Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Activity
2.2. MOx Catalyst Choice Rationale for Dye Chemical Decomposition
2.2.1. Effect of Band Gap Energies on CV Decomposition
2.2.2. Importance of Water Splitting Reaction
2.3. Material Characterization
2.4. Reaction Kinetics
2.5. Proposed Mechanism
3. Experimental Section
3.1. Materials
3.2. Characterization
3.3. Activity Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Library of Medicine. Compound Summary: Gentian Violet [Internet]. PubChem. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Gentian-violet (accessed on 26 August 2023).
- Abbey Color. Crystal Violet. Abbey Color. Available online: https://abbeycolor.com/stains-and-reagents/crystal-violet/#:~:text=Crystal%20violet%20or%20methyl%20violet,as%20a%20moderate%2Dstrength%20external (accessed on 26 August 2023).
- Mani, S.; Bharagava, R.N. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev. Environ. Contam. Toxicol. 2016, 237, 71–104. [Google Scholar] [CrossRef]
- DrugFuture. Gentian Violet [Internet]. DrugFuture–Chemical Index Database. Available online: https://www.drugfuture.com/chemdata/Gentian-Violet.html (accessed on 26 August 2023).
- Khan, M.M.; Adil, S.F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462–464. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Yao, S.; Chen, L.; Gao, Y.; Zhang, H. Degradation of crystal violet by catalytic ozonation using Fe/Activated Carbon Catalyst. Sep. Purif. Technol. 2015, 147, 179–185. [Google Scholar] [CrossRef]
- Ledakowicz, S.; Paździor, K. Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules 2021, 26, 870. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Javaid, R.; Ikhlaq, A.; Al-Sodani, K.A.A.; Rizvi, O.S.; Alazmi, A.; Asiri, A.M.; Ibn Shamsah, S.M. Synergistically improved catalytic ozonation process using iron-loaded activated carbons for the removal of arsenic in drinking water. Water 2022, 14, 2406. [Google Scholar] [CrossRef]
- Dellamatrice, P.M.; Silva-Stenico, M.E.; Moraes, L.A.; Fiore, M.F.; Monteiro, R.T. Degradation of textile dyes by cyanobacteria. Braz. J. Microbiol. 2017, 48, 25–31. [Google Scholar] [CrossRef]
- Moradi, Z.; Jahromi, S.Z.; Ghaedi, M. Design of active photocatalysts and visible light photocatalysis. Photocatal. Fundam. Process. Appl. 2021, 32, 557–623. [Google Scholar] [CrossRef]
- Ibhadon, A.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Parrino, F.; Palmisano, G. Highlights on recent developments of heterogeneous and homogeneous photocatalysis. Molecules 2020, 26, 23. [Google Scholar] [CrossRef]
- Bruggeman, D.F.; Mathew, S.; Detz, R.J.; Reek, J.N. Comparison of homogeneous and heterogeneous catalysts in dye-sensitized photoelectrochemical cells for alcohol oxidation coupled to dihydrogen formation. Sustain. Energy Fuels 2021, 5, 5707–5716. [Google Scholar] [CrossRef]
- Alshamsi, F.A.; Albadwawi, A.S.; Alnuaimi, M.M.; Rauf, M.A.; Ashraf, S.S. Comparative efficiencies of the degradation of crystal violet using UV/hydrogen peroxide and Fenton’s reagent. Dyes Pigment. 2007, 74, 283–287. [Google Scholar] [CrossRef]
- Rehman, F.; Sayed, M.; Khan, J.A.; Sha, L.A.; Shah, N.S.; Khan, H.M.; Khattak, R. Degradation of crystal violet dye by Fenton and photo-fenton oxidation processes. Z. Für Phys. Chem. 2018, 232, 1771–1786. [Google Scholar] [CrossRef]
- Fadhel, A.Z.; Pollet, P.; Liotta, C.L.; Eckert, C.A. Combining the benefits of homogeneous and heterogeneous catalysis with tunable solvents and Nearcritical Water. Molecules 2010, 15, 8400–8424. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cen, J.; Xu, X.; Li, X. The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol. 2016, 6, 349–362. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A Review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef]
- Shelton’s Water. Top 7 Methods of Water Treatment [Internet]. Kinetico Water Systems. 2015. Available online: https://sheltonswater.com/blog/top-7-methods-of-water-treatment (accessed on 26 August 2023).
