Recent Advances in Photocatalytic Treatment of Pollutants in Water

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Photocatalysis".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 8241

Special Issue Editors


E-Mail Website
Guest Editor
National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Interests: photocatalysis; photocatalytic environmental purification; photocatalytic organic synthesis; development of photocatalytic nanomaterials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Interests: Fenton-like photocatalysis; detection of organic pollutants and degradation products; integration of advanced oxidation technologies and biological processes for industrial wastewater treatment; advanced treatment of water and wastewater
National & Local Joint Engineering Research Center for Textile Fiber Materials and Processing Technology, College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Interests: synthesis of nanoporous photocatalysts; photocatalytic hydrogen production; microsphere-nanofiber composites; biomimetic catalytic structure; organic pollutants and wastewater treatment
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Organic pollutants are widely dispersed in industrial wastewater and have caused widespread environmental concerns. Photocatalysis has been a hotspot of research as an environmentally benign, low-cost and highly efficient approach to the decomposition of organic pollutants.

This Special Issue of Catalysts will cover the recent advancements in photocatalyst development, water environmental remediation applications, industrial wastewater treatment, reaction mechanisms, and modeling processes for water decontamination. The Guest Editors encourage submissions in the following areas:

  • The development of photocatalytic materials;
  • Photocatalytic-based process degradation of emerging contaminants in wastewater;
  • Wastewater recycling and repurposing via photocatalysts;
  • Disinfection and decontamination via advanced oxidation processes (photocatalysis-, ozone, UV, H2O2 and PMS-based processes);
  • Photocatalytic degradation processes and intermediates of emerging contaminants in wastewater.

If you would like to submit papers for publication in this Special Issue or have any questions, please contact the in-house editor, Mr. Ives Liu ([email protected]).

Dr. Xiufang Chen
Dr. Zhexin Zhu
Dr. Yinsong Si
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalytic nanomaterial
  • advanced oxidation technology
  • environmental photocatalysis
  • degradation mechanism
  • wastewater treatment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 7280 KiB  
Article
Photocatalytic Degradation of Tetracycline Hydrochloride Using TiO2/CdS on Nickel Foam Under Visible Light and RSM–BBD Optimization
by Kefu Zhu, Lizhe Ma, Jieli Duan, Zhiyong Fang and Zhou Yang
Catalysts 2025, 15(2), 113; https://doi.org/10.3390/catal15020113 - 24 Jan 2025
Viewed by 436
Abstract
This study investigates the photocatalytic degradation of tetracycline hydrochloride (TCH) using a TiO2/CdS composite nanocatalyst synthesized on flexible nickel foam via a dipping–pull method. By comparing the photocatalytic degradation of TCH by TiO2/CdS with different precursor ratios, it was [...] Read more.
This study investigates the photocatalytic degradation of tetracycline hydrochloride (TCH) using a TiO2/CdS composite nanocatalyst synthesized on flexible nickel foam via a dipping–pull method. By comparing the photocatalytic degradation of TCH by TiO2/CdS with different precursor ratios, it was found that TiO2/CdS-1.43% exhibited better photocatalytic degradation performance. The X-ray diffraction (XRD) pattern of the TiO2/CdS composite retains the characteristic peaks of both TiO2 and CdS, indicating the successful formation of the composite. According to the analysis of ultraviolet–visible spectroscopy (UV–Vis), the absorption edge of TiO2/CdS is approximately 530 nm. The transmission electron microscopy (TEM) images show Cd and S evenly, densely distributed in TiO2/CdS, further validating its successful synthesis. X-ray photoelectron spectroscopy (XPS) analysis reveals that Cd and Ti elements exist in the forms of Cd2+ and Ti4+, respectively. TiO2/CdS loading uniformity on the nickel foam was assessed using super-depth microscopy. The removal efficiency of 10 L of 20 mg/L TCH solution achieved 53.89%, respectively, under response surface methodology—Box–Behnken design (RSM–BBD) optimal conditions (28 g catalyst, 325 rpm, pH = 9.04 within 150 min). Furthermore, five successive cycling experiments demonstrated strong stability, with a catalyst loss of only 4.44%. Finally, free radical scavenging experiments revealed that ·O2 radicals are the primary active species. This study highlights the potential of TiO2/CdS composites supported on nickel foam for efficient photocatalytic degradation of antibiotic pollutants in water. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Figure 1

