. A high-performance hydrogen generation system: Hydrolysis of LiBH4-based materials catalyzed by transition metal chlorides. Renew Energy 2020, 156, 655–664. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, F.; Huang, W.; Wang, Y.; Liu, X. Hydrogen production upon the hydrolysis of dimethylamineborane over Pt/Ni (OH)2 nanocomposite. Fuel 2022, 324, 124695. [Google Scholar] [CrossRef]
- Cai, H.; Liu, L.; Chen, Q.; Lu, P.; Dong, J. Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride. Energy 2016, 99, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Liu, X. Synergistically promoted H2 evolution from dimethylamine-borane and hydrazine monohydrate by simply alloying of Pt/C with Ni. Fuel 2021, 304, 121433. [Google Scholar] [CrossRef]
- Cai, H.K.; Jiang, Z.Y.; Xu, S.; Xu, Y.; Lu, P.; Dong, J. Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime. Polymers 2022, 14, 4647. [Google Scholar] [CrossRef] [PubMed]
- Arzac, G.; Fernández, A. Advances in the implementation of PVD-based techniques for the preparation of metal catalysts for the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2020, 45, 33288–33309. [Google Scholar] [CrossRef]
- Fu, K.; Zeng, L.; Liu, J.; Liu, M.; Li, S.; Guo, W. Magnetron sputtering a high-performance catalyst for ultra-low-Pt loading PEMFCs. J. Alloys Compd. 2020, 815, 152374. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Regmi, G.; Velumani, S. Radio frequency (RF) sputtered ZrO2-ZnO-TiO2 coating: An example of multifunctional benefits for thin film solar cells on the flexible substrate. Sol. Energy 2023, 249, 301–311. [Google Scholar] [CrossRef]
- Bokuniaeva, A.O.; Vorokh, A.S. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J. Phys. Conf. Ser. 2019, 1410, 012057. [Google Scholar] [CrossRef]
- Niranjan, K. Phase and reaction equilibrium, and phase transitions. In Engineering Principles for Food Process and Product Realization; Springer: Berlin/Heidelberg, Germany, 2022; pp. 125–143. [Google Scholar]
Amount of Catalyst (g) | HGR Value of DMAB (mL gcat−1 min−1) | HGR Value of LiBH4 (mL gcat−1 min−1) |
---|---|---|
1 | 35 | 45 |
1.3 | 53 | 50 |
1.5 | 95 | 66 |
1.8 | 106 | 75 |
Substrate Concentration (M) | HGR Value of DMAB (mL gcat−1 min−1) | HGR Value of LiBH4 (mL gcat−1 min−1) |
---|---|---|
0.2 | 54 | 50 |
0.1 | 53 | 76 |
0.05 | 45 | 93 |
0.025 | 43 | 100 |
Temperature (°C) | HGR Value of DMAB (mL gcat−1 min−1) | HGR Value of LiBH4 (mL gcat−1 min−1) |
---|---|---|
30 | 34 | 31 |
40 | 80 | 50 |
50 | 90 | 100 |
60 | 109 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkus, M.S. The Catalytic Performance of Nanorod Nickel Catalyst in the Hydrolysis of Lithium Borohydride and Dimethylamine Borane. Catalysts 2023, 13, 458. https://doi.org/10.3390/catal13030458
Akkus MS. The Catalytic Performance of Nanorod Nickel Catalyst in the Hydrolysis of Lithium Borohydride and Dimethylamine Borane. Catalysts. 2023; 13(3):458. https://doi.org/10.3390/catal13030458
Chicago/Turabian StyleAkkus, Meryem Sena. 2023. "The Catalytic Performance of Nanorod Nickel Catalyst in the Hydrolysis of Lithium Borohydride and Dimethylamine Borane" Catalysts 13, no. 3: 458. https://doi.org/10.3390/catal13030458
APA StyleAkkus, M. S. (2023). The Catalytic Performance of Nanorod Nickel Catalyst in the Hydrolysis of Lithium Borohydride and Dimethylamine Borane. Catalysts, 13(3), 458. https://doi.org/10.3390/catal13030458