- Chen, C.; Chen, L.; Zhu, X.; Chen, B. Graphene nanofiltration membrane intercalated with AgNP@g-C3N4 for efficient water purification and photocatalytic self-cleaning performance. Chem. Eng. J. 2022, 441, 136089. [Google Scholar] [CrossRef]
- Palani, G.; Apsari, R.; Hanafiah, M.M.; Venkateswarlu, K.; Lakkaboyana, S.K.; Kannan, K.; Shivanna, A.T.; Idris, A.M.; Yadav, C.H. Metal-doped graphitic carbon nitride nanomaterials for photocatalytic environmental applications-a review. Nanomaterials 2022, 12, 1754. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Tamirat, A.G.; Rick, J.; Dubale, A.A.; Su, W.-N.; Hwang, B.-J. Using hematite for photoelectrochemical water splitting: A review of current progress and challenges. Nanoscale Horiz. 2016, 1, 243–267. [Google Scholar] [CrossRef]
- Sahoo, C.; Gupta, A.; Pal, A. Photocatalytic degradation of Crystal Violet (C.I. basic violet 3) on silver ion doped TiO2. Dyes Pigment. 2005, 66, 189–196. [Google Scholar] [CrossRef]
- Sanakousar, M.F.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Jayanna, B.K.; Mounesh Shridhar, A.H.; Prakash, K. Efficient photocatalytic degradation of crystal violet dye and electrochemical performance of modified MWCNTs/Cd-ZnO nanoparticles with quantum chemical calculations. J. Hazard. Mater. Adv. 2021, 2, 100004. [Google Scholar] [CrossRef]
- Shinde, D.R.; Tambade, P.S.; Chaskar, M.G.; Gadave, K.M. Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2, A comparative study. Drink. Water Eng. Sci. 2017, 10, 109–117. [Google Scholar] [CrossRef]
- Hussein, F.H.; Abass, T.A. Photocatalytic Treatment of Textile Industrial Wastewater. Int. J. Chem. Sci. 2010, 8, 1409–1420. [Google Scholar]
- Puneetha, J.; Kottam, N.; Rathna, A. Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid. Inorg. Chem. Commun. 2021, 125, 108460. [Google Scholar]
- Sharma, M.; Sondhi, H.; Krishna, R.; Srivastava, S.K.; Rajput, P.; Nigam, S.; Joshi, M. Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. Environ. Sci. Pollut. Res. 2020, 27, 32076–32087. [Google Scholar] [CrossRef]
- Mageshwari, K.; Nataraj, D.; Pal, T.; Sathyamoorthy, R. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method. J. Alloys Compd. 2015, 625, 362–370. [Google Scholar] [CrossRef]
- Suhail, F.S.A.; Mashkour, M.S.; Saeb, D. The Study on Photo Degradation of Crystal Violet by Polarographic Technique. Int. J. Basic Appl. Sci. 2015, 15, 12–21. [Google Scholar]
- Wang, L.; Zhao, J.; Liu, H.; Huang, J. Design, modification and application of semiconductor photocatalysts. J. Taiwan Inst. Chem. Eng. 2018, 93, 590–602. [Google Scholar] [CrossRef]
- Basith, M.A.; Ahsan, R.; Zarin, I.; Jalil, M.A. Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 2018, 8, 11090. [Google Scholar] [CrossRef]
- Chowdhury, P.; Malekshoar, G.; Ray, A.K. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects. Inorganics 2017, 5, 34. [Google Scholar] [CrossRef]
- Palani, R.; Anitha, V.; Karuppiah, C.; Rajalakshmi, S.; Li, Y.; Hung, T.; Yang, C. Imidazolatic-Framework Bimetal Electrocatalysts with a Mixed-Valence Surface Anchored on an rGO Matrix for Oxygen Reduction, Water Splitting, and Dye Degradation. ACS Omega 2021, 6, 16029–16042. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003–37026. [Google Scholar] [CrossRef]
- Axet, M.R.; Durand, J.; Gouygou, M.; Serp, P. Surface Coordination Chemistry on graphene and two-dimensional carbon materials for well-defined single atom supported catalysts. Adv. Organomet. Chem. 2019, 71, 53–174. [Google Scholar] [CrossRef]
