Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photodegradation of Herbicides by UV, Na2S2O8 and UV/Na2S2O8
2.2. Comparing UV/TiO2 and UV/Na2S2O8 Efficiencies
2.3. Effect of Inorganic Anion Content on Herbicide Photodegradation Using UV/Na2S2O8
2.4. Degradation Pathway of Herbicides with UV/Na2S2O8
3. Materials and Methods
3.1. Herbicides, Solvents, and Reagents
3.2. Experimental Setup
3.3. Sample Preparation and Analytical Determinations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EU. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community action to achieve the sustainable use of pesticides. Off. J. Eur. Union 2009, L309, 71–86. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0128 (accessed on 15 February 2024).
- EC. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—The European Green Deal, COM/2019/640. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 15 February 2024).
- EU. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Union 2000, L327, 1–73. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 15 February 2024).
- EU. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2006, L372, 19–31. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0118 (accessed on 15 February 2024).
- EU. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF (accessed on 15 February 2024).
- EU. Proposal for a Directive of the European Parliament and of the Council amending Directive 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy, Directive 2006/118/EC on the Protection of Groundwater against Pollution and Deterioration and Directive 2008/105/EC on Environmental Quality Standards in the Field of Water Policy. COM/2022/540. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0540 (accessed on 15 February 2024).
- EU. EU Parliament Council Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast). Off. J. Eur. Union 2020, L435, 1–62. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184 (accessed on 15 February 2024).
- EU. Council Directive of 21 May 1991 concerning urban wastewater treatment (91/271/EEC). Off. J. Eur. Union 1991, L135, 40–91. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0271 (accessed on 15 February 2024).
- EEA. European Waters—Assessment of Status and Pressures 2018; EEA Report No 7/2018; European Environment Agency: Copenhagen, Denmark, 2018; Available online: https://www.eea.europa.eu/publications/state-of-water/ (accessed on 20 February 2024).
- Mohaupt, V.; Völker, J.; Altenburger, R.; Birk, S.; Kirst, I.; Kühnel, D.; Küster, E.; Semeradova, S.; Šubelj, G.; Whalley, C. Pesticides in European Rivers, Lakes and Groundwaters—Data Assessment. European Topic Centre on Inland, Coastal and Marine Waters; Technical Report 1/2020; European Environment Agency: Magdeburg, Germany, 2020. [Google Scholar] [CrossRef]
- Serrano-Valera, M.; Vela, N.; Piuvezam, G.; Mateo-Ramírez, F.; Santiago-Fernandes, I.D.; Martínez-Alcalá, I. Prevalence and concentration of pesticides in European waters: A protocol for systematic review and meta-analysis. PLoS ONE 2024, 19, e0282386. [Google Scholar] [CrossRef]
- EC. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast). SWD/2022/541. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022SC0541 (accessed on 15 February 2024).
- Parida, V.K.; Saidulu, D.; Majumder, A.; Srivastava, A.; Gupta, B.; Gupta, A.K. Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. J. Environ. Chem. Eng. 2021, 9, e105966. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on minimum requirements for water reuse. Off. J. Eur. Union 2020, L177, 32–55. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741 (accessed on 15 February 2024).
- Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Sci. Total Environ. 2018, 615, 297–306. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, W.; Zhang, Z.; Hao, T. Aerobic granular sludge (AGS) scouring to mitigate membrane fouling: Performance, hydrodynamic mechanism and contribution quantification model. Water Res. 2021, 188, e116518. [Google Scholar] [CrossRef] [PubMed]
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water 2021, 13, e181. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, e141990. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.P. Advanced Oxidation Processes for Effluent Treatment Plants; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Soto-Verjel, J.; Maturana, A.Y.; Villamizar, S.E. Advanced catalytic oxidation coupled to biological systems to treat pesticide contaminated water: A review on technological trends and future challenges. Water Sci. Technol. 2022, 85, 1263–1294. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Augugliaro, V.; Palmisano, G.; Palmisano, L.; Soria, J. Heterogeneous photocatalysis and catalysis: An overview of their distinctive features. In Heterogeneous Photocatalysis; Marcì, G., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photoactivated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, e122149. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- Brillas, E. Activation of persulfate and peroxymonosulfate for the removal of herbicides from synthetic and real waters and wastewaters. J. Environ. Chem. Eng. 2023, 11, e110380. [Google Scholar] [CrossRef]
- Olmez-Hanci, T.; Arslan-Alaton, I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol. Chem. Eng. J. 2013, 224, 10–16. [Google Scholar] [CrossRef]
- Oh, W.D.; Dong, Z.; Lim, T.T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. App. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Huang, X.; Wang, L.; Liu, X.; Zhou, Z.; Wang, Y.; Lin, C.; He, M.; Ouyang, W. Degradation of simazine by heat-activated peroxydisulfate process: A coherent study on kinetics, radicals and models. Chem. Eng. J. 2021, 426, e131876. [Google Scholar] [CrossRef]
- Serrano, K.G. Indirect Electrochemical Oxidation Using Hydroxyl Radical, Active Chlorine, and Peroxodisulfate. In Electrochemical Water and Wastewater Treatment; Martínez-Huitle, C.A., Rodrigo, M.A., Scialdone, O., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Ribeiro, A.R.L.; Moreira, N.F.F.; Li Puma, G.; Silva, A.M.T. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chem. Eng. J. 2019, 363, 155–173. [Google Scholar] [CrossRef]
- Orellana-Garcia, F.; Alvarez, M.A.; Lopez-Ramon, V.; Rivera-Utrilla, J.; Sanchez-Polo, M.; Mota, A.J. Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry. Chem. Eng. J. 2014, 255, 307–315. [Google Scholar] [CrossRef]
- ECHA. Proposal for Harmonized Classification and Labeling; CLH-227-637-9 Report for Terbuthylazine; European Chemicals Agency: Merseyside, UK, 2014; Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.025.125 (accessed on 20 March 2024).
- Lin, C.C.; Wu, M.S. UV/S2O82− process for degrading polyvinyl alcohol in aqueous solutions. Chem. Eng. Process. 2014, 85, 209–215. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and kinetics analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16, 8751–8760. [Google Scholar] [CrossRef]
- Nafradi, M.; Alapi, T.; Bencsik, G.; Janaky, C. Impact of reaction parameters and water matrices on the removal of organic pollutants by TiO2/LED and ZnO/LED heterogeneous photocatalysis using 365 and 398 nm radiation. Nanomaterials 2022, 12, e5. [Google Scholar] [CrossRef]
- Mack, J.; Bolton, J.R. Photochemistry of nitrite and nitrate in aqueous solution: A review. J. Photochem. Photobiol. A Chem. 1999, 128, 1–13. [Google Scholar] [CrossRef]
