Efficient Regioselective Synthesis of Novel Ensembles of Organylselanyl-Functionalized Divinyl Sulfides and 1,3-Thiaselenoles under Phase Transfer Catalysis Conditions
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of the Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc. 1957, 79, 3292–3293. [Google Scholar] [CrossRef]
- Lenardao, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer International Publishing AG: Cham, Switzerland, 2018; 189p. [Google Scholar]
- Woollins, J.D.; Laitinen, R.S. (Eds.) Selenium and Tellurium Chemistry. In From Small Molecules to Biomolecules and Materials; Springer: Berlin/Heidelberg, Germany, 2011; 334p. [Google Scholar]
- Santi, C. (Ed.) Organoselenium Chemistry: Between Synthesis and Biochemistry; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014; 563p. [Google Scholar]
- Longtin, R. A forgotten debate: Is selenocysteine the 21st amino acid? J. Nat. Cancer Inst. 2004, 96, 504–505. [Google Scholar] [CrossRef] [PubMed]
- Iwaoka, M.; Arai, K. From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr. Chem. Biol. 2013, 7, 2–24. [Google Scholar] [CrossRef]
- Gandhil, U.H.; Nagaraja, T.P.; Prabhu, K.S. Selenoproteins and their role in oxidative stress and inflammation. Curr. Chem. Biol. 2013, 7, 65–73. [Google Scholar] [CrossRef]
- Shaaban, S.; Ashmawy, A.M.; Negm, A.; Wessjohann, L.A. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur. J. Med. Chem. 2019, 179, 515–526. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Encío, I.; Raza, A.; Sharma, A.K.; Sanmartín, C.; Plano, D. Design, synthesis and anticancer evaluation of novel Se-NSAID hybrid molecules: Identification of a Se-indomethacin analog as a potential therapeutic for breast cancer. Eur. J. Med. Chem. 2022, 244, 114839. [Google Scholar] [CrossRef]
- Astrain-Redin, N.; Paoletti, N.; Plano, D.; Bonardi, A.; Gratteri, P.; Angeli, A.; Sanmartin, C.; Supuran, C.T. Selenium-analogs based on natural sources as cancer-associated carbonic anhydrase isoforms IX and XII inhibitors. J. Enzyme Inhib. Med. Chem. 2023, 38, 2191165. [Google Scholar] [CrossRef]
- Gouda, M.; Abbas, Y.J.; Abd El-Lateef, H.M.; Khalaf, M.M.; Shaaban, S. Design, Synthesis, and Biological Evaluations of Novel Naphthalene-based Organoselenocyanates. Biointerface Res. Appl. Chem. 2023, 13, 219. [Google Scholar]
- Di Leo, I.; Messina, F.; Nascimento, V.; Nacca, F.G.; Pietrella, D.; Lenardão, E.J.; Perin, G.; Sancineto, L. Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity. Mini-Rev. Org. Chem. 2018, 16, 589–601. [Google Scholar] [CrossRef]
- Sarturi, J.M.; Dornelles, L.; Segatto, N.V.; Collares, T.; Seixas, F.K.; Piccoli, B.C.; D’Avila da Silva, F.; Omage, F.B.; Rocha, J.B.T.; Balaguez, R.A.; et al. Chalcogenium-AZT Derivatives: A Plausible Strategy To Tackle The RT-Inhibitors-Related Oxidative Stress While Maintaining Their Anti- HIV Properties. Curr. Med. Chem. 2023, 30, 2449–2462. [Google Scholar] [CrossRef]
- Omage, F.B.; Madabeni, A.; Tucci, A.R.; Nogara, P.A.; Bortoli, M.; dos Santos Rosa, A.; dos Santos Ferreira, V.N.; Rocha, J.B.T.; Miranda, M.D.; Orian, L. Diphenyl Diselenide and SARS-CoV-2: In silico Exploration of the Mechanisms of Inhibition of Main Protease (Mpro) and Papain-like Protease (PLpro). J. Chem. Inf. Model. 2023, 63, 2226–2239. [Google Scholar] [CrossRef] [PubMed]
- Refaay, D.A.; Ahmed, D.M.; Mowafy, A.M.; Shaaban, S. Evaluation of novel multifunctional organoselenium compounds as potential cholinesterase inhibitors against Alzheimer’s disease. Med. Chem. Res. 2022, 31, 894–904. [Google Scholar] [CrossRef]
- Mamgain, R.; Kostic, M.; Singh, F.V. Synthesis and Antioxidant Properties of Organoselenium Compounds. Curr. Med. Chem. 2023, 30, 2421–2448. [Google Scholar] [PubMed]