17 pages, 29705 KiB  
Article
Boosting the Efficiency of Titanium Oxides and Accelerating Industrial Pollutant Removal Through Triple-Action Effects to Purify Water by Light
by Osama Saber, Chawki Awada, Aya Osama, Nagih M. Shaalan, Adil Alshoaibi, Shehab A. Mansour, Mostafa Osama and Ashraf H. Farha
Catalysts 2024, 14(11), 772; https://doi.org/10.3390/catal14110772 - 31 Oct 2024
Viewed by 674
Abstract
Water is the source of life on Earth. Therefore, water pollution is one of the greatest problems in the world. On this basis, the current study focuses on accelerating industrial pollutant removal from water using light by designing effective photocatalysts. This target was [...] Read more.
Water is the source of life on Earth. Therefore, water pollution is one of the greatest problems in the world. On this basis, the current study focuses on accelerating industrial pollutant removal from water using light by designing effective photocatalysts. This target was achieved through a triple-action effect. This effect depends on the integration of the doping process with nanotube formation in addition to the surface plasmon resonance of gold for titanium oxides. In this way, titanium oxide nanoparticles were prepared and converted to nanotubes during the doping process. These nanoparticles and nanotubes were supported by gold nanoparticles to use this triple-action effect for increasing charge carriers and active sites of the photocatalysts and preventing recombination reactions. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), Raman spectra, energy-dispersive X-ray spectrometer (EDX), and X-ray diffraction were used to clarify the triple-action effect on the structure of the photocatalysts. The optical properties and activity of the prepared photocatalysts were studied in terms of the photocatalytic degradation of the green dyes (acid green 1). The experimental results indicated that the triple-action effect has a strong positive role in increasing industrial pollutant removal with or without light. Here, the percentage of photocatalytic decomposition reached 100% after 17 min of light radiation. In addition, 27% of the pollutants were removed without light radiation. In conclusion, the current study indicated that the triple-action effect could solve the drawbacks of titanium oxide by creating new photo-active sites and novel tracks for charge carriers in addition to preventing recombination reactions. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Figure 1

19 pages, 20779 KiB  
Article
TiO2 Catalysts Co-Modified with Bi, F, SnO2, and SiO2 for Photocatalytic Degradation of Rhodamine B Under Simulated Sunlight
by Lu Qiu, Hanliang Li, Wenyi Xu, Rongshu Zhu and Feng Ouyang
Catalysts 2024, 14(10), 735; https://doi.org/10.3390/catal14100735 - 20 Oct 2024
Viewed by 953
Abstract
The organic pollutants discharged from industrial wastewater have caused serious harm to human health. The efficient photocatalytic degradation of organic pollutants under sunlight shows promise for industrial applications and energy utilization. In this study, a modified TiO2 photocatalyst doped with bismuth (Bi) [...] Read more.
The organic pollutants discharged from industrial wastewater have caused serious harm to human health. The efficient photocatalytic degradation of organic pollutants under sunlight shows promise for industrial applications and energy utilization. In this study, a modified TiO2 photocatalyst doped with bismuth (Bi) and fluorine (F) and composited with SnO2 and SiO2 was prepared, and its performance for the degradation of Rhodamine B (RhB) under simulated sunlight was evaluated. Through the optimization of the doping levels of Bi and F, as well as the ratio of SnO2 and SiO2 to TiO2, the optimal catalyst reached degradation efficiency of 100% for RhB within 20 min under simulated sunlight, with a first-order reaction rate constant of 0.291 min−1. This value was 15, 41, 6.5, and 3.3 times higher than those of TiO2/SnO2, Bi/TiO2, Bi-TiO2/SnO2, and F/Bi-TiO2/SnO2, respectively. The active species detection showed that h+ was the most crucial active species in the process. The role of Bi and F addition and SnO2-SiO2 compositing was investigated by characterization. Bi formed a chemical bonding with TiO2 by doping into TiO2. The absorbance intensity in the UV and visible light regions was improved by SnO2 and F modification. Composite with SiO2 led to a larger surface area that allowed for more RhB adsorption sites. These beneficial modifications greatly enhanced the photocatalytic activity of the catalyst. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Graphical abstract

14 pages, 6798 KiB  
Article
Interstitial N-Doped TiO2 for Photocatalytic Methylene Blue Degradation under Visible Light Irradiation
by Dezheng Li, Vilanculo Clesio Calebe, Yuqiao Li, Huimin Liu and Yiming Lei
Catalysts 2024, 14(10), 681; https://doi.org/10.3390/catal14100681 - 1 Oct 2024
Cited by 3 | Viewed by 1442
Abstract
Photocatalysis is a promising method for methylene blue (MB) degradation due to its effectiveness and environmental compatibility. Among the photocatalysts, titanium dioxide (TiO2) has been widely used for MB degradation due to its exceptional photocatalytic activity. However, the wide bandgap limits [...] Read more.
Photocatalysis is a promising method for methylene blue (MB) degradation due to its effectiveness and environmental compatibility. Among the photocatalysts, titanium dioxide (TiO2) has been widely used for MB degradation due to its exceptional photocatalytic activity. However, the wide bandgap limits the degradation efficiency of TiO2 under visible light. Here, an interstitial nitrogen-doped TiO2 (5%NT/TiO2) used thiourea as the N source was fabricated for visible light-derived MB degradation. The 5%NT/TiO2 exhibited an extended absorption range of visible light. Moreover, photoelectrochemical measurements showed an improvement in the photocurrent response and charge transfer behavior on N/TiO2. Thus, 5%NT/TiO2 had enhanced photocatalytic activity compared with pristine TiO2 and substitutive N-doped TiO2 (5%NAB/TiO2). The accelerated photocatalytic MB degradation process on N/TiO2 could be mainly attributed to the interstitial N doping, which caused the appearance of new energy states and extended optical properties. Through comparing the impact of interstitial and substitutive in TiO2 activity, our work proposes a suitable form of element doping to enhance the optical properties and photocatalytic activity of TiO2 and even other semiconductors, providing guidance for future work. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Graphical abstract