- Ghauch, A.; Baalbaki, A.; Amasha, M.; El Asmar, R.; Tantawi, O. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water. Chem. Eng. J. 2017, 317, 1012–1025. [Google Scholar] [CrossRef]
- Lin, C.C.; Wu, M.S. Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor. J. Photochem. Photobiol. A Chem. 2014, 285, 1–6. [Google Scholar] [CrossRef]
- Cabrera-Reina, A.; Aliste, M.; Polo-López, M.I.; Malato, S.; Oller, I. Individual and combined effect of ions species and organic matter on the removal of microcontaminants by Fe3+-EDDS/solar-light activated persulfate. Water Res. 2023, 230, e119566. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Armstrong, D.A.; Huie, R.E.; Koppenol, W.H.; Lymar, S.V.; Merényi, G.; Neta, P.; Ruscic, B.; Stanbury, D.M.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1139–1150. [Google Scholar] [CrossRef]
- Bennedsen, L.R.; Muff, J.; Søgaard, E.G. Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere 2012, 86, 1092–1097. [Google Scholar] [CrossRef]
- Canonica, S.; Kohn, T.; Mac, M.; Real, F.J.; Wirz, J.; von Gunten, U. Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ. Sci. Technol. 2005, 39, 9182–9188. [Google Scholar] [CrossRef]
- Acero, J.L.; Benítez, F.J.; Real, F.J.; Rodríguez, E. Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents. Sep. Purif. Technol. 2018, 201, 41–50. [Google Scholar] [CrossRef]
- Lebik-Elhadi, H.; Frontistis, Z.; Ait-Amar, H.; Madjene, F.; Mantzavinos, D. Degradation of pesticide thiamethoxam by heat–activated and ultrasound–activated persulfate: Effect of key operating parameters and the water matrix. Process Saf. Environ. Prot. 2020, 134, 197–207. [Google Scholar] [CrossRef]
- Sbardella, L.; Gala, I.V.; Comas, J.; Layret, R.R.; Gernjak, W. The impact of wastewater matrix on the degradation of pharmaceutically active compounds by oxidation processes including ultraviolet radiation and sulfate radicals. J. Hazard. Mater. 2019, 380, e120869. [Google Scholar] [CrossRef]
- Lin, C.C.; Lee, L.T.; Hsu, L.J. Performance of UV/S2O82− process in degrading polyvinyl alcohol in aqueous solutions. J. Photochem. Photobiol. A Chem. 2013, 252, 1–7. [Google Scholar] [CrossRef]
- Manaham, S.E. Environmental Chemistry, 9th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Zuo, Z.; Cai, Z.; Katsumura, Y.; Chitose, N.; Muroya, Y. Reinvestigation of the acid−base equilibrium of the (bi) carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat. Phys. Chem. 1999, 55, 15–23. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Jiang, X.; Xie, Z.; Li, X.; Chen, C.; Chen, H. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere 2018, 190, 296–306. [Google Scholar] [CrossRef]
- Xiao, R.; Meng, Y.; Fu, Y.; Wacławek, S.; Wei, Z.; Spinney, R.; Dionysiou, D.; Hu, W.P. The overlooked carbonate radical in micropollutant degradation: An insight into hydration interaction. Chem. Eng. J. 2023, 474, e145245. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Bazinet, L. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Adv. Colloid Interface Sci. 2016, 229, 34–56. [Google Scholar] [CrossRef]
- Haghsheno, R.; Mohebbi, A.; Hashemipour, H.; Sarraf, A. Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin. J. Hazard. Mater. 2009, 166, 961–966. [Google Scholar] [CrossRef]
- Roberts, T.; Hutson, D. Metabolic Pathways of Agrochemicals. In Part One: Herbicides and Plant Growth Regulators; The Royal Society of Chemistry: Cambridge, UK, 1998. [Google Scholar]
- Haque, M.M.; Muneer, M. Heterogeneous photocatalyzed degradation of an herbicide derivative, isoproturon in aqueous suspension of titanium dioxide. J. Environ. Manag. 2003, 69, 169–176. [Google Scholar] [CrossRef]