- Elsherbini, M.; Hamama, W.S.; Zoorob, H.H. Recent advances in the chemistry of selenium-containing heterocycles: Five-membered ring systems. Coord. Chem. Rev. 2016, 312, 149–177. [Google Scholar] [CrossRef]
- Elsherbini, M.; Hamama, W.S.; Zoorob, H.H. Recent advances in the chemistry of selenium-containing heterocycles: Six-membered ring systems. Coord. Chem. Rev. 2017, 330, 110–126. [Google Scholar] [CrossRef]
- Młochowski, J.; Kloc, K.; Lisiak, R.; Potaczek, P.; Wójtowicz, H. Developments in the chemistry of selenaheterocyclic compounds of practical importance in synthesis and medicinal biology. Arkivoc 2007, vi, 14–46. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. Therapeutic potential of selenium and tellurium compounds: Opportunities yet unrealized. Dalton Trans. 2012, 41, 6390–6395. [Google Scholar] [CrossRef]
- Banerjee, B.; Koketsu, M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev. 2017, 339, 104–127. [Google Scholar] [CrossRef]
- Rafique, J.; Canto, R.F.S.; Saba, S.; Barbosa, F.A.R.; Braga, A.L. Recent Advances in the Synthesis of Biologically Relevant Selenium-containing 5-Membered Heterocycles. Curr. Org. Chem. 2016, 20, 166–188. [Google Scholar] [CrossRef]
- Obieziurska-Fabisiak, M.; Pacuła-Miszewska, A.J.; Laskowska, A.; Ścianowski, J. Organoselenium compounds as antioxidants. Arkivoc 2023, v, 69–92. [Google Scholar] [CrossRef]
- Azad, G.K.; Tomar, R.S. Ebselen, A promising antioxidant drug: Mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 2014, 41, 4865–4879. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Mori, T. Organic conductors with unusual band fillings. Chem.Rev. 2004, 104, 4947–4969. [Google Scholar] [CrossRef]
- Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Burda-Grabowska, M.; Giurg, M.; Brul, S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep. 2021, 11, 3640. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, M.; Akutsu, A.; Noda, B.; Nii, H.; Kawamoto, T.; Mori, T.; Nakayashiki, T.; Misaki, Y.; Tanaka, K.; Takimiya, K.; et al. Synthesis and structures of highly conducting charge-transfer salts of selenium containing TTM-TTP derivatives. Bull. Chem. Soc. Jpn. 2004, 77, 1449–1458. [Google Scholar] [CrossRef]
- Ashizawa, M.; Nakao, A.; Yamamoto, H.M.; Kato, R. Development of the first methyl antimony bridged tetrachalcogenafulvalene systems. J. Low Temp. Phys. 2006, 142, 449–452. [Google Scholar] [CrossRef]
- Yamada, J.-I.; Akutsu, H. New trends in the synthesis of π -electron donors for molecular conductors and superconductors. Chem. Rev. 2004, 104, 5057–5083. [Google Scholar] [CrossRef]
- Ohki, D.; Yoshimi, K.; Kobayashi, A. Interaction-induced quantum spin Hall insulator in the organic Dirac electron system α-(BEDT-TSeF)2I3. Phys. Rev. B 2022, 105, 205123. [Google Scholar] [CrossRef]
- Ashizawa, M.; Yamamoto, H.M.; Nakao, A.; Kato, R. The first methyl antimony linked dimeric tetrathiafulvalene and tetraselenafulvalenes. Tetrahedron. Lett. 2006, 47, 8937–8941. [Google Scholar] [CrossRef]
- Imakubo, T.; Shirahata, T.; Kibune, M.; Yoshino, H. Hybrid organic/inorganic supramolecular conductors D2[Au(CN)4] [D = Diiodo(ethylenedichalcogeno)tetrachalcogenofulvalene], including a new ambient pressure superconductor. Eur. J. Inorg. Chem. 2007, 30, 4727–4735. [Google Scholar] [CrossRef]
- Fabre, J.M. Synthesis strategies and chemistry of nonsymmetrically substituted tetrachalcogenafulvalenes. Chem. Rev. 2004, 104, 5133–5150. [Google Scholar] [CrossRef] [PubMed]
- Takimiya, K.; Takamori, A.; Aso, Y.; Otsubo, T.; Kawamoto, T.; Mori, T. Organic superconductors based on a new electron donor, methylenedithio-diselenadithiafulvalene (MDT-ST). Chem. Mater. 2003, 15, 1225–1227. [Google Scholar] [CrossRef]
