Tailoring Mesoporosity of Multi-Hydroxyls Hyper-Crosslinked Organic Polymers for Reinforced Ambient Chemical Fixation of CO2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Catalytic Activity Analysis
2.3. Insights into Reaction Mechanism
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Synthesis of Catalysts
3.3. Catalytic Performance Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, X.; Guo, X.; Nie, X.; Song, C.; Chen, J. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034. [Google Scholar] [CrossRef] [PubMed]
- Bragato, N.; Perosa, A.; Selva, M.; Fiorani, G. Dihydroxybenzene-derived ILs as Halide-Free, Single-component Organocatalysts for CO2 Insertion Reactions. ChemCatChem 2023, 15, e202201373. [Google Scholar] [CrossRef]
- Gao, D.; Arán-Ais, R.; Jeon, H.; Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210. [Google Scholar] [CrossRef]
- Li, H.; Qiu, C.; Ren, S.; Dong, Q.; Zhang, S.; Zhou, F.; Liang, X.; Wang, J.; Li, S.; Yu, M. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 2020, 367, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.T.; Hu, C.H.; Wu, J.J.; Cui, P.; FWei, Y. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions. Chin. J. Chem. Eng. 2022, 43, 222–229. [Google Scholar] [CrossRef]
- Lu, Z.; He, J.; Guo, B.G.; Zhao, Y.L.; Cai, J.Y.; Xiao, L.Q.; Hou, L.X. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles. Chin. J. Chem. Eng. 2022, 43, 110–115. [Google Scholar] [CrossRef]
- Jiang, B.W.; Liu, J.; Yang, G.Q.; Zhang, Z.B. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s. Chin. J. Chem. Eng. 2023, 55, 202–211. [Google Scholar] [CrossRef]
- Li, J.; Jia, D.G.; Guo, Z.J.; Liu, Y.Q.; Lyu, Y.N.; Zhou, Y.; Wang, J. Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides. Green Chem. 2017, 19, 2675–2686. [Google Scholar] [CrossRef]
- Tortajada, A.; Juliá-Hernández, F.; Borjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. Angew. Chem. Int. Ed. 2018, 57, 15948–15982. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, T.; Liu, X.; Zou, K.; Deng, W. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 2013, 4, 1960–1966. [Google Scholar] [CrossRef]
- Scheffen, M.; Marchal, D.G.; Beneyton, T.; Schuller, S.K.; Klose, M.; Diehl, C.; Lehmann, J.; Pfister, P.; Carrillo, M.; He, H. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat. Catal. 2021, 4, 105–115. [Google Scholar] [CrossRef]
- Huang, C.; Dong, J.; Sun, W.; Xue, Z.; Ma, J.; Zheng, L.; Liu, C.; Li, X.; Zhou, K.; Qiao, X.Z. Coordination mode engineering in stacked nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nat. Commun. 2019, 10, 2779–2788. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; An, P.; Shi, Y.; Tang, Z. Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition. Sci. Adv. 2020, 6, 4824–4833. [Google Scholar] [CrossRef]
- Takaishi, K.; Nath, B.; Yamada, Y.; Kosugi, H.; Ema, T. Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO2 Fixations. Angew. Chem. Int. Ed. 2019, 58, 9984–9988. [Google Scholar] [CrossRef]
- Guo, Z.J.; Hu, Y.H.; Dong, S.; Chen, L.; Ma, L.; Zhou, Y.; Wang, L.; Wang, J. “Spring-loaded” mechanism for chemical fixation of carbon dioxide with epoxides. Chem. Catal. 2022, 2, 519–530. [Google Scholar] [CrossRef]
