Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Synthesis and Structure Characterization
2.2. Electrocatalytic Performance for OER
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Few-Layered Ti3CN MXene
3.3. Synthesis of LDH/MXNF
3.4. Structural Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 6438. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Du, Z.; Lai, X.; Lan, J.; Liu, X.; Liao, J.; Feng, Y.; Li, H. Synergistically modulating the electronic structure of Cr-doped FeNi LDH nanoarrays by O-vacancy and coupling of MXene for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 1892–1903. [Google Scholar] [CrossRef]
- Sun, L.; Reddu, V.; Fisher, A.C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403. [Google Scholar] [CrossRef]
- Chen, M.; Fan, Q.; Chen, K.; Majkova, E.; Huang, Q.; Liang, K. MXene materials: Pioneering sustainable energy storage solutions. Carbon Neutralization 2024, 3, 493–500. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Zeng, F.; Mebrahtu, C.; Liao, L.; Beine, A.K.; Palkovits, R. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301–329. [Google Scholar] [CrossRef]
- Trasatti, S. Electrocatalysis by oxides—Attempt at a unifying approach. J. Electroanal. Chem. Interfacial Electrochem. 1980, 111, 125–131. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Luo, J.; Matios, E.; Wang, H.; Tao, X.; Li, W. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2020, 2, 1057–1076. [Google Scholar] [CrossRef]
- Khateri, M.; Najafpour, M.M. Oxygen-Evolution Reaction on Nickel Oxyhydroxide’s Surface: Toward a Super Catalyst for Oxygen-Evolution Reaction with Ultralow Overpotentials. ACS Appl. Energy Mater. 2024, 7, 5028–5037. [Google Scholar] [CrossRef]
- Liu, S.; Wang, F.; Wang, J.; Wang, Z.; He, X.; Zhang, T.; Zhang, Z.; Liu, Q.; Liu, X.; Zhang, X. Dense heterogeneous interfaces boost the electrocatalytic oxygen evolution reaction. Appl. Catal. B Environ. Energy 2024, 355, 124148. [Google Scholar] [CrossRef]
- Gebauer, C.; Fischer, P.; Wassner, M.; Diemant, T.; Jusys, Z.; Hüsing, N.; Behm, R.J. Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction. Nano Energy 2016, 29, 136–148. [Google Scholar] [CrossRef]
- Jiang, T.; Xie, W.; Geng, S.; Li, R.; Song, S.; Wang, Y. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis. Chin. J. Catal. 2022, 43, 2434–2442. [Google Scholar] [CrossRef]
- Anne, B.R.; Kundu, J.; Kabiraz, M.K.; Kim, J.; Cho, D.; Choi, S.-I. A Review on MXene as Promising Support Materials for Oxygen Evolution Reaction Catalysts. Adv. Funct. Mater. 2023, 33, 2306100. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Shao, C.; Ke, Z.; Cheng, Y.; Jin, H.; Da, Y.; Liu, D.; Chen, W. Facet-Dependent Lattice Oxygen Activation on Oxygen-Defective Co3O4 for Electrocatalytic Oxygen Evolution Reaction. ACS Energy Lett. 2024, 9, 2182–2192. [Google Scholar] [CrossRef]
- Liao, Y.; He, R.; Pan, W.; Li, Y.; Wang, Y.; Li, J.; Li, Y. Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution. Chem. Eng. J. 2023, 464, 142669. [Google Scholar] [CrossRef]
- Lei, L.; Huang, D.; Zhou, C.; Chen, S.; Yan, X.; Li, Z.; Wang, W. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 2020, 408, 213177. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain boundary engineering: An emerging pathway toward efficient electrocatalysis. InfoMat 2024, 6, e12608. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, C.; Liu, Z.; Han, J.; Fang, Y.; Han, Y.; Niu, Y.; Wu, Y.; Sun, C.; Xu, Y. Rational Design of Hydroxyl-Rich Ti3C2Tx MXene Quantum Dots for High-Performance Electrochemical N2 Reduction. Adv. Energy Mater. 2020, 10, 2000797. [Google Scholar] [CrossRef]
- Kan, D.; Wang, D.; Zhang, X.; Lian, R.; Xu, J.; Chen, G.; Wei, Y. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations. J. Mater. Chem. A 2020, 8, 3097–3108. [Google Scholar] [CrossRef]