- Takimiya, K.; Kodani, M.; Niihara, N.; Aso, Y.; Otsubo, T.; Bando, Y.; Kawamoto, T.; Mori, T. Pressure-induced superconductivity in (MDT-TS)(AuI2)0.441 [MDT-TS) = 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene]: A new organic superconductor possessing an incommensurate anion lattice. Chem. Mater. 2004, 16, 5120–5123. [Google Scholar] [CrossRef]
- Makhaeva, N.A.; Amosova, S.V.; Potapov, V.A. Recent advances in design and synthesis of diselenafulvenes, tetraselenafulvalenes, and their tellurium analogs and application for materials sciences. Molecules 2022, 27, 5613. [Google Scholar] [CrossRef] [PubMed]
- Walwyn, R.J.; Chan, B.; Usov, P.M.; Solomon, M.B.; Duyker, S.G.; Koo, J.Y.; Kawano, M.; Turner, P.; Kepert, C.J.; D’Alessandro, D.M. Spectroscopic, electronic and computational properties of a mixed tetrachalcogenafulvalene and its charge transfer complex. J. Mater. Chem. C 2018, 6, 1092–1104. [Google Scholar] [CrossRef]
- Kodani, M.; Murakami, S.; Jigami, T.; Takimiya, K.; Aso, Y.; Otsubo, T. Bis(ethylenethio)tetraselenafulvalene and related hybrid diselenadithiafulvalenes as novel electron donors forming highly conductive complexes with 7,7,8,8-tetracyanoquinodimethane. Heterocycles 2001, 54, 225–235. [Google Scholar] [CrossRef]
- Takimiya, K.; Jigami, T.; Kawashima, M.; Kodani, M.; Aso, Y.; Otsubo, T. Synthetic procedure for various selenium-containing electron donors of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) type. J. Org. Chem. 2002, 67, 4218–4227. [Google Scholar] [CrossRef]
- Mori, H.; Suzuki, H.; Okano, T.; Moriyama, H.; Nishio, Y.; Kajita, K.; Kodani, M.; Takimiya, K.; Otsubo, T. Positional order and disorder of symmetric and unsymmetric BEDT-STF salts. J. Solid State Chem. 2002, 168, 626–631. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Amosova, S.V. Divinyl sulfide: Synthesis, properties, and applications. Sulfur Rep. 1984, 3, 323–393. [Google Scholar] [CrossRef]
- Ianiski, F.R.; Bassaco, M.M.; Vogt, A.G.; Reis, A.S.; Pinz, M.P.; Voss, G.T.; de Oliveira, R.L.; Silveira, C.C.; Wilhelm, E.A.; Luchese, C. Antinociceptive property of vinyl sulfides in spite of their weak antioxidant activity. Med. Chem. Res. 2018, 27, 46–51. [Google Scholar] [CrossRef]
- Ianiski, F.R.; Alves, C.B.; Bassaco, M.M.; Silveira, C.C.; Luchese, C. Protective effect of ((4-tert-butylcyclohexylidene) methyl) (4-methoxystyryl) sulfide, a novel unsymmetrical divinyl sulfide, on an oxidative stress model induced by sodium nitroprusside in mouse brain: Involvement of glutathione peroxidase activity. J. Pharm. Pharmacol. 2014, 66, 1747–1754. [Google Scholar] [CrossRef]
- Johannesson, P.; Lindeberg, G.; Johansson, A.; Nikiforovich, G.V.; Gogoll, A.; Synnergren, B.; Le Greves, M.; Nyberg, F.; Karlen, A.; Hallberg, A.J. Vinyl sulfide cyclized analogues of angiotensin II with high affinity and full agonist activity at the AT1 receptor. J. Med. Chem. 2002, 45, 1767–1777. [Google Scholar] [CrossRef]
- Amosova, S.V.; Shagun, V.A.; Makhaeva, N.A.; Novokshonova, A.I.; Potapov, V.A. Quantum Chemical and Experimental Studies of an Unprecedented Reaction Pathway of Nucleophilic Substitution of 2-Bromomethyl-1,3-thiaselenole with 1,3-Benzothiazole-2-thiol Proceeding Stepwise at Three Different Centers of Seleniranium Intermediates. Molecules 2021, 26, 6685. [Google Scholar] [CrossRef]
- Amosova, S.V.; Filippov, A.S.; Potapov, V.A.; Penzik, M.V.; Albanov, A.I. Unexpected Reaction of 2-Bromomethyl-1,3-thiaselenole with Formation of Bis[(Z)-2-(vinylsulfanyl)ethenyl] Diselenide. Russ. J. Org. Chem. 2017, 53, 1878–1880. [Google Scholar] [CrossRef]