- Wilhelm, M.E.; Anthofer, M.H.; Cokoja, M.; Markovits, I.I.E.; Herrmann, W.A.; Kühn, F.E. Cycloaddition of Carbon Dioxide and Epoxides using Pentaerythritol and Halides as Dual Catalyst System. ChemSusChem 2014, 7, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jiang, Q.; Shi, Y.; Li, J.; Yang, X.; Hou, W.; Zhou, Y.; Wang, J. Tethering Dual Hydroxyls into Mesoporous Poly (ionic liquid)s for Chemical Fixation of CO2 at Ambient Conditions: A Combined Experimental and Theoretical Study. ACS Catal. 2017, 7, 6770–6780. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Wu, L.; Liu, K.; Zhong, H.; Long, Z.; Tong, M.; Yang, Z.; Dai, S. Two-in-one: Construction of hydroxyl and imidazolium-bifunctionalized ionic networks in one-pot toward synergistic catalytic CO2 fixation. Chem. Commun. 2020, 56, 3309–3312. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, S.A.; Rulev, Y.A.; Larionov, V.A.; Smol’yakov, A.F.; Zubavichus, Y.V.; Maleev, V.; Li, H.; North, M.; Saghyan, A.S.; Belokon, Y.N. Self-Assembled Ionic Composites of Negatively Charged Zn(salen) Complexes and Triphenylmethane Derived Polycations as Recyclable Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem 2019, 11, 511–519. [Google Scholar] [CrossRef]
- Xiao, L.; Lai, Y.; Song, Q.; Cai, J.; Zhao, R.; Hou, L. POSS-based polyionic liquids for efficient CO2 cycloaddition reactions under solvent- and cocatalyst-free conditions at ambient pressure. Dalton Trans. 2023, 52, 9282–9293. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Wang, H.; Chen, Z.; Lei, Y. Facile Construction of Carboxyl-Functionalized Ionic Polymer towards Synergistic Catalytic Cycloaddition of Carbon Dioxide into Cyclic Carbonates. Int. J. Mol. Sci. 2022, 23, 10879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, K.; Wu, L.; Zhong, H.; Luo, N.; Zhu, Y.; Tong, M.; Long, Z.; Chen, G. Silanol-Enriched Viologen-Based Ionic Porous Hybrid Polymers for Efficient Catalytic CO2 Fixation into Cyclic Carbonates under Mild Conditions. ACS Sustain. Chem. Eng. 2019, 7, 16907–16916. [Google Scholar] [CrossRef]
- Yamamoto, S.; Andersson, K.; Bluhm, H.; Ketteler, G.; Starr, D.E.; Schiros, T.; Ogasawara, H.; Pettersson, L.G.M.; Salmeron, M.; Nilsson, A. Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions. J. Phys. Chem. C 2007, 111, 7848–7850. [Google Scholar] [CrossRef]
- Zhang, W.L.; Ma, F.P.; Ma, L.; Zhou, Y.; Wang, J. Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas. ChemSusChem 2020, 19, 341–350. [Google Scholar] [CrossRef]
- Martín, C.; Fiorani, G.; Kleij, A. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5, 1353–1370. [Google Scholar] [CrossRef]
- Shaikh, R.; Pornpraprom, S.; D’Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2018, 8, 419–450. [Google Scholar] [CrossRef]
- Ding, M.L.; Jiang, H.L. One-step assembly of a hierarchically porous phenolic resin-type polymer with high stability for CO2 capture and conversion. Chem. Commun. 2016, 52, 12294–12297. [Google Scholar] [CrossRef]
- Li, H.Y.; Meng, B.; Mahurin, S.M.; Chai, S.H.; Nelson, K.M.; Baker, D.C.; Liu, H.L.; Dai, S. Carbohydrate based hyper-crosslinked organic polymers with -OH functional groups for CO2 separation. J. Mater. Chem. A 2015, 3, 20913–20918. [Google Scholar] [CrossRef]
- Jia, S.H.; Ding, X.S.; Yu, H.T.; Han, B.H. Multi-hydroxyl-containing porous organic polymers based on phenol formaldehyde resin chemistry with high carbon dioxide capture capacity. RSC Adv. 2015, 5, 71095–71101. [Google Scholar] [CrossRef]
- Peng, X.; Chen, L.; Li, Y. Ordered macroporous MOF-based materials for catalysis. Mol. Catal. 2022, 529, 112568. [Google Scholar] [CrossRef]