- Li, T.; Yan, X.; Huang, L.; Li, J.; Yao, L.; Zhu, Q.; Wang, W.; Abbas, W.; Naz, R.; Gu, J.; et al. Fluorine-free Ti3C2Tx (T = O, OH) nanosheets (∼50–100 nm) for nitrogen fixation under ambient conditions. J. Mater. Chem. A 2019, 7, 14462–14465. [Google Scholar] [CrossRef]
- Xiu, L.; Wang, Z.; Yu, M.; Wu, X.; Qiu, J. Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano 2018, 128, 8017–8028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-Q.; Xie, X.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cui, L.; Abdolhosseinzadeh, S.; Heier, J. Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2020, 2, 613–638. [Google Scholar] [CrossRef]
- Li, M.; Fan, Q.; Gao, L.; Liang, K.; Huang, Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. Adv. Mater. 2024, 36, 2312918. [Google Scholar] [CrossRef]
- Liang, K.; Tabassum, A.; Majed, A.; Dun, C.; Yang, F.; Guo, J.; Prenger, K.; Urban, J.J.; Naguib, M. Synthesis of new two-dimensional titanium carbonitride TiC0.5N0.5Tx MXene and its performance as an electrode material for sodium-ion battery. InfoMat 2021, 3, 1422–1430. [Google Scholar] [CrossRef]
- Zong, H.; Hu, L.; Gong, S.; Yu, K.; Zhu, Z. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution. Electrochim. Acta 2022, 404, 139781. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, Y.; Li, S.; Wang, X.; Ying, G.; Xia, Q.; Zhang, P. From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. J. Adv. Ceram. 2021, 10, 1194–1242. [Google Scholar] [CrossRef]
- Jin, S.; Guo, Y.; Wang, F.; Zhou, A. The synthesis of MXenes. MRS Bull. 2023, 48, 245–252. [Google Scholar] [CrossRef]
- Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P.O.Å.; Eklund, P.; et al. Chemical scissor–mediated structural editing of layered transition metal carbides. Science 2023, 379, 1130–1135. [Google Scholar] [CrossRef]
- Liang, K.; Wu, T.; Misra, S.; Dun, C.; Husmann, S.; Prenger, K.; Urban, J.J.; Presser, V.; Unocic, R.R.; Jiang, D.-E.; et al. Nitrogen-Doped Graphene-Like Carbon Intercalated MXene Heterostructure Electrodes for Enhanced Sodium- and Lithium-Ion Storage. Adv. Sci. 2024, 11, 2402708. [Google Scholar] [CrossRef] [PubMed]
- Kan, D.; Lian, R.; Wang, D.; Zhang, X.; Xu, J.; Gao, X.; Yu, Y.; Chen, G.; Wei, Y. Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. J. Mater. Chem. A 2020, 8, 17065–17077. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Y. Vacancy and N dopants facilitated Ti3+ sites activity in 3D Ti3-xC2Ty MXene for electrochemical nitrogen fixation. Appl. Catal. B Environ. 2021, 297, 120482. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Q.; Tian, Y.; Ren, X.; Li, C.; Zu, Y.; Din, S.Z.U.; Gao, L.; Wu, J.; Chen, H.; et al. Few-layer Ti3CN MXene for ultrafast photonics applications in visible band. J. Mater. 2023, 9, 44–55. [Google Scholar] [CrossRef]
- Guo, W.; She, Z.; Xue, H.; Zhang, X. Density functional theory study on the Ti3CN and Ti3CNT2 (T = O, S and F) as high capacity anode material for Na ion batteries. Appl. Surf. Sci. 2020, 529, 147180. [Google Scholar] [CrossRef]
- Cao, S.; Huang, H.; Shi, K.; Wei, L.; You, N.; Fan, X.; Yang, Z.; Zhang, W. Engineering superhydrophilic/superaerophobic hierarchical structures of Co-CH@NiFe-LDH/NF to boost the oxygen evolution reaction. Chem. Eng. J. 2021, 422, 130123. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, D.; Chen, G.; Zhang, N.; Wan, H.; Liu, X.; Ma, R. Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon Energy 2022, 4, 901–913. [Google Scholar] [CrossRef]
- Gu, Y.; Park, D.-H.; Kim, M.-H.; Byeon, J.-H.; Lim, D.-M.; Park, S.-H.; Kim, J.-H.; Jang, J.-S.; Park, K.-W. NiFe layered double hydroxides synthesized based on solvent properties as anode catalysts for enhanced oxygen evolution reaction. Chem. Eng. J. 2024, 480, 147789. [Google Scholar] [CrossRef]