- Potapov, V.A.; Filippov, A.S.; Amosova, S.V. Selective Synthesis of 1,3-Thiaselenol-2-ylmethyl Selenocyanate. Russ. J. Org. Chem. 2018, 54, 957–958. [Google Scholar] [CrossRef]
- Accurso, A.A.; Cho, S.-H.; Amin, A.; Potapov, V.A.; Amosova, S.V.; Finn, M.G. Thia-, aza-, and selena[3.3.1]bicyclononane dichlorides: Rates vs internal nucleophile in anchimeric assistance. J. Org. Chem. 2011, 76, 4392–4395. [Google Scholar] [CrossRef] [PubMed]
- Mlochowski, J.; Syper, L. The Convenient Synthesis of Organoselenium Reagents. Synthesis 1984, 1984, 439–442. [Google Scholar]
- Princival, J.L.; de Oliveira, M.S.C.; Dos Santos, A.A.; Comasseto, J.V. A large-scale synthesis of enantiomerically pure γ-hydroxy-organochalcogenides. Tetrahedron Asymmetry 2009, 20, 2699–2703. [Google Scholar] [CrossRef]
- Haraguchi, K.; Tanaka, H.; Hayakawa, H.; Miyasaka, T. Cleavage of cyclic ethers including oxetane and oxolane with a highly nucleophilic species of phenyl selenide anion. Chem. Lett. 1988, 6, 931–934. [Google Scholar] [CrossRef]
- Haraguchi, K.; Tanaka, H.; Miyasaka, T. Preparation of γ- and δ-phenylselenenyl alcohols via ring cleavage of oxetane and oxolane. Synthesis 1989, 1989, 434–436. [Google Scholar] [CrossRef]
- Middleton, D.S.; Simpkins, N.S.; Begley, M.J.; Terrett, N.K. Synthesis of spiro ethers using radical cyclizations. Tetrahedron 1990, 46, 545–564. [Google Scholar] [CrossRef]
- McNeil, N.M.R.; Press, D.J.; Mayder, D.M.; Garnica, P.; Doyle, L.M.; Back, T.G. Enhanced glutathione peroxidase activity of water-soluble and polyethylene glycol-supported selenides, related spirodioxyselenuranes, and pincer selenuranes. J. Org. Chem. 2016, 81, 7884–7897. [Google Scholar] [CrossRef] [PubMed]
- Back, T.G.; Moussa, Z. Remarkable Activity of a Novel Cyclic Seleninate Ester as a Glutathione Peroxidase Mimetic and Its Facile in Situ Generation from Allyl 3-Hydroxypropyl Selenide. J. Am. Chem. Soc. 2002, 124, 12104–12105. [Google Scholar] [CrossRef] [PubMed]
- Back, T.G.; Moussa, Z. Diselenides and Allyl Selenides as Glutathione Peroxidase Mimetics. Remarkable Activity of Cyclic Seleninates Produced in Situ by the Oxidation of Allyl ω-Hydroxyalkyl Selenides. J. Am. Chem. Soc. 2003, 125, 13455–13460. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A Water-Soluble Cyclic Selenide with Enhanced Glutathione Peroxidase-Like Catalytic Activities. Eur. J. Org. Chem. 2010, 3, 440–445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippov, A.S.; Amosova, S.V.; Makhaeva, N.A.; Albanov, A.I.; Potapov, V.A. Efficient Regioselective Synthesis of Novel Ensembles of Organylselanyl-Functionalized Divinyl Sulfides and 1,3-Thiaselenoles under Phase Transfer Catalysis Conditions. Catalysts 2023, 13, 1227. https://doi.org/10.3390/catal13081227
Filippov AS, Amosova SV, Makhaeva NA, Albanov AI, Potapov VA. Efficient Regioselective Synthesis of Novel Ensembles of Organylselanyl-Functionalized Divinyl Sulfides and 1,3-Thiaselenoles under Phase Transfer Catalysis Conditions. Catalysts. 2023; 13(8):1227. https://doi.org/10.3390/catal13081227
Chicago/Turabian StyleFilippov, Andrey S., Svetlana V. Amosova, Nataliya A. Makhaeva, Alexander I. Albanov, and Vladimir A. Potapov. 2023. "Efficient Regioselective Synthesis of Novel Ensembles of Organylselanyl-Functionalized Divinyl Sulfides and 1,3-Thiaselenoles under Phase Transfer Catalysis Conditions" Catalysts 13, no. 8: 1227. https://doi.org/10.3390/catal13081227
APA StyleFilippov, A. S., Amosova, S. V., Makhaeva, N. A., Albanov, A. I., & Potapov, V. A. (2023). Efficient Regioselective Synthesis of Novel Ensembles of Organylselanyl-Functionalized Divinyl Sulfides and 1,3-Thiaselenoles under Phase Transfer Catalysis Conditions. Catalysts, 13(8), 1227. https://doi.org/10.3390/catal13081227