Cobalt-Doped Hydrochar Derived from Microalgae as an Efficient Peroxymonosulfate Activator for Paraben Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalysts
2.2. Paraben Degradation in Activated PMS System by Co-Doped Hydrochar
2.3. Effects of Different Parameters on MeP Degradation in Co-HC/PMS System
2.4. Possible Mechanism for Co-HC Activated PMS System
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Synthesis of the Catalysts
3.3. Characterization
3.4. Catalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van der Schyff, V.; Suchankova, L.; Kademoglou, K.; Melymuk, L.; Klanova, J. Parabens and antimicrobial compounds in conventional and “green” personal care products. Chemosphere 2022, 297, 134019. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Mortimer, M.; Cheng, H.; Sang, N.; Guo, L.-H. Parabens as chemicals of emerging concern in the environment and humans: A review. Sci. Total Environ. 2021, 778, 146150. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.R.; Simoes, M.; Gomes, I.B. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. Sci. Total Environ. 2023, 905, 167332. [Google Scholar] [CrossRef]
- K’oreje, K.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin, Kenya. Environ. Pollut. 2022, 297, 118725. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, N.; Ma, S.; Hu, X.; Kang, L.; Yu, Y. Parabens and triclosan in shellfish from Shenzhen coastal waters: Bioindication of pollution and human health risks. Environ. Pollut. 2019, 246, 257–263. [Google Scholar] [CrossRef]
- Assens, M.; Frederiksen, H.; Petersen, J.; Larsen, T.; Skakkebæk, N.; Juul, A.; Andersson, A.-M.; Main, K. Variations in repeated serum concentrations of UV filters, phthalates, phenols and parabens during pregnancy. Environ. Int. 2019, 123, 318–324. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Li, J.; Sun, X.; Liu, H.; Jiang, Y.; Peng, Y.; Zhao, H.; Xia, W.; Li, Y.; et al. Parabens exposure in early pregnancy and gestational diabetes mellitus. Environ. Int. 2019, 126, 468–475. [Google Scholar] [CrossRef]
- Hu, C.; Sun, B.; Tang, L.; Liu, M.; Huang, Z.; Zhou, X.; Chen, L. Hepatotoxicity caused by methylparaben in adult zebrafish. Aquat. Toxicol. 2022, 250, 106255. [Google Scholar] [CrossRef]
- Hu, C.; Bai, Y.; Sun, B.; Zhou, X.; Chen, L. Exposure to methylparaben at environmentally realistic concentrations significantly impairs neuronal health in adult zebrafish. J. Environ. Sci. 2023, 132, 134–144. [Google Scholar] [CrossRef]
- Tran, C.M.; Ra, J.-S.; Rhyu, D.Y.; Kim, K.T. Transcriptome analysis reveals differences in developmental neurotoxicity mechanism of methyl-, ethyl-, and propyl- parabens in zebrafish embryos. Ecotox. Environ. Saf. 2023, 268, 115704. [Google Scholar] [CrossRef]
- Wu, N.; Deng, L.; Xiong, F.; Xie, J.; Li, X.; Zeng, Q.; Sun, J.; Chen, D.; Yang, P. Risk of thyroid cancer and benign nodules associated with exposure to parabens among Chinese adults in Wuhan, China. Environ. Sci. Pollut. R. 2022, 29, 70125–70134. [Google Scholar] [CrossRef]
- Atli, E. The effects of ethylparaben and propylparaben on the development and fecundity of Drosophila melanogaster. Environ. Toxicol. Pharmacol. 2022, 92, 103856. [Google Scholar] [CrossRef]
- Yan, W.; Li, M.; Guo, Q.; Li, X.; Zhou, S.; Dai, J.; Zhang, J.; Wu, M.; Tang, W.; Wen, J.; et al. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice. Ecotox. Environ. Saf. 2022, 235, 113432. [Google Scholar] [CrossRef]
- Hu, C.; Bai, Y.; Li, J.; Sun, B.; Chen, L. Endocrine disruption and reproductive impairment of methylparaben in adult zebrafish. Food Chem. Toxicol. 2023, 171, 113545. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, X.; Li, W.; Feng, J.; Zhao, Y.; Zhang, H.; Ren, Y. Nitrogen-doped biochar/MnO2 as an efficient PMS activator for synergistic BPA degradation via non-free radical pathways in the water. J. Environ. Chem. Eng. 2024, 12, 112446. [Google Scholar] [CrossRef]