- Ko, Y.-J.; Han, M.H.; Kim, H.; Kim, J.-Y.; Lee, W.; Kim, J.; Kwak, J.Y.; Kim, C.-H.; Park, T.-E.; Yu, S.-H.; et al. Unraveling Ni-Fe 2D nanostructure with enhanced oxygen evolution via in situ and operando spectroscopies. Chem Catal. 2022, 2, 2312–2327. [Google Scholar] [CrossRef]
- Xiang, Y.; He, Y.; Zhang, W.; Li, B.; Li, H.; Wang, Y.; Yin, X.; Tang, W.; Li, Z.; He, Z. Superhydrophobic LDH/TTOS composite surface based on microstructure for the anti-corrosion, anti-fouling and oil-water separation application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126558. [Google Scholar] [CrossRef]
- Chenakin, S.; Kruse, N. XPS characterization of transition metal oxalates. Appl. Surf. Sci. 2020, 515, 146041. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, Y.; Chu, W.; Liu, Z. Tailoring surface and interface electronic structure of NiFe LDH via V doping for enhanced oxygen evolution reaction. J. Alloys Compd. 2021, 885, 160929. [Google Scholar] [CrossRef]
- Huang, K.; Dong, R.; Wang, C.; Li, W.; Sun, H.; Geng, B. Fe–Ni Layered Double Hydroxide Arrays with Homogeneous Heterostructure as Efficient Electrocatalysts for Overall Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 15073–15079. [Google Scholar] [CrossRef]
- Li, X.-P.; Han, W.-K.; Xiao, K.; Ouyang, T.; Li, N.; Peng, F.; Liu, Z.-Q. Enhancing hydrogen evolution reaction through modulating electronic structure of self-supported NiFe LDH. Catal. Sci. Technol. 2020, 10, 4184–4190. [Google Scholar] [CrossRef]
- Hao, N.; Wei, Y.; Wang, J.; Wang, Z.; Zhu, Z.; Zhao, S.; Han, M.; Huang, X. In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Adv. 2018, 8, 20576–20584. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Wei, X.; Wang, H.; Wu, Y.; Wen, J.; Gu, W.; Zhu, C. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chem. Eng. J. 2020, 398, 125605. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, Y.; Jiao, F.; Li, J.; Wang, J.; Gong, Y. In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting. J. Energy Chem. 2020, 49, 189–197. [Google Scholar] [CrossRef]
- Su, C.; Wang, D.; Wang, W.; Mitsuzaki, N.; Shao, R.; Xu, Q.; Chen, Z. Rational design of bimetallic metal-organic framework derived three-dimensional flower-like and porous NiCoFe LDH/NF electrocatalyst for electrochemical overall water splitting. J. Electroanal. Chem. 2024, 960, 118167. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Liu, W.; Xu, L.; Guan, M.; Huang, Y.; Zhao, Y.; Bao, J.; Li, H.-M. Novel Cobalt–Iron–Vanadium Layered Double Hydroxide Nanosheet Arrays for Superior Water Oxidation Performance. ACS Sustain. Chem. Eng. 2019, 7, 16828–16834. [Google Scholar] [CrossRef]
- Gupta, A.; Sadhanala, H.K.; Gedanken, A. Iron doped cobalt nickel layered double hydroxide supported on nickel foam as a robust electrocatalyst for highly efficient water oxidation in alkaline sea water. Electrochim. Acta 2023, 470, 143269. [Google Scholar] [CrossRef]
- Ullah, S.; Ahmed, W.; Zeeshan, M.; Hu, S.; Zhang, X. Integral 2D/3D structured CoSnO3@MXene/NF as a highly active and stable bifunctional electrocatalyst for alkaline water splitting. Int. J. Hydrogen Energy 2024, 70, 448–460. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, P.; Li, P.; Tang, M.; Yin, H.; Wang, D. A highly efficient and durable self-standing iron-cobalt-nickel trimetallic phosphide electrode for oxygen evolution reaction. J. Alloys Compd. 2023, 960, 170493. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; She, X.; Pan, L.; Xi, C.; Wang, D.; Yi, J.; Yang, J. Ni-modified FeOOH integrated electrode by self-source corrosion of nickel foam for high-efficiency electrochemical water oxidation. J. Colloid Interface Sci. 2023, 652, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Park, S.; Kwon, T.; Kwon, M.; Yuk, S.; Kim, S.; Yeon, C.; Lee, C.-W.; Lee, D. Interface Engineering via Ti3C2Tx MXene Enabled Highly Efficient Bifunctional NiCoP Array Catalysts for Alkaline Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 34798–34808. [Google Scholar]
