One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.2. Evalution of PHP Activity
2.3. Photocatalytic Mechanism
3. Experiments and Methods
3.1. Materials
3.2. Preparation of 2D-3D In2S3 and 0D/2D-3D Pt/In2S3
3.3. Photocatalytic Activity Test
3.4. Characterization
3.5. Photoelectrochemical Property Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photocatalysis of Water at a Semiconductor Electtode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef]
- Liu, L.; Du, S.; Guo, X.; Xiao, Y.; Yin, Z.; Yang, N.; Bao, Y.; Zhu, X.; Jin, S.; Feng, Z.; et al. Water-Stable Nickel Metal-Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. J. Am. Chem. Soc. 2022, 144, 2747–2754. [Google Scholar] [CrossRef]
- Rasool, M.A.; Sattar, R.; Anum, A.; Al-Hussain, S.A.; Ahmad, S.; Irfan, A.; Zaki, M.E. An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production. Catalysts 2023, 13, 66. [Google Scholar] [CrossRef]
- Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Lei, W. Efficient Photocatalytic H2 Evolution, CO2 Reduction and N2 Fixation Coupled with Organic Synthesis by Cocatalyst and Vacancies Engineering. Appl. Catal. B Environ. 2021, 285, 119789. [Google Scholar] [CrossRef]
- Cai, M.D.; Cao, S.Y.; Zhuo, Z.Z.; Wang, X.; Shi, K.Z.; Cheng, Q.; Xue, Z.M.; Du, X.; Shen, C.; Liu, X. Fabrication of Ni2P Cocatalyzed CdS Nanorods with a Well-Defined Heterointerface for Enhanced Photocatalytic H2 Evolution. Catalysts 2022, 12, 417. [Google Scholar] [CrossRef]
- Battula, V.R.; Jaryal, A.; Kailasam, K. Visible light-driven simultaneous H2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. J. Mater. Chem. A 2019, 7, 5643–5649. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E.; Mahmoud, M.I.; Laurance, W.F. World Scientists’ Warning to Humanity: A Second Notice. BioScience 2017, 67, 1026–1028. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Zhang, S.-N.; Chen, J.-S.; Li, X.-H. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts. Chem. Rev. 2023, 123, 1–30. [Google Scholar] [CrossRef]
- Oshima, T.; Nishioka, S.; Kikuchi, Y.; Hirai, S.; Yanagisawa, K.; Eguchi, M.; Maeda, K. An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting. J. Am. Chem. Soc. 2020, 142, 8412–8420. [Google Scholar] [CrossRef]
- Jin, X.X.; Wang, R.Y.; Zhang, L.X.; Si, R.; Shen, M.; Wang, M.; Tian, J.J.; Shi, J.L. Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 6827–6831. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Xu, Q.; Du, M.M.; Zeng, X.F.; Zhong, G.F.; Qiu, B.C.; Zhang, J.L. Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2202929. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.M.; Wang, H.F.; Li, Y.P.; Liu, Y.; Qian, Q.; Zhang, G. Realizing Synergistic Effect of Electronic Modulation and Nanostructure Engineering over Graphitic Carbon Nitride for Highly Efficient Visible-Light H2 Production Coupled with Benzyl Alcohol Oxidation. Appl. Catal. B Environ. 2020, 269, 118772. [Google Scholar] [CrossRef]
- Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. J. Catal. 2018, 367, 159–170. [Google Scholar] [CrossRef]
- Zong, X.; Yan, H.H.; Wu, G.P.; Ma, G.J.; Wen, F.Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177. [Google Scholar] [CrossRef]
- Fazil, M.; Ahmad, T. Pristine TiO2 and Sr-Doped TiO2 Nanostructures for Enhanced Photocatalytic and Electrocatalytic Water Splitting Applications. Catalysts 2023, 13, 93. [Google Scholar] [CrossRef]
- AlSalka, Y.; Al-Madanat, O.; Hakki, A.; Bahnemann, D.W. Boosting the H2 production efficiency via photocatalytic organic reforming: The role of additional hole scavenging system. Catalysts 2021, 11, 1423. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Alsalka, Y.; Curti, M.; Dillert, R.; Bahnemann, D.W. Mechanistic insights into hydrogen evolution by photocatalytic reforming of naphthalene. ACS Catal. 2020, 10, 7398–7412. [Google Scholar] [CrossRef]
- Al-Madanat, O.; AlSalka, Y.; Ramadan, W.; Bahnemann, D.W. TiO2 photocatalysis for the transformation of aromatic water pollutants into fuels. Catalysts 2021, 11, 317. [Google Scholar] [CrossRef]