- Kim, T.; Burrows, A.; Kiely, C.J.; Wachs, I.E. Molecular/electronic structure-surface acidity relationships of model-supported tungsten oxide catalysts. J. Catal. 2007, 246, 370–381. [Google Scholar] [CrossRef]
- Lee, K.M.; Brito, M.; DeCoster, J.; Linskens, K.; Mehdi, K.; Lee, W.I.; Kim, T. Influence of oxidizing and reducing pretreatment on the catalytic performance of CeO2 for CO oxidation. Mol. Catal. 2022, 528, 112465. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Huang, J.; Lee, J.; Kim, D.H.; Frenkel, A.I.; Kim, T. Effects of Molecular and Electronic Structures in CoOx/CeO2 Catalysts on NO Reduction by CO. J. Phys. Chem. 2019, 123, 7166–7177. [Google Scholar] [CrossRef]
- Zhang, S.; Kim, T. Effects of iron precursor and loading on the catalytic performance of FeOx/CeO2 catalysts for NO reduction by CO. Mol. Catal. 2020, 494, 111123. [Google Scholar] [CrossRef]
- Ekoi, E.J.; Gowen, A.; Dorrepaal, R.; Dowling, D.P. Characterization of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties. Results Phys. 2019, 12, 1574–1585. [Google Scholar] [CrossRef]
- Jacob, K.A.; Peter, M.P.; Jose, P.E.; Balakrishnan, C.J.; Thomas, V.J. A simple method for the synthesis of anatase-rutile mixed phase TiO2 using a convenient precursor and higher visible-light photocatalytic activity of Co-doped TiO2. Mater. Today Proc. 2022, 49, 1408–1417. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Guo, J.; Sato, N. Raman spectra of the anodic oxide flim on titanium in acidic sulfate and neutral phosphate solutions. J. Electrochem. Soc. 1986, 133, 2473–2476. [Google Scholar] [CrossRef]
- Arsov, L.D.; Kormann, C.; Plieth, W. Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide. J. Raman Spectrosc. 1991, 22, 573–575. [Google Scholar] [CrossRef]
- Tang, H.L.; Ren, Y.; Wei, S.H.; Liu, G.; Xu, X.X. Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity. Rare Met. 2019, 38, 453–458. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, A.; Pramanik, S.; Kuiri, P.K.; Sen, R.; Neogi, S.K. Synthesis of ZnO nanoparticles by co-precipitation technique and characterize the structural and optical properties of these nanoparticles. J. Phys. Conf. Ser. 2022, 2349, 012014. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, S.; Zhang, C.; Yang, Y.; Lv, K. Raman Spectra and Microstructure of Zinc Oxide irradiated with Swift Heavy Ion. Crystals 2019, 9, 395. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, M.S.; Hong, J.; Shen, Y.; Chen, Q.; Yin, Z. Structural and optical properties of nanophase zinc oxide. Appl. Phys. A 2003, 76, 171–176. [Google Scholar] [CrossRef]
- Damen, T.C.; Porto, S.P.S.; Tell, B. Raman effect in Zinc Oxide. Phys. Rev. 1966, 142, 570. [Google Scholar] [CrossRef]
- El-Deen, S.S.; Hashem, A.M.; Abdel Ghany, A.E.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. Anatase TiO2 nanoparticles for lithium-ion batteries. Ionics 2018, 24, 2925–2934. [Google Scholar] [CrossRef]
- Silambarasan, M.; Saravanan, S.; Soga, T. Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. Int. J. ChemTech Res. 2015, 7, 1644–1650. [Google Scholar]
- Nagaraj, G.; Brundha, D.; Chandraleka, C.; Arulpriya, M.; Kowsalya, V.; Sangavi, S.; Jayalakshmi, R.; Tamilarasu, S.; Murugan, R. Facile synthesis of improved anatase TiO2 nanoparticles for enhanced solar-light driven photocatalyst. SN Appl. Sci. 2020, 2, 734. [Google Scholar] [CrossRef]
- Zaheer, A.; Ullahkha, F.; Mahmood, S.; Mahmood, T.; Shamim, A. Different Approaches for the Synthesis of Zinc Oxide Nanoparticles. Open J. Chem. 2018, 1, 19–25. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Leung, Y.H.; Ng, A.M.C. Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 2014, 1, 400–410. [Google Scholar] [CrossRef]