- Lee, J.; von Gunten, U.; Kim, J.-H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, J.-F.; Yang, J.-C.E.; Li, D.; Zhong, L.-B.; Zheng, Y.-M. Ultra-fast degradation of ciprofloxacin by the peroxymonosulfate activation using a Co/Al-LDH decorated magnetic hydrochar: Structural design, catalytic performance and synergistic effects. Chem. Eng. J. 2023, 477, 146961. [Google Scholar] [CrossRef]
- Tian, R.; Dong, H.; Chen, J.; Li, R.; Xie, Q. Amorphous Co3O4 nanoparticles-decorated biochar as an efficient activator of peroxymonosulfate for the removal of sulfamethazine in aqueous solution. Sep. Purif. Technol. 2020, 250, 117246. [Google Scholar] [CrossRef]
- Ji, X.; Huang, J.-W.; Liu, W.-J.; Yu, H.-Q. Pyrolysis of biomass wastes to N-doped biochar-stabilized Co nanoparticles for efficient pollutant degradation via peroxymonosulfate activation. ACS ES&T Eng. 2021, 1, 1715–1724. [Google Scholar]
- Pei, W.; Wang, Y.; Liu, Y.; Zhou, L.; Lei, J.; Zhang, J. Activation of peroxymonosulfate by LaCO3OH coupled with N, S Co-doped graphene for levofloxacin degradation. Sep. Purif. Technol. 2024, 344, 127157. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Wang, Y.; Yu, J.; Li, N.; Wang, S. Cu/CuO-decorated peanut-shell-derived biochar for the efficient degradation of tetracycline via peroxymonosulfate activation. Catalysts 2023, 13, 1246. [Google Scholar] [CrossRef]
- Lu, H.; Xu, G.; Gan, L. N doped activated biochar from pyrolyzing wood powder for prompt BPA removal via peroxymonosulfate activation. Catalysts 2022, 12, 1449. [Google Scholar] [CrossRef]
- Song, N.; Wang, Y.; Li, Y.; Liu, Y.; Wang, Q.; Wang, T. The activation mechanism of peroxymonosulfate and peroxydisulfate by modified hydrochar: Based on the multiple active sites formed by N and Fe. Environ. Pollut. 2024, 341, 122981. [Google Scholar] [CrossRef] [PubMed]
- Supraja, K.V.; Doddapaneni, T.R.K.C.; Ramasamy, P.K.; Kaushal, P.; Ahammad, S.Z.; Pollmann, K.; Jain, R. Critical review on production, characterization and applications of microalgal hydrochar: Insights on circular bioeconomy through hydrothermal carbonization. Chem. Eng. J. 2023, 473, 145059. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Zan, Y.; Miao, G.; Wang, H.; Kong, L. Hydrothermal carbonization of microalgae (Chlorococcum sp.) for porous carbons with high Cr(VI) adsorption performance. Appl. Biochem. Biotech. 2018, 186, 414–424. [Google Scholar] [CrossRef]
- Jalilian, M.; Bissessur, R.; Ahmed, M.; Hsiao, A.; He, Q.S.; Hu, Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption. Sci. Total Environ. 2024, 914, 169823. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel. Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Zhu, Y.; Li, Y.; Qu, Y.; Rong, C.; Ma, X.; Wang, Z. A new route for preparation of hydrochars from rice husk. Bioresour. Technol. 2010, 101, 9807–9810. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Nie, X.; Ji, X.; Quan, X.; Chen, S.; Wang, H.; Yu, H.; Guo, X. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: The synergism between Co and N. Environ. Sci-Nano 2019, 6, 399–410. [Google Scholar] [CrossRef]
- Yang, L.; Wei, Z.; Guo, Z.; Chen, M.; Yan, J.; Qian, L.; Han, L.; Li, J.; Gu, M. Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline. J. Hazard. Mater. 2023, 445, 130588. [Google Scholar] [CrossRef]
- Wang, L.; Yin, G.; Chang, Y.; Qiao, S. Carbon-rich and low-ash hydrochar formation from sewage sludge by alkali-thermal hydrolysis coupled with acid-assisted hydrothermal carbonization. Waste Manag. 2024, 177, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhang, R.; Zhou, J. Shrimp-shell-derived carbon dots for quantitative detection by fluorometry and colorimetry: A new analytic chemistry experiment for university education. J. Chem. Educ. 2024, 101, 2784–2789. [Google Scholar] [CrossRef]