- Schneider, J.; Bahnemann, D.W. Undesired role of sacrificial reagents in photocatalysis. J. Chem. Phys. Lett. 2013, 4, 3479–3483. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, F.; Li, N.; Zhang, Y.L.; Mu, Z.J.; Tang, Y.H.; Guo, S. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 2019, 56, 127–137. [Google Scholar] [CrossRef]
- Ma, X.H.; Li, W.J.; Li, H.D.; Dong, M.; Li, X.Y.; Geng, L.; Wang, T. Fabrication of novel and noble-metal-free MoP/In2S3 Schottky heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light. J. Colloid Interf. Sci. 2022, 617, 284–292. [Google Scholar] [CrossRef]
- Yang, L.F.; Li, A.Q.; Dang, T.; Wang, Y.F.; Liang, L.; Tang, J.; Zhang, Z. S-scheme In2S3/Zn3In2S6 microsphere for efficient photocatalytic H2 evolution with simultaneous photodegradation of bisphenol A. Appl. Surf. Sci. 2023, 612, 155848. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jia, X.W.; Li, Y.R.; Yu, X.D.; Xing, Y. Oxidation co-catalyst modified In2S3 with efficient interfacial charge transfer for boosting photocatalytic H2 evolution. Int. J. Hydrogen Energ. 2022, 47, 25300–25308. [Google Scholar] [CrossRef]
- Lin, Q.C.; Li, Z.H.; Lin, T.J.; Li, B.L.; Liao, X.C.; Yu, H.Q.; Yu, C.L. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production. Chin. J. Chem. Eng. 2020, 28, 2677–2688. [Google Scholar] [CrossRef]
- Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Chai, Z.G.; Zeng, T.T.; Li, Q.; Lu, L.Q.; Xiao, W.J.; Xu, D.S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 2016, 138, 10128–10131. [Google Scholar] [CrossRef]
- Xiong, Z.; Hou, Y.D.; Yuan, R.S.; Ding, Z.X.; Ong, W.J.; Wang, S.B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta. Phys.-Chim. Sin. 2022, 38, 2111021. [Google Scholar]
- Li, S.C.; Shi, M.Y.; Yu, J.H.; Li, S.J.; Lei, S.L.; Lin, L.G.; Wang, J.J. Two-dimensional blue-phase CX (X = S, Se) monolayers with high carrier mobility and tunable photocatalytic water splitting capability. Chin. Chem. Lett. 2021, 32, 1977–1982. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Y.H.; Tang, Z.R.; Gong, J.L.; Xu, Y.J. Defect-promoted visible light-driven CC coupling reactions pairing with CO2 reduction. J. Catal. 2020, 390, 244–250. [Google Scholar] [CrossRef]
- Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Fu, X. One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Appl. Catal. B Environ. 2020, 266, 118617. [Google Scholar] [CrossRef]
- Qi, M.Y.; Conte, M.; Anpo, M.; Tang, Z.R.; Xu, Y.J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, L.; Liu, L.; Li, H.; Meng, S.; Ye, X.; Chen, S. In situ photodeposition of MoSx on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. J. Mater. Chem. A 2017, 5, 15287–15293. [Google Scholar] [CrossRef]
- Shen, R.C.; Ren, D.D.; Ding, Y.N.; Guan, Y.T.; Ng, Y.H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 2020, 63, 2153–2188. [Google Scholar] [CrossRef]
- Li, L.; Guo, C.F.; Ning, J.Q.; Zhong, Y.J.; Chen, D.L.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 2021, 293, 120203. [Google Scholar] [CrossRef]
- Han, G.Q.; Jin, Y.H.; Burgess, R.A.; Dickenson, N.E.; Cao, X.M.; Sun, Y.J. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587. [Google Scholar] [CrossRef]
- Liu, M.C.; Chen, Y.B.; Su, J.Z.; Shi, J.W.; Wang, X.X.; Guo, L.J. Photocatalytic Hydrogen Production using Twinned Nanocrystals and an Unanchored NiSx Co-Catalyst. Nat. Energy 2016, 1, 16151. [Google Scholar] [CrossRef]
- Li, S.J.; Cai, M.J.; Liu, Y.P.; Wang, C.C.; Yan, R.Y.; Chen, X.B. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Dong, Y.J.; Han, Q.; Hu, Q.Y.; Xu, C.J.; Dong, C.Z.; Peng, Y.; Lan, Y. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Appl. Catal. B 2021, 293, 120214. [Google Scholar] [CrossRef]
- Ye, H.F.; Shi, R.; Yang, X.; Fu, W.F.; Chen, Y. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. Appl. Catal. B Environ. 2018, 233, 70–79. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, W.; Zheng, X.; Meng, S.; Cai, C.; Fu, X.; Chen, S. Decorating Zn0.5Cd0.5S with C, N Co-Doped CoP: An Efficient Dual-Functional Photocatalyst for H2 Evolution and 2,5-Diformylfuran Oxidation. ACS Appl. Mater. Inter. 2022, 14, 54649–54661. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, S.; Chen, G.; Meng, S.; Zheng, X.; Chen, S.; Zhang, F. Minimized Pt deposition on CdS simultaneously maximizes the performance of hydrogen production and aromatic alcohols oxidation. Appl. Surf. Sci. 2021, 564, 150446. [Google Scholar] [CrossRef]