17 pages, 2480 KiB  
Article
Impact of Inorganic Anions on the Photodegradation of Herbicide Residues in Water by UV/Persulfate-Based Advanced Oxidation
by Gabriel Pérez-Lucas, Aitor Campillo and Simón Navarro
Catalysts 2024, 14(6), 376; https://doi.org/10.3390/catal14060376 - 13 Jun 2024
Viewed by 1372
Abstract
The removal of pesticides and other organic pollutants from water through advanced oxidation processes (AOPs) holds great promise. The main advantage of these technologies is that they remove, or at least reduce, pesticide levels by mineralization rather than transfer, as in conventional processes. [...] Read more.
The removal of pesticides and other organic pollutants from water through advanced oxidation processes (AOPs) holds great promise. The main advantage of these technologies is that they remove, or at least reduce, pesticide levels by mineralization rather than transfer, as in conventional processes. This study first evaluated the effectiveness of UV/S2O8= compared to heterogeneous photocatalysis using UV/TiO2 processes on the degradation of two commonly used herbicides (terbuthylazine and isoproturon) in aqueous solutions using a laboratory photoreactor. In addition, the effect of the UV wavelength on the degradation efficiency of both herbicides was investigated. Although the degradation rate was greater under UV(254)/S2O8= nm than under UV(365)/S2O8= nm, complete degradation of the herbicides (0.2 mg L−1) was achieved within 30 min under UV-366 nm using a Na2S2O8 dose of 250 mg L−1 in the absence of inorganic anions. To assess the impact of the water matrix, the individual and combined effects of sulfate (SO4=), bicarbonate (HCO3), and chloride (Cl) were evaluated. These can react with hydroxyl (HO) and sulfate (SO4•−) radicals generated during AOPs to form new radicals with a lower redox potential. The results showed negligible effects of SO4=, while the combination of HCO3 and Cl seemed to be the key to the decrease in herbicide removal efficiency found when working with complex matrices. Finally, the main intermediates detected during the photodegradation process are identified, and the likely pathways involving dealkylation, dechlorination, and hydroxylation are proposed and discussed. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Figure 1

14 pages, 4457 KiB  
Article
TiO2/p-BC Composite Photocatalyst for Efficient Removal of Tetracycline from Aqueous Solutions under Simulated Sunlight
by Jianhui Liu, Liwen Zheng, Yongchao Gao, Lei Ji, Zhongfeng Yang, Hailun Wang, Ming Shang, Jianhua Du and Xiaodong Yang
Catalysts 2024, 14(6), 357; https://doi.org/10.3390/catal14060357 - 31 May 2024
Cited by 4 | Viewed by 1051
Abstract
Pollution caused by antibiotics has brought significant challenges to the ecological environment. To improve the efficiency of the removal of tetracycline (TC) from aqueous solutions, a composite material consisting of TiO2 and phosphoric acid-treated peanut shell biochar (p-BC) has been successfully synthesized [...] Read more.
Pollution caused by antibiotics has brought significant challenges to the ecological environment. To improve the efficiency of the removal of tetracycline (TC) from aqueous solutions, a composite material consisting of TiO2 and phosphoric acid-treated peanut shell biochar (p-BC) has been successfully synthesized in the present study by the sol-gel method. In addition, the composite material was characterized using various techniques, including scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) spectroscopy, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and ultraviolet–visible diffuse reflectance spectroscopy (UV-vis DRS). The XPS and FTIR analyses revealed the formation of a new Ti–O–C bond, while the XRD analysis confirmed the presence of TiO2 (with an anatase phase) in the composite material. Also, the PL analyses showed a notable decrease in the recombination efficiency of electrons and holes, which was due to the formation of a composite. This was further supported by the UV-vis DRS analyses, which revealed a decrease in bandgap (to 2.73 eV) of the composite material and led to enhanced light utilization and improved photocatalytic activity. Furthermore, the effects of pH, composite dosage, and initial concentration on the removal of TC were thoroughly examined, which resulted in a maximum removal efficiency of 95.3% under optimal conditions. Additionally, five consecutive cycle tests demonstrated an exceptional reusability and stability of the composite material. As a result of the experiments, the active species verified that ·O2 played a key role in the photodegradation of TC. Four possible degradation pathways of TC were then proposed. As a general conclusion, the TiO2/p–BC composite can be used as an efficient photocatalyst in the removal of TC from aqueous solutions. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Graphical abstract