- Chen, J.; Liu, C.; Ren, W.; Sun, J.; Zhang, Y.; Zou, L. Synergistic effect of NF and rGO in preparing 3D NiFe-LDH/rGO@NF composites on electrocatalysts performance. J. Alloys Compd. 2022, 901, 163510. [Google Scholar] [CrossRef]
- Shen, B.; Feng, Y.; Wang, Y.; Sun, P.; Yang, L.; Jiang, Q.; He, H.; Huang, H. Holey MXene nanosheets intimately coupled with ultrathin Ni–Fe layered double hydroxides for boosted hydrogen and oxygen evolution reactions. Carbon 2023, 212, 118141. [Google Scholar] [CrossRef]
- Wang, X.; Wang, N.; Zhou, X.; Yue, Z.; Shan, Y.; Chen, K.; Yu, X. MXene introduced between CoNi LDH and NiMoO4 nanorods arrays: A bifunctional multistage composite for OER catalyst and supercapacitors. Int. J. Hydrogen Energy 2024, 86, 719–729. [Google Scholar] [CrossRef]
- Zuo, W.; Lan, X.; Lv, G.; Yang, C.; Lan, P.; Peng, B.; Liu, P.; Li, K. Sulfur and Phosphorus Co-Doped CoFeLDH/MXene Nanoarray Electrocatalyst for the Oxygen Evolution Reaction. ACS Appl. Nano Mater. 2024, 7, 11599–11608. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Zhou, Q.; Li, X.; Zhao, D.; Ding, B.; Wang, S. Ti3C2 mediates the NiFe-LDH layered electrocatalyst to enhance the OER performance for water splitting. Heliyon 2024, 10, e30966. [Google Scholar] [CrossRef]
- Liang, K.; Tabassum, A.; Kothakonda, M.; Zhang, X.; Zhang, R.; Kenney, B.; Koplitz, B.D.; Sun, J.; Naguib, M. Two-dimensional titanium carbonitride MXene as a highly efficient electrocatalyst for hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100075. [Google Scholar] [CrossRef]
- Liang, K.; Guo, L.; Marcus, K.; Zhang, S.; Yang, Z.; Perea, D.E.; Zhou, L.; Du, Y.; Yang, Y. Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films. ACS Catal. 2017, 7, 8406–8412. [Google Scholar] [CrossRef]
Catalyst | jgeo (mA cm−2) | η (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|
1.0-LDH/3MXNF | 100 | 247 | 67.7 | This Work |
NiFe-LDH/NF | 50 | 306 | 143.1 | [43] |
NiFeAu-LDH/NF | 100 | 267 | 58 | [44] |
MXene/TiO2/NiFeCo-LDH | 10 | 320 | 98.4 | [45] |
NiCo-LDH/MXene/NF | 100 | 257.4 | 68 | [46] |
Mo-Ni2P@NiFe LDH/NF | 40 | 269 | 44 | [47] |
NiCoFe-LDH/NF | 50 | 233 | 29.39 | [48] |
CoFeV-LDH/NF | 100 | 330 | 57 | [49] |
Fe0.05CoNi-LDH/NF | 10 | 212 | 48 | [50] |
CoSnO3@MX/NF | 100 | 321 | 101 | [51] |
FeCoNi-P/NF | 10 | 239 | 55.87 | [52] |
Ni-FeOOH/NF | 100 | 277 | 52 | [53] |
NCP-MX/NF | 50 | 303 | 69.5 | [54] |
NiFe-LDH/rGO@NF | 50 | 277 | 59.9 | [55] |
Cr-FeNi LDH/MXene | 10 | 232 | 54.4 | [2] |
LDH/H-Ti3C2Tx | 100 | 364 | 47 | [56] |
CoNi-LDH/MXene@NiMoO4/NF | 100 | 220 | 84.2 | [57] |
S,P-CoFeLDH/MXene | 10 | 305 | 39 | [58] |
NiFe-LDH/Ti3C2 | 10 | 334 | 55 | [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Tang, Q.; Fan, Q.; Zhuang, H.; Wang, S.; Pang, Y.; Liang, K. Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction. Catalysts 2024, 14, 708. https://doi.org/10.3390/catal14100708
He L, Tang Q, Fan Q, Zhuang H, Wang S, Pang Y, Liang K. Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction. Catalysts. 2024; 14(10):708. https://doi.org/10.3390/catal14100708
Chicago/Turabian StyleHe, Lei, Qing Tang, Qi Fan, Haizheng Zhuang, Shengchao Wang, Yifan Pang, and Kun Liang. 2024. "Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction" Catalysts 14, no. 10: 708. https://doi.org/10.3390/catal14100708
APA StyleHe, L., Tang, Q., Fan, Q., Zhuang, H., Wang, S., Pang, Y., & Liang, K. (2024). Vertically Ti3CN@NiFe LDH Nanoflakes as Self-Standing Catalysts for Enhanced Oxygen Evolution Reaction. Catalysts, 14(10), 708. https://doi.org/10.3390/catal14100708