- Shi, X.W.; Dai, C.; Wang, X.; Hu, J.Y.; Zhang, J.Y.; Zheng, L.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef]
- Andreou, E.K.; Koutsouroubi, E.D.; Vamvasakis, I.; Armatas, G.S. Ni2P-modified P-Doped Carbon Nitride Hetero-Nanostructures for Efficient Photocatalytic Aqueous Cr(VI) Reduction. Catalysts 2023, 13, 437. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.Z.; Liu, J.F.; Qi, Z.L.; Su, T.Y.; Cai, C.; Chen, S. Efficient H2 evolution on Co3S4/Zn0.5Cd0.5S nanocomposites by photocatalytic synergistic reaction. Inorg. Chem. Front. 2022, 9, 1943–1955. [Google Scholar] [CrossRef]
- Shen, R.C.; Ding, Y.N.; Li, S.B.; Zhang, P.; Xiang, Q.J.; Ng, Y.H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/ homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36. [Google Scholar] [CrossRef]
- Li, K.; Chai, B.; Peng, T.Y.; Mao, J.; Zan, L. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light. ACS Catal. 2013, 3, 170–177. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Xiao, G.; Chen, W.; Chen, Y.; Sun, M.; Huang, H.; Fu, X. A New Application of Nanocrystal In2S3 in Efficient Degradation of Organic Pollutants under Visible Light Irradiation. J. Phys. Chem. C 2009, 113, 5254–5262. [Google Scholar] [CrossRef]
- Sun, X.; Luo, X.; Zhang, X.; Xie, J.; Jin, S.; Wang, H.; Zheng, X.; Wu, X.; Xie, Y. Enhanced Superoxide Generation on Defective Surfaces for Selective Photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801. [Google Scholar] [CrossRef]
- Li, T.; Zhang, S.; Meng, S.; Ye, X.; Fu, X.; Chen, S. Amino acid-assisted synthesis of In2S3 hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes. RSC Adv. 2017, 7, 6457–6466. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Ye, X.; Ning, X.; Xie, M.; Fu, X.; Chen, S. Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Appl. Catal. B Environ. 2016, 182, 356–368. [Google Scholar] [CrossRef]
- Meng, S.; Cui, Y.; Wang, H.; Zheng, X.; Fu, X.; Chen, S. Noble metal-free 0D-1D NiSx/CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light. Dalton T. 2018, 47, 12671–12683. [Google Scholar] [CrossRef]
- Cheng, T.T.; Gao, H.J.; Liu, G.R.; Pu, Z.S.; Wang, S.F.; Yi, Z.; Yang, H. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr (VI) ions. Colloid. Surf. A 2022, 633, 127918. [Google Scholar] [CrossRef]
- Li, W.J.; Lin, Z.Y.; Yang, G.W. A 2D self-assembled MoS2/Znln2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale 2017, 9, 18290–18298. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Efficient Charge Separation in Polypyrrole/GaN-Nanorod-Based Hybrid Heterojunctions for High-Performance Self-Powered UV Photodetection. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2000518. [Google Scholar] [CrossRef]
- Wu, H.; Meng, S.; Zhang, J.; Zheng, X.; Wang, Y.; Chen, S.; Fu, X. Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Appl. Surf. Sci. 2020, 505, 144638. [Google Scholar] [CrossRef]
- Deng, H.Z.; Fei, X.G.; Yang, Y.; Fan, J.J.; Yu, J.G.; Cheng, B.; Zhang, L.Y. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377. [Google Scholar] [CrossRef]
- Liu, D.N.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem. Int. Ed. 2020, 59, 4519–4524. [Google Scholar] [CrossRef]
- Yang, W.L.; Zhang, L.; Xie, J.F.; Zhang, X.D.; Liu, Q.H.; Yao, T.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem. Int. Edit. 2016, 55, 6716–6720. [Google Scholar] [CrossRef]
- Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M. Efficient hydrogen production from alcohols under mild reaction conditions. Angew. Chem., Int. Ed. 2011, 50, 9593. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Zhang, Z.; Meng, S.; Wang, Y.X.; Li, D. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chem. Eng. J. 2020, 393, 124676. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
