Photocatalytic Application of Polymers in Removing Pharmaceuticals from Water: A Comprehensive Review
Abstract
:1. Introduction
1.1. The Problem of Pharmaceutical Pollutants in Water
Pharmaceutical | Location | Analysis Method | c (ng/dm3) Detected in Effluents | Reference |
---|---|---|---|---|
Amoxicillin | Kisii and Kabarnet wastewater treatment plants in Kenya | HPLC–UV/Vis | 90 | [50] |
Ampicillin | Olomouc region, Czech Republic | UPLC–TQ-S/MS | 48 | [51] |
Azithromycin | Sanya, China wastewater treatment plants | HPLC–UV/Vis | 56,600 | [52] |
Carbamazepine | Czech wastewater treatment plants | UHPLC–MS/MS | 730 | [53] |
Cephalexin | Pharco B International Pharmaceutical Company in Borg El Arab, Alexandria, Egypt | HPLC–DAD | 71,900 | [54] |
Ceftazidime | Pharco B International Pharmaceutical Company in Borg El Arab, Alexandria, Egypt | HPLC–DAD | 94,000 | [54] |
Ceftriaxone | Pharco B International Pharmaceutical Company in Borg El Arab, Alexandria, Egypt | HPLC–DAD | 170,300 | [54] |
Clarithromycin | Neringa (Nida) wastewater treatment plants | HPLC–UV/Vis | 15 | [55] |
Chloramphenicol | Kanchipuram District, Chennai | GCE | 39 | [56] |
Ciprofloxacin | Sanya, China wastewater treatment plants | HPLC–UV/Vis | 24,000 | [52] |
Doxycycline | Machakos, wastewater stabilization ponds | LC-ESI–MS/MS | 1500 | [57] |
Erythromycin | South Africa, untreated wastewater | LC–MS/MS | 55 | [58] |
Metoprolol | Czech wastewater treatment plants | UHPLC–MS/MS | 960 | [53] |
Metronidazole | Czech wastewater treatment plants | UHPLC–MS/MS | 7500 | [53] |
Naproxen | Czech wastewater treatment plants | UHPLC–MS/MS | 980 | [53] |
Norfloxacin | Machakos, wastewater stabilization ponds | LC–ESI–MS/MS | 2900 | [57] |
Oxytetracycline | Dhaka wastewater effluents in Bangladesh | RP–HPLC–UV/Vis | 670 | [59] |
Paracetamol | Czech wastewater treatment plants | UHPLC–MS/MS | 82,500 | [53] |
Propranolol | San Luis Province, Argentina | HPLC–DAD | 850 | [60] |
Roxithromycin | Nicosia wastewater, Cyprus | SPE–DEX | 700 | [61] |
Sulfadimidine | Shanghai wastewater treatment plant | UPLC–DAD | 440 | [62] |
Sulfamethoxazole | Czech wastewater treatment plants | UHPLC–MS/MS | 7500 | [53] |
Tetracycline | Bouc-bel-air, France wastewater | UPLC–FLD | 4820 | [63] |
Tramadol | Czech wastewater treatment plants | UHPLC–MS/MS | 3500 | [53] |
Trimethoprim | Czech wastewater treatment plants | UHPLC–MS/MS | 3000 | [53] |
1.2. Objectives and Significance of the Study
2. Polymers for Photocatalytic Applications
2.1. Types of Polymers Used in Photocatalysis
- i.