- Mabaleha, S.S.; Gholizadeh, F.; Kalita, P. Recent advances in Ni-based stable catalysts for methane dry reforming: Stable catalysts’ preparation review. Mol. Catal. 2023, 547, 113398. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Yu, X.; Chen, Y.; Tang, X.; Hu, T.; Shi, L.; Pudukudy, M.; Shan, S.; Zhi, Y. Cellulose nanofibers (CNF) supported (Salen)Cr(III) composite as an efficient heterogeneous catalyst for CO2 cycloaddition. Mol. Catal. 2023, 547, 113344. [Google Scholar] [CrossRef]
- Dong, X.; Yuan, S.; Aizudin, M.; Wang, X.; Zhou, Y.; Song, H.; Yu, C.; Yuan, A.; Yang, F.; Ang, E.H. Heterogeneous Reductive C-N Coupling of Nitroarenes: Remarkable Activity Reconstruction of MoS2 Basal Plane by Gradient Oxygen-injection. Appl. Surf. Sci. 2023, 624, 157152. [Google Scholar] [CrossRef]
- Yang, F.; Lu, Y.; Liu, M.; Zhong, X.; Tu, W.; Zhang, W.; Zhu, C.; Guo, Z.; Yuan, A. Carbon-framework-encapsulated CoMn2O4 spinel derived from electrospun nanofiber coupling via the photothermal approach reinforces PMS activation to eliminate 2,4-dichlorophenol. Mater. Chem. Front. 2022, 6, 2810–2825. [Google Scholar] [CrossRef]
- Dong, X.; Yang, Y.; Shen, Y.; Yuan, A.; Guo, Z.; Song, H.; Yang, F. Enabling room-temperature reductive C−N coupling of Nitroarenes: Combining homogeneous with heterogeneous synergetic catalysis mediated by light. Green Chem. 2022, 24, 4012–4025. [Google Scholar] [CrossRef]
Entry | Catalyst | DCX (mmol) | C% | H% | K c | SBET d (m2 g−1) | Smicro e (m2 g−1) | Vp f (cm3 g−1) | Dave g (nm) | Con. (%) | Sel. (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | HCPs-OH-1 | 1 | 60.5 | 3.9 | 7.8 | 300 | 414 | 0.26 | 3.50 | 70 | 99 |
2 | HCPs-OH-2 | 2 | 62.3 | 4.4 | 2.9 | 507 | 603 | 0.52 | 4.08 | 77 | 99 |
3 | HCPs-OH-3 | 3 | 64.8 | 3.9 | 2.4 | 679 | 886 | 0.67 | 4.00 | 82 | 99 |
4 | HCPs-OH-4 | 4 | 64.5 | 4.1 | 2.0 | 534 | 645 | 0.56 | 4.20 | 76 | 99 |
5 | HCPs-OH-5 | 5 | 65.8 | 3.7 | 1.6 | 582 | 680 | 0.50 | 3.40 | 75 | 99 |
6 | HCPs-OH-3 | 3 | 64.8 | 3.9 | 2.4 | 679 | 886 | 0.67 | 4.00 | 74 j | 99 |
7 | HCPs-OH-3 | 3 | 64.8 | 3.9 | 2.4 | 679 | 886 | 0.67 | 4.00 | 0 k | 0 |
8 | HCPs-BA | 3 | 68.9 | 4.0 | - | 625 | 774 | 0.54 | 4.18 | 66 | 99 |
9 h | PR | - | - | - | - | - | - | - | 62 | 99 | |
10 i | 1,3,5-THB | - | - | - | - | - | - | - | 83 | 99 | |
11 | TBAI | - | - | - | - | - | - | - | 22 | 99 |
Entry | Epoxide1 | Product 2 | t (h) | Con. (%) | Sel. (%) |
---|---|---|---|---|---|
1 | 24 | 99 | >99 | ||
2 | 48/15 b | 87/81 | >99 | ||
3 | 48/10 b | 95/86 | >99 | ||
4 | 24 | 95 | >99 | ||
5 | 120/24 b | 93/96 | >99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Ning, S.; Xu, S.; Zhang, Y.; Dong, Y.; Han, H. Tailoring Mesoporosity of Multi-Hydroxyls Hyper-Crosslinked Organic Polymers for Reinforced Ambient Chemical Fixation of CO2. Catalysts 2024, 14, 707. https://doi.org/10.3390/catal14100707
Guo Z, Ning S, Xu S, Zhang Y, Dong Y, Han H. Tailoring Mesoporosity of Multi-Hydroxyls Hyper-Crosslinked Organic Polymers for Reinforced Ambient Chemical Fixation of CO2. Catalysts. 2024; 14(10):707. https://doi.org/10.3390/catal14100707
Chicago/Turabian StyleGuo, Zengjing, Shuguang Ning, Shicheng Xu, Yongying Zhang, Yifan Dong, and Hongjing Han. 2024. "Tailoring Mesoporosity of Multi-Hydroxyls Hyper-Crosslinked Organic Polymers for Reinforced Ambient Chemical Fixation of CO2" Catalysts 14, no. 10: 707. https://doi.org/10.3390/catal14100707
APA StyleGuo, Z., Ning, S., Xu, S., Zhang, Y., Dong, Y., & Han, H. (2024). Tailoring Mesoporosity of Multi-Hydroxyls Hyper-Crosslinked Organic Polymers for Reinforced Ambient Chemical Fixation of CO2. Catalysts, 14(10), 707. https://doi.org/10.3390/catal14100707