Light-Assisted Catalysis in Water and Indoor Air Cleaning: Challenges and Perspectives
Author Contributions
Conflicts of Interest
References
- Pratap, B.; Kumar, S.; Nand, S.; Azad, I.; Bharagava, R.N.; Ferreira, L.F.R.; Dutta, V. Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety. Chemosphere 2023, 313, 137547. [Google Scholar] [CrossRef] [PubMed]
- Wetchakun, K.; Wetchakun, N.; Sakulsermsuk, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 2019, 71, 19–49. [Google Scholar] [CrossRef]
- Raciulete, M.; Papa, F.; Kawamoto, D.; Munteanu, C.; Culita, D.C.; Negrila, C.; Atkinson, I.; Bratan, V.; Pandele-Cusu, J.; Balint, I. Particularities of trichloroethylene photocatalytic degradation over crystalline RbLaTa2O7 nanowire bundles grown by solid-state synthesis route. J. Environ. Chem. Eng. 2019, 7, 102789. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Fan, W.-Y.; Sheng, G.-P. Photomineralization of effluent organic phosphorus to orthophosphate under simulated light illumination. Environ. Sci. Technol. 2019, 53, 4997–5004. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kimar, N.; Chauhan, R.; Singh, V.; Srivastava, V.C.; Bhatnagar, R. Growth of hierarchical ZnO nano flower on large functionalized rGO sheet for superior photocatalytic mineralization of antibiotic. Chem. Eng. J. 2020, 392, 123746. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, C.; Li, X.; Yang, Q.; Wang, D.; Duan, A.; Pan, S.; Zhang, B.; Ding, J.; Rong, S.; et al. Effective mineralization and detoxification of tetracycline hydrochloride enabled by oxygen vacancies in g-C3N4/ LDH composites. Sep. Purif. Techn. 2023, 305, 122554. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic degradation of organic and inorganic pollutants to harmless end products: Assesment of practical application potential for water and air cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Ren, Q.; Liu, J.; Yang, Q.; Shen, W. A review: Photocatalysts based on BiOCl and g–C3N4 for water purification. Catalysts 2021, 11, 1084. [Google Scholar] [CrossRef]
- Galloni, M.G.; Ferrara, E.; Falletta, E.; Bianchi, C.L. Olive mill wastewater remediation: From conventional approaches to photocatalytic processes by easily recoverable materials. Catalysts 2022, 12, 923. [Google Scholar] [CrossRef]
- Ali, A.M.; Sayed, M.A.; Algarni, H.; Ganesh, V.; Aslam, M.; Ismail, A.A.; El-Bery, H.M. Synthesis, characterization and photoelectric properties of Fe2O3 incorporated TiO2 photocatalyst nanocomposites. Catalysts 2021, 11, 1062. [Google Scholar] [CrossRef]
- Yang, D.; Chen, J.; Hong, X.; Cui, J.; Li, L. One-pot synthesis of TiO2/hectorite composite and its photocatalytic degradation of methylene blue. Catalysts 2022, 12, 297. [Google Scholar] [CrossRef]
- Patel, J.; Singh, A.K.; Jain, B.; Yadav, S.; Carabineiro, S.A.C.; Susan, M.A.B.H. Solochrome dark blue azo dye removal by sonophotocatalysis using Mn2+ doped ZnS quantum dots. Catalysts 2022, 11, 1025. [Google Scholar] [CrossRef]
- Kobkeatthawin, T.; Trakulmututa, J.; Amornsakchai, T.; Kajitvichyanukul, P.; Smith, S.M. Identification of active species in photodegradation of aqueous imidacloprid over g–C3N4/TiO2 nanocomposites. Catalysts 2022, 12, 120. [Google Scholar] [CrossRef]
- Sandulescu, A.; Anastasescu, C.; Papa, F.; Raciulete, M.; Vasile, A.; Spataru, T.; Scarisoreanu, M.; Fleaca, C.; Mihailescu, C.N.; Teodorescu, V.S.; et al. Advancements on basic working principles of photo-driven oxidative degradation of organic substrates over pristine and noble metal-modified TiO2. Model case of phenol photo oxidation. Catalysts 2021, 11, 487. [Google Scholar] [CrossRef]
- Ignat, E.C.; Lutic, D.; Ababei, G.; Carja, G. Novel heterostructures of noble plasmonic metals/Ga-substituted hydrotalcite for solar light driven photocatalysis toward water purification. Catalysts 2022, 12, 1351. [Google Scholar] [CrossRef]
- Zhou, H.; He, F. Using Gd-enhanced β-NaYF4:Yb,Er fluorescent nanorods coupled to reduced TiO2 for the NIR-triggered photocatalytic inactivation of Escherichia coli. Catalysts 2021, 11, 184. [Google Scholar] [CrossRef]
Short Biography of Author
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balint, I.; Pavel, M. Light-Assisted Catalysis in Water and Indoor Air Cleaning: Challenges and Perspectives. Catalysts 2023, 13, 1032. https://doi.org/10.3390/catal13071032
Balint I, Pavel M. Light-Assisted Catalysis in Water and Indoor Air Cleaning: Challenges and Perspectives. Catalysts. 2023; 13(7):1032. https://doi.org/10.3390/catal13071032
Chicago/Turabian StyleBalint, Ioan, and Monica Pavel. 2023. "Light-Assisted Catalysis in Water and Indoor Air Cleaning: Challenges and Perspectives" Catalysts 13, no. 7: 1032. https://doi.org/10.3390/catal13071032
APA StyleBalint, I., & Pavel, M. (2023). Light-Assisted Catalysis in Water and Indoor Air Cleaning: Challenges and Perspectives. Catalysts, 13(7), 1032. https://doi.org/10.3390/catal13071032