- Fenoll, J.; Sabater, P.; Navarro, G.; Pérez-Lucas, G.; Navarro, S. Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: Intermediates and degradation pathways. J. Hazard. Mater. 2013, 244, 370–379. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellin, P.; Martinez, C.M.; Flores, P.; Navarro, S. Semiconductor-sensitized photodegradation of s-triazine and chloroacetanilide herbicides in leaching water using TiO2 and ZnO as catalyst under natural sunlight. J. Photochem. Photobiol. A Chem. 2012, 238, 81–87. [Google Scholar] [CrossRef]
- Vela, N.; Fenoll, J.; Garrido, I.; Navarro, G.; Gambín, M.; Navarro, S. Photocatalytic mitigation of triazinone herbicide residues using titanium dioxide in slurry photoreactor. Catal. Today 2015, 252, 70–77. [Google Scholar] [CrossRef]
Anion | Terbuthylazine (TBZ) | Isoproturon (ISP) | ||||||
---|---|---|---|---|---|---|---|---|
R | 1 k | 2 Sy/x | 3 DT50 | R | 1 k | 2 Sy/x | 3 DT50 | |
UV/PS | 0.9952 | 0.1257 | 0.03 | 5.5 | 0.9953 | 0.1267 | 0.03 | 5.5 |
UV/PS/SO4= | 0.9755 | 0.1287 | 0.08 | 5.4 | 0.9917 | 0.1672 | 0.04 | 4.1 |
UV/PS/HCO3− | 0.9963 | 0.0175 | 0.02 | 40 | 0.9875 | 0.0844 | 0.05 | 8.2 |
UV/PS/Cl− | 0.9829 | 0.0307 | 0.06 | 23 | 0.9961 | 0.1284 | 0.03 | 5.4 |
UV/PS/SO4= + HCO3− + Cl− | 0.9755 | 0.0054 | 0.03 | 128 | 0.9979 | 0.0849 | 0.03 | 8.2 |
Time (min) | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trial | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 6.70 | 6.74 | 5.09 | 5.11 | 5.04 | 5.33 | 4.69 | 8.29 | 5.20 | 8.39 |
5 | 6.53 | 6.56 | 4.97 | 5.02 | 5.00 | 5.15 | 4.60 | 8.20 | 4.79 | 8.36 |
15 | 6.42 | 6.41 | 4.81 | 4.88 | 4.84 | 4.93 | 4.46 | 8.23 | 4.46 | 8.39 |
30 | 6.29 | 6.33 | 4.58 | 4.60 | 4.64 | 4.84 | 4.29 | 8.24 | 4.20 | 8.40 |
60 | 6.15 | 6.19 | 4.23 | 4.34 | 4.38 | 4.75 | 4.01 | 8.21 | 3.93 | 8.35 |
120 | 6.07 | 6.14 | 3.86 | 3.88 | 3.95 | 4.61 | 3.77 | 8.07 | 3.66 | 8.25 |
Time (min) | EC (µS cm−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trial | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | <5 | <5 | 242 | 238 | 242 | <5 | 760 | 377 | 610 | 1200 |
5 | <5 | <5 | 248 | 245 | 249 | 7 | 764 | 380 | 620 | 1234 |
15 | <5 | <5 | 255 | 252 | 254 | 10 | 769 | 383 | 644 | 1253 |
30 | <5 | <5 | 261 | 263 | 260 | 12 | 773 | 386 | 662 | 1259 |
60 | <5 | <5 | 273 | 270 | 266 | 18 | 795 | 389 | 674 | 1262 |
120 | <5 | <5 | 285 | 287 | 280 | 23 | 825 | 395 | 700 | 1265 |
Herbicide 1 | Structure | Formula | MW 2 | SH2O 3 | log Kow 4 | H 5 |
---|---|---|---|---|---|---|
IsoproturonPU | C12H18N2O | 206.3 | 70 | 2.5 | 1.5 × 10−5 | |
TerbuthylazineTZ | C9H16ClN5 | 229.7 | 7 | 3.4 | 2.3 × 10−3 |
Trials | pH | a EC | b SO4= | b Cl− | b HCO3− | |
---|---|---|---|---|---|---|
1 | UV (1 × 254 nm + 1 × 366 nm) | 6.7 | <5 | - | - | - |
2 | UV (2 × 366 nm) | 6.7 | <5 | - | - | - |
3 | Na2S2O8 | 5.1 | 240 | - | - | - |
4 | Na2S2O8/UV (254/366 nm) | 5.1 | 242 | - | - | - |
5 | Na2S2O8/UV (366 nm) | 5.0 | 246 | - | - | - |
6 | TiO2/UV (366 nm) | 5.3 | <5 | - | - | - |
7 | Na2S2O8/UV (366 nm) | 4.7 | 760 | 250 | - | - |
8 | Na2S2O8/UV (366 nm) | 8.3 | 377 | - | - | 125 |
9 | Na2S2O8/UV (366 nm) | 5.2 | 610 | - | 150 | - |
10 | Na2S2O8/UV (366 nm) | 8.4 | 1200 | 250 | 150 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Lucas, G.; Campillo, A.; Navarro, S. Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation. Catalysts 2024, 14, 376. https://doi.org/10.3390/catal14060376
Pérez-Lucas G, Campillo A, Navarro S. Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation. Catalysts. 2024; 14(6):376. https://doi.org/10.3390/catal14060376
Chicago/Turabian StylePérez-Lucas, Gabriel, Aitor Campillo, and Simón Navarro. 2024. "Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation" Catalysts 14, no. 6: 376. https://doi.org/10.3390/catal14060376
APA StylePérez-Lucas, G., Campillo, A., & Navarro, S. (2024). Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation. Catalysts, 14(6), 376. https://doi.org/10.3390/catal14060376