- Gahlot, S.; Dappozze, F.; Mishra, S.; Guillard, C. High surface area g-C3N4 and g-C3N4-TiO2 photocatalytic activity under UV and Visible light: Impact of individual component. J. Environ. Chem. Eng. 2021, 9, 105587. [Google Scholar] [CrossRef]
- Li, Y.; Xie, W.; Hu, X.; Shen, G.; Zhou, X.; Xiang, Y.; Zhao, X.; Fang, P. Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO. Langmuir 2009, 26, 591–597. [Google Scholar] [PubMed]
- Ju, Y.; Fang, J.; Liu, X.; Xu, Z.; Ren, X.; Sun, C.; Yang, S.; Ren, Q.; Ding, Y.; Yu, K.; et al. Photodegradation of crystal violet in TiO2 suspensions using UV–vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2): Products, mechanism and feasibility. J. Hazard. Mater. 2011, 185, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.; Zhao, H.; Deng, W.; Feng, X.; Li, Y. Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere 2019, 216, 1–8. [Google Scholar] [CrossRef]
- Huang, S.; Chen, C.; Tsai, H.; Shaya, J.; Lu, C. Photocatalytic degradation of thiobencarb by a visible light-driven MoS2 photocatalyst. Sep. Purif. Technol. 2018, 197, 147–155. [Google Scholar] [CrossRef]
Catalyst | Energy Source | Band Gap (eV) | Dye | Initial Dye Concentration (ppm) | Irradiation Time (min) | Conversion (%) | Ref. |
---|---|---|---|---|---|---|---|
TiO2 | UV | 3.2 | CV | 20 | 105 | >97 | [25] |
Ag+/TiO2 | UV | -- | CV | 20 | 105 | >99 | [25] |
TiO2 | UV | 3.2 | CV | 40 | 105 | >88 | [25] |
Ag+/TiO2 | UV | -- | CV | 60 | 105 | >56 | [25] |
ZnO | UV | 3.31 | MB | 40 | 40 | 67 | [29] |
GO/ZnO | UV | 3.22 | MB | 40 | 40 | 89 | [29] |
ZnO | Visible | 2.81 | CV | 5 | 240 | 82 | [30] |
ZnO/GO | Visible | 2.71 | CV | 5 | 240 | 99 | [30] |
CuO | UV | 1.29 | MB | 6120 | 120 | 50 | [31] |
CuO-ZnO | UV | 1.23 | MB | 6120 | 120 | 94 | [31] |
TiO2 | UV | 3.2 | CV | 4 | 120 | 95 | Present study |
ZnO | UV | 3.2 | CV | 4 | 120 | 98 | Present study |
Raman Shift (cm−1) | Raman Active Mode TiO2 | Raman Shift (cm−1) | Raman Active Mode ZnO |
---|---|---|---|
44 | Eg—(symmetric stretching vibration) | 102 | E2L—(nonpolar, low-intensity mode) |
200 | Eg—(symmetric stretching vibration) | 333 | 3E2L − E2H |
398 | B1g—(symmetric stretching mode) | 439 | E2H—(nonpolar, high-intensity mode) |
518 | A1g—(anti-symmetric bending vibration of O-Ti-O) | 586 | E1 (LO)—(polar, longitudinal optical mode) |
642 | Eg—(symmetric stretching vibration) | 667 | 2(E2H − E2L) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sifat, M.; Shin, E.; Schevon, A.; Ramos, H.; Pophali, A.; Jung, H.-J.; Halada, G.; Meng, Y.; Olynik, N.; Sprouster, D.J.; et al. Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts. Catalysts 2024, 14, 377. https://doi.org/10.3390/catal14060377
Sifat M, Shin E, Schevon A, Ramos H, Pophali A, Jung H-J, Halada G, Meng Y, Olynik N, Sprouster DJ, et al. Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts. Catalysts. 2024; 14(6):377. https://doi.org/10.3390/catal14060377
Chicago/Turabian StyleSifat, Mohammed, Eugene Shin, Anthony Schevon, Hugo Ramos, Amol Pophali, Hye-Jung Jung, Gary Halada, Yizhi Meng, Nicholas Olynik, David J. Sprouster, and et al. 2024. "Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts" Catalysts 14, no. 6: 377. https://doi.org/10.3390/catal14060377
APA StyleSifat, M., Shin, E., Schevon, A., Ramos, H., Pophali, A., Jung, H. -J., Halada, G., Meng, Y., Olynik, N., Sprouster, D. J., & Kim, T. (2024). Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts. Catalysts, 14(6), 377. https://doi.org/10.3390/catal14060377