- Hu, G.; Ge, L.; Li, Y.; Mukhtar, M.; Shen, B.; Yang, D.; Li, J. Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J. Colloid. Interf. Sci. 2020, 579, 96–108. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Q.; Wu, S.; Wang, J.; Zhang, S.; Chen, L. Coupling harmful algae derived nitrogen and sulfur co-doped carbon nanosheets with CeO2 to enhance the photocatalytic degradation of isothiazolinone biocide. J. Environ. Manag. 2024, 356, 120621. [Google Scholar] [CrossRef]
- Ke, J.; Xu, D.S.; Zhou, Y.; Zhang, X.Y.; Liu, J. Confined cobalt oxide embedded into hierarchical bismuth tungstate in S-scheme micro-heterojunction for enhanced air purification. Sep. Purif. Technol. 2022, 299, 121806. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, X.; Wang, Z.; Chi, Y.; Yue, T.; Dai, Y.; Zhao, J.; Xing, B. Adsorption and catalytic degradation of preservative parabens by graphene-family nanomaterials. Sci. Total Environ. 2022, 806, 150520. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.J.; Yang, W.; Fida, H.; You, L.M.; Zhou, K. Scalable synthesis of Ca-doped alpha-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Appl. Catal. B-Environ. 2020, 262, 12. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Liles, A.; Spyrou, A.; Vlastos, D.; Koronaiou, L.-A.; Lambropoulou, D. Assessment of UV-C/peroxymonosulfate process for the degradation of parabens mixture: Efficiency under different conditions, transformation pathways and ecotoxicity evolution. J. Environ. Chem. Eng. 2024, 12, 112044. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, J.; Wang, M.; Zhu, H.; Li, X.; Wu, L. Insights into hydrangea-like NiCo2S4 activating peroxymonosulfate for efficient degradation of atrazine. Chem. Eng. J. 2023, 477, 146876. [Google Scholar] [CrossRef]
- Liang, C.; Su, H.-W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
- Xu, T.; Chen, J.; Chen, X.; Xie, H.; Wang, Z.; Xia, D.; Tang, W.; Xie, H. Prediction models on pKa and base-catalyzed hydrolysis kinetics of parabens: Experimental and quantum chemical studies. Environ. Sci. Technol. 2021, 55, 10. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Qin, Y.; Yao, C.; An, Q.; Xiao, Z.; Zhai, S. Preparation of cobalt/hydrochar using the intrinsic features of rice hulls for dynamic carbamazepine degradation via efficient PMS activation. J. Environ. Chem. Eng. 2022, 10, 108659. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Liang, Y.T.; Xia, W.; Almatrafi, E.; Song, B.A.; Wang, Z.; Zeng, Y.; Yang, Y.; Shang, Y.; Wang, C.; et al. Single atom Mn anchored on N-doped porous carbon derived from spirulina for catalyzed peroxymonosulfate to degradation of emerging organic pollutants. J. Hazard. Mater. 2023, 441, 129871. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Wu, S.; Wang, J.; Chen, L. Cobalt-Doped Hydrochar Derived from Microalgae as an Efficient Peroxymonosulfate Activator for Paraben Degradation. Catalysts 2024, 14, 695. https://doi.org/10.3390/catal14100695
Hu C, Wu S, Wang J, Chen L. Cobalt-Doped Hydrochar Derived from Microalgae as an Efficient Peroxymonosulfate Activator for Paraben Degradation. Catalysts. 2024; 14(10):695. https://doi.org/10.3390/catal14100695
Chicago/Turabian StyleHu, Chenyan, Suxin Wu, Jiali Wang, and Lianguo Chen. 2024. "Cobalt-Doped Hydrochar Derived from Microalgae as an Efficient Peroxymonosulfate Activator for Paraben Degradation" Catalysts 14, no. 10: 695. https://doi.org/10.3390/catal14100695
APA StyleHu, C., Wu, S., Wang, J., & Chen, L. (2024). Cobalt-Doped Hydrochar Derived from Microalgae as an Efficient Peroxymonosulfate Activator for Paraben Degradation. Catalysts, 14(10), 695. https://doi.org/10.3390/catal14100695