Review

Jump to: Research

33 pages, 3151 KiB  
Review
Modified Zeolites for the Removal of Emerging Bio-Resistive Pollutants in Water Resources
by Fatin Samara, Amer A. Al Abdel Hamid, Venkatesh Gopal, Lara Dronjak, Fares Feghaly and Sofian Kanan
Catalysts 2025, 15(2), 138; https://doi.org/10.3390/catal15020138 - 2 Feb 2025
Viewed by 227
Abstract
The increasing presence of pollutants, including pharmaceuticals and pesticides, in water resources necessitates the development of effective remediation technologies. Zeolites are promising agents for pollutant removal due to their high surface area, ion-exchange capacity, natural abundance, and diverse tailorable porous structures. This review [...] Read more.
The increasing presence of pollutants, including pharmaceuticals and pesticides, in water resources necessitates the development of effective remediation technologies. Zeolites are promising agents for pollutant removal due to their high surface area, ion-exchange capacity, natural abundance, and diverse tailorable porous structures. This review focuses on the efficient application of modified zeolites and mesoporous materials as photocatalysts and adsorbents for removing contaminants from water bodies. The adsorption and photodegradation of pesticides and selected non-steroidal anti-inflammatory drugs and antibiotics on various zeolites reveal optimal adsorption and degradation conditions for each pollutant. In most reported studies, higher SiO2/Al2O3 ratio zeolites exhibited improved adsorption, and thus photodegradation activities, due to increased hydrophobicity and lower negative charge. For example, SBA-15 demonstrated high efficiency in removing diclofenac, ibuprofen, and ketoprofen from water in acidic conditions. Metal doped into the zeolite framework was found to be a very active catalyst for the photodegradation of organic pollutants, including pesticides, pharmaceuticals, and industrial wastes. It is shown that the photocatalytic activity depends on the zeolite-type, metal dopant, metal content, zeolite pore structure, and the energy of the irradiation source. Faujasite-type Y zeolites combined with ozone achieved up to 95% micropollutant degradation. Bentonite modified with cellulosic biopolymers effectively removed pesticides such as atrazine and chlorpyrifos, while titanium and/or silver-doped zeolites showed strong catalytic activity in degrading carbamates, highlighting their environmental application potential. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
25 pages, 77468 KiB  
Review
Recent Advances in Photocatalytic Degradation of Imidacloprid in Aqueous Solutions Using Solid Catalysts
by Song Gao, Shanshan Li, Shaofan Sun and Maolong Chen
Catalysts 2024, 14(12), 878; https://doi.org/10.3390/catal14120878 - 1 Dec 2024
Viewed by 1301
Abstract
Imidacloprid (IMI), a widely used neonicotinoid pesticide, has led to significant water contamination due to excessive use. As a result, there is an urgent need for effective and straightforward methods to remove IMI residues from water. Photocatalytic technology, an integral part of advanced [...] Read more.
Imidacloprid (IMI), a widely used neonicotinoid pesticide, has led to significant water contamination due to excessive use. As a result, there is an urgent need for effective and straightforward methods to remove IMI residues from water. Photocatalytic technology, an integral part of advanced oxidation processes, is particularly promising due to its renewability, high catalytic efficiency, fast degradation ratio, and cost-effectiveness. This review systematically examines recent progress in the photocatalytic degradation of imidacloprid in aqueous solutions using various solid catalysts. It provides a comparative analysis of key factors affecting catalytic performance, such as catalyst synthesis methods, reaction times, catalyst loading, and IMI concentrations. Among the solid catalysts studied, nano-ZnO achieved a higher degradation rate of IMI in a shorter period and with a reduced catalyst dosage, reaching approximately 95% degradation efficiency within one hour. Additionally, this review explores the types of heterojunctions formed by the catalysts and elucidates the mechanisms involved in the photocatalytic degradation of IMI. In conclusion, this review offers a comprehensive evaluation of solid catalysts for the photocatalytic removal of IMI from water, serving as an important reference for developing innovative catalysts aimed at eliminating organic pollutants from aquatic environments. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalytic Treatment of Pollutants in Water)
Show Figures

Graphical abstract

Back to TopTop