- Al-Madanat, O.; AlSalka, Y.; Dillert, R.; Bahnemann, D.W. Photocatalytic H2 production from naphthalene by various TiO2 photocatalysts: Impact of Pt loading and formation of intermediates. Catalysts 2021, 11, 107. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Curti, M.; Günnemann, C.; AlSalka, Y.; Dillert, R.; Bahnemann, D.W. TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catal. Today 2021, 380, 3–15. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Jung, N.; Yu, Y.J.; Oh, J.-E.; Kim, M.-D. Plasmonic Pt nanoparticles triggered efficient charge separation in TiO2/GaN NRs hybrid heterojunction for the high performance self-powered UV photodetectors. Appl. Surf. Sci. 2022, 594, 153474. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Peta, K.R.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT: PSS/GaN nanorods for enhanced UV photodetection. ACS Appl. Mater. Interfaces 2020, 12, 54181–54190. [Google Scholar] [CrossRef]
- Wan, J.; Liu, L.; Wu, Y.; Song, J.R.; Liu, J.Q.; Song, R.; Xiong, Y. Exploring the polarization photocatalysis of ZnIn2S4 material toward hydrogen evolution by integrating cascade electric fields with hole transfer vehicle. Adv. Funct. Mater. 2022, 32, 2203252. [Google Scholar] [CrossRef]
- Wan, J.; Yang, W.J.; Liu, J.Q.; Sun, K.L.; Liu, L.; Fu, F. Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31ClxBr10-x. Chin. J. Catal. 2022, 43, 485–496. [Google Scholar] [CrossRef]
- Hu, Z.F.; Yuan, L.Y.; Liu, Z.F.; Shen, Z.R.; Yu, J.C. An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency. Angew. Chem. Int. Ed. 2016, 55, 9793. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.J.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. Boron doped g-C3N4 quantum dots based highly sensitive surface acoustic wave NO2 sensor with faster gas kinetics under UV light illumination. Sensor. Actuat. B Chem. 2023, 378, 133140. [Google Scholar] [CrossRef]
- Nowicka, E.; Hofmann, J.P.; Parker, S.F.; Sankar, M.; Lari, G.M.; Kondrat, S.A.; Knight, D.W.; Bethell, D.; Weckhuysen, B.M.; Hutchings, G.J. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Phys. Chem. Chem. Phys. 2013, 15, 12147–12155. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yang, X.; Yu, X.-F.; Xia, L.; Peng, Y.; Li, Z.; Zhang, Y.; Cheng, J.; Zhang, K.; Yu, J. Surface oxygen vacancies of Pd/Bi2MoO6-x acts as “Electron Bridge” to promote photocatalytic selective oxidation of alcohol. Appl. Catal. B Environ. 2021, 285, 119790. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Nunes, B.N.; AlSalka, Y.; Hakki, A.; Curti, M.; Patrocinio, A.O.T.; Bahnemann, D.W. Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts 2021, 11, 1514. [Google Scholar] [CrossRef]
- Chen, Z.X.; Li, D.Z.; Zhang, W.J.; Chen, C.; Li, W.J.; Sun, M.; Fu, X. Low-temperature and template-free synthesis of ZnIn2S4 microspheres. Inorg. Chem. 2008, 47, 9766–9772. [Google Scholar] [CrossRef]
Photocatalyst | Light Source | Reagents | H2 Evolution (mmol g−1 h−1) | Ref. |
---|---|---|---|---|
Pt/In2S3 | λ ≥ 420 nm | PhCH2OH | 7.97 | This Work |
Pt/CdS | λ > 420 nm | PhCH2OH | 4.9 | [42] |
Pt/Zn3In2S6 | λ ≥ 420 nm | PhCH2OH | 0.9 | [14] |
Pt/g-C3N4 | λ > 420 nm | TEOA | 3.02 | [21] |
MoP/In2S3 | λ ≥ 420 nm | Lactic acid | 0.5 | [22] |
Zn3In2S6In2S3 | λ > 400 nm | bisphenol A | 0.08 | [23] |
PdS/In2S3 | λ > 420 nm | Na2S/Na2SO3 | 3.6 | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xiao, P.; Meng, S.; Long, B.; Liu, Q.; Zheng, X.; Zhang, S.; Ruan, Z.; Chen, S. One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts 2023, 13, 461. https://doi.org/10.3390/catal13030461
Zhang H, Xiao P, Meng S, Long B, Liu Q, Zheng X, Zhang S, Ruan Z, Chen S. One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts. 2023; 13(3):461. https://doi.org/10.3390/catal13030461
Chicago/Turabian StyleZhang, Huijun, Peipei Xiao, Sugang Meng, Baihua Long, Qing Liu, Xiuzhen Zheng, Sujuan Zhang, Zhaohui Ruan, and Shifu Chen. 2023. "One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction" Catalysts 13, no. 3: 461. https://doi.org/10.3390/catal13030461
APA StyleZhang, H., Xiao, P., Meng, S., Long, B., Liu, Q., Zheng, X., Zhang, S., Ruan, Z., & Chen, S. (2023). One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts, 13(3), 461. https://doi.org/10.3390/catal13030461