Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Catalytic Performance Study
3. Discussion of Structure-Performance Relationship
3.1. H2-TPD and H2-TPR Analysis
3.2. CO2-TPD and CO-TPD Analysis
3.3. Influence of K and Ni Additives on Catalytic Performance
4. Materials and Methods
4.1. Reagents
4.2. Catalyst Preparation
4.3. Characterization
4.4. Catalyst Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Cian, E.; Sue Wing, I. Global Energy Consumption in a Warming Climate. Environ. Resour. Econ. 2017, 72, 365–410. [Google Scholar] [CrossRef]
- Sha, F.; Han, Z.; Tang, S.; Wang, J.; Li, C. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. ChemSusChem 2020, 13, 6160–6181. [Google Scholar] [CrossRef]
- Liang, X.-L.; Dong, X.; Lin, G.-D.; Zhang, H.-B. Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl. Catal. B Environ. 2009, 88, 315–322. [Google Scholar] [CrossRef]
- Artz, J.; Muller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef]
- Makri, M.; Symillidis, A.; Grigoriou, D.; Katsaounis, A.; Vayenas, C. Electrochemical Promotion of CO2 Reduction on a Dispersed Ru/YSZ Catalyst Supported on YSZ Solid Electrolyte. Mater. Today Proc. 2018, 5, 27617–27625. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, C.; Zhu, J.; Qin, W.; Tao, X.; Fan, F.; Li, R.; Li, C. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. Angew. Chem. Int. Ed. Engl. 2020, 59, 9653–9658. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 2017, 3, e1701290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olah, G.A. Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. Engl. 2005, 44, 2636–2639. [Google Scholar] [CrossRef]
- Shih, C.F.; Zhang, T.; Li, J.; Bai, C. Powering the Future with Liquid Sunshine. Joule 2018, 2, 1925–1949. [Google Scholar] [CrossRef] [Green Version]
- Olah, G.A.; Goeppert, A.; Prakash, G.K.S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem. 2009, 74, 487–498. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Blunt, M.J.; Anthony, E.J.; Park, A.-H.A.; Hughes, R.W.; Webley, P.A.; Yan, J. Advances in carbon capture, utilization and storage. Appl. Energy 2020, 278, 115627. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022, 12, 403. [Google Scholar] [CrossRef]
- Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. A short review of catalysis for CO2 conversion. Catal. Today 2009, 148, 221–231. [Google Scholar] [CrossRef]
- Tang, Q.; Shen, Z.; Huang, L.; He, T.; Adidharma, H.; Russell, A.G.; Fan, M. Synthesis of methanol from CO(2) hydrogenation promoted by dissociative adsorption of hydrogen on a Ga(3)Ni(5)(221) surface. Phys. Chem. Chem. Phys. 2017, 19, 18539–18555. [Google Scholar] [CrossRef]
- Ye, J.; Liu, C.; Mei, D.; Ge, Q. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. ACS Catal. 2013, 3, 1296–1306. [Google Scholar] [CrossRef]
- Martin, O.; Martin, A.J.; Mondelli, C.; Mitchell, S.; Segawa, T.F.; Hauert, R.; Drouilly, C.; Curulla-Ferré, D.; Pérez-Ramírez, J. Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. Angew. Chem. Int. Ed. Engl. 2016, 55, 6261–6265. [Google Scholar] [CrossRef] [PubMed]
- Saiyo, M.; Anderson, R.B. The activity of several molybdenum compounds for the methanation of CO2. J. Catal. 1981, 67, 296–302. [Google Scholar]
- Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V.I.; Garcia, H. CO2 methanation catalyzed by oriented MoS2 nanoplatelets supported on few layers graphene. Appl. Catal. B Environ. 2019, 245, 351–359. [Google Scholar] [CrossRef]
- Ding, M.; Tu, J.; Qiu, M.; Wang, T.; Ma, L.; Li, Y. Impact of Potassium Promoter on Cu-Fe Based Mixed Alcohols Synthesis Catalyst. Appl. Energy 2015, 138, 584–589. [Google Scholar] [CrossRef]
- Xu, D.; Ding, M.; Hong, X.; Liu, G. Mechanistic Aspects of the Role of K Promotion on Cu–Fe-Based Catalysts for Higher Alcohol Synthesis from CO2 Hydrogenation. ACS Catal. 2020, 10, 14516–14526. [Google Scholar] [CrossRef]
- Bandoa, K.K.; Sogab, K.; Kunimorib, K.; Arakawa, H. Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts. Appl. Catal. A Gen. 1998, 175, 67–81. [Google Scholar] [CrossRef]
- Morrill, M.R.; Thao, N.T.; Agrawal, P.K.; Jones, C.W.; Davis, R.J.; Shou, H.; Barton, D.G.; Ferrari, D. Mixed MgAl Oxide Supported Potassium Promoted Molybdenum Sulfide as a Selective Catalyst for Higher Alcohol Synthesis from Syngas. Catal. Lett. 2012, 142, 875–881. [Google Scholar] [CrossRef]
- Yang, C.; Mu, R.; Wang, G.; Song, J.; Tian, H.; Zhao, Z.-J.; Gong, J. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chem. Sci. 2019, 10, 3161–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Yu, L.; Deng, J.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; Yang, J.; et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal. 2021, 4, 242–250. [Google Scholar] [CrossRef]
- Khan, M.I.; Hasan, M.S.; Bhatti, K.A.; Rizvi, H.; Wahab, A.; Rehman, S.U.; Afzal, M.J.; Nazneen, A.; Nazir, A.; Iqbal, M. Effect of Ni doping on the structural, optical and photocatalytic activity of MoS2, prepared by Hydrothermal method. Mater. Res. Express 2020, 7, 015061. [Google Scholar] [CrossRef]
- Ai, X.; Fan, H.; Wang, Y.; Guo, Y.; Liu, X.; Yang, L.; Liu, H.; Yang, J. XPS and Raman study of the active-sites on molybdenum disulfide nanopetals for photocatalytic removal of rhodamine B and doxycycline hydrochlride. RSC Adv. 2018, 8, 36280–36285. [Google Scholar] [CrossRef] [Green Version]
- Cui, P.; Sun, R.; Xiao, L.; Wu, W. Exploring the Effects of the Interaction of Carbon and MoS2 Catalyst on CO2 Hydrogenation to Methanol. Int. J. Mol. Sci. 2022, 23, 5220. [Google Scholar] [CrossRef]
- Iwasa, N.; Suzuki, H.; Terashita, M.; Arai, M.; Takezawa, N. Methanol synthesis from CO2 under atmospheric pressure over supported Pd catalysts. Catal. Lett. 2004, 96, 75–78. [Google Scholar] [CrossRef]
- Díez-Ramírez, J.; Sánchez, P.; Valverde, J.L.; Dorado, F. Electrochemical promotion and characterization of PdZn alloy catalysts with K and Na ionic conductors for pure gaseous CO2 hydrogenation. J. CO2 Util. 2016, 16, 375–383. [Google Scholar] [CrossRef]
- Xu, J.; Su, X.; Liu, X.; Pan, X.; Pei, G.; Huang, Y.; Wang, X.; Zhang, T.; Geng, H. Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity. Appl. Catal. A Gen. 2016, 514, 51–59. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Liu, X.; Fang, K. Low-temperature synthesis of high-performance nano-MoS2-based catalyst via non-thermal plasma for higher alcohol synthesis from syngas. Catal. Today 2019, 355, 17–25. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, Q.; Zhao, P.; Cen, M.; Song, Y.; Zhao, W.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Coupled Co-Doped MoS2 and CoS2 as the Dual-Active Site Catalyst for Chemoselective Hydrogenation. ACS Appl. Mater. Interfaces 2023, 15, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, P.S.; Neelaveni, M.; Tamizhdurai, P.; Mythily, M.; Mohan, S.K.; Mangesh, V.; Shanthi, K. COx-free hydrogen generation via decomposition of ammonia over al, Ti and Zr¡Laponite supported MoS2 catalysts. Int. J. Hydrogen Energy 2020, 45, 8568–8583. [Google Scholar] [CrossRef]
- Xiang, M.; Li, D.; Xiao, H.; Zhang, J.; Li, W.; Zhong, B.; Sun, Y. K/Ni/β-Mo2C: A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation. Catal. Today 2008, 131, 489–495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Weng, Y.; Ren, Y.; Meng, S.; Li, X.; Huang, C.; Zhang, Y.; Sun, Q. Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst. Catalysts 2023, 13, 1030. https://doi.org/10.3390/catal13071030
Jiang S, Weng Y, Ren Y, Meng S, Li X, Huang C, Zhang Y, Sun Q. Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst. Catalysts. 2023; 13(7):1030. https://doi.org/10.3390/catal13071030
Chicago/Turabian StyleJiang, Siyi, Yujing Weng, Yangbin Ren, Shihang Meng, Xiaoman Li, Chao Huang, Yulong Zhang, and Qi Sun. 2023. "Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst" Catalysts 13, no. 7: 1030. https://doi.org/10.3390/catal13071030
APA StyleJiang, S., Weng, Y., Ren, Y., Meng, S., Li, X., Huang, C., Zhang, Y., & Sun, Q. (2023). Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst. Catalysts, 13(7), 1030. https://doi.org/10.3390/catal13071030