- Inorganic polymers. They represent aluminosilicate-based materials, which are conventionally produced by the activation of solid alkali silicate. Geopolymers are inorganic polymers, considered a subset of inorganic polymers since the aluminosilicate network is coordinated tetrahedrally and primarily has aluminum atoms and silicon [109]. These materials are flammable, durable, resistant to rust, and non-poisonous. Inorganic polymers based on silicon are widely employed in water purification treatment due to their large surface area, electrical conductivity, stability, flexibility, and reusability. The inorganic polymers with silicon and phosphorous in their structures have large bond angles and bond lengths, while their bonds are more ionic [110,111]. Even at low temperatures, they retain elasticity. They can withstand very high temperatures in an oxygenated atmosphere since these polymers have more inorganic elements. Inorganic polymers are highly resistant to homolytic dissociation. As a consequence of their inorganic networks, these polymers are resistant to UV and high-energy irradiation, owing to their optical transparency throughout a narrow wavelength range and stronger inorganic connections [112]. Typically, in an inorganic polymer, the microstructural elements are built from three-dimensional arrays of oxygen, E-O-E, where E is an element such as Si, Al, P, or B, through linkage with either oxygen or other heteroatoms [113]. The mechanism that joins the silicon–oxygen–silicon links, characteristic of siloxanes, has substantially varying hydrophobic or hydrophilic stability according to the size and the polar character of the molecular affine groups, which are silicon polymeric units in a nonpolar environment, differing from the glycol groups. These polymeric membranes polymerize the silicon and oxygen cycles near the parent alkoxide, which is produced with high reactivity, and which can be used in polyester acrylate copolymeric coatings. Inorganic silicon-based polymers must undergo heat treatment for reactivity and their final application (biomaterials, photocataysis, optical devices, energy storage) [114]. Polymers containing a main-chain of boron are an interesting and important class of materials that have applications in several fields such as liquid-crystal materials, photoresist materials, nonlinear optics, boron neutron capture therapy, fire retardants, and inorganic binders. Boron-based polymers and inorganic polyboron clusters with isolable boron–boron, boron–oxygen, and boron–carbon linking atoms have long attracted widespread interest in both pi-conjugated all-boron and pi-conjugated all-boron-containing polymers to expand the palette of functional molecular and polymeric materials, including (opto) electronic, (non) linear optics, magnetic, electrical, and chiral properties. In addition to the inherent upper chalcogenide boron clusters, hexacyclic structures are valuable as a building block for the design of advanced high-level functional building blocks, with the stabilization of the resultant polymers using flexible moieties, porphyrins, and donor-acceptor [115]. While a small number of chemical elements, such as carbon and silicon, have become highly important in the development of new types of polymers, other atoms that are used much less frequently, such as phosphorus, can build polymers with unique and distinct properties. Of particular note for phosphorus-based polymers is the inherent flame-retardant nature of certain phosphinated materials. Such polymers find utility in a number of applications, including the electronics sector and soft materials. Phosphorus-based polymers exhibit a wide range of properties such as flame retardancy, mechanical properties, thermal stability, proton or anion conductivity, and anticorrosive resistance when compared with traditional organic or inorganic polymers [116].
- ii.
- Organic polymers. Porous organic polymers have a porous framework that is impregnated in various dimensions. These polymers arise from covalent bonds between the organic monomers of different orientations and shapes. They can be categorized as crystalline or amorphous depending on the difference in the arrangement of monomers in their structure. They are mainly used as photocatalysts for modifications because of their extraordinary stability, inherent porosity, economical designs, and flexibility in structure and function. The nature, pore size, functions, and surface area of these polymers can be altered by modifying their side chains. They are used for heterogeneous catalysis, photocatalytic conversion, biochemical sensors, and gas and energy storage. There are different variations in their structure, so they could be divided into polymers that have homogenous catalysts, such as monomers; polymers that are altered post-synthesis; and polymers that have coordinated metal ions [112,117].
- iii.
- Inorganic–organic hybrids. The coupling of inorganic materials with an organic polymer matrix produces inorganic–organic hybrid materials. Their mechanical, thermal, and physical properties are enhanced to a high extent. The strength of coupling between inorganic and organic depends on the conjugation with the polymer matrix, the number of particles, and the regular dispersal of particles in the 3D network. These polymers’ thermoplastic or thermosetting behaviors and elasticity are improved by inorganic fillers [118]. This new family of polymer composites combining inorganic and organic systems is prepared in situ using sol–gel processes. By optimizing the conditions for their synthesis, their characteristics can be controlled. The inorganic constituents provide stability to heat and friction and enhance chemical and electromagnetic properties and the refractive index, while the organic components are responsible for producing films. Hybrid systems are improved compared to the individual constituents [112].
2.2. Modification of Polymers for Enhanced Photocatalytic Activity
2.2.1. Physical Modification Techniques
2.2.2. Chemical Modification Techniques
3. Efficiency in Removing Pharmaceutical Pollutants
4. The Role of Atomistic Calculations in Polymer-Assisted Photocatalytic Degradation
5. Advantages and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleeson, T.; Wang-Erlandsson, L.; Porkka, M.; Zipper, S.C.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. Illuminating Water Cycle Modifications and Earth System Resilience in the Anthropocene. Water Resour. Res. 2020, 56, e2019WR024957. [Google Scholar] [CrossRef]
- Jazić, J.M.; Đurkić, T.; Bašić, B.; Watson, M.; Apostolović, T.; Tubić, A.; Agbaba, J. Degradation of a Chloroacetanilide Herbicide in Natural Waters Using UV Activated Hydrogen Peroxide, Persulfate and Peroxymonosulfate Processes. Environ. Sci. Water Res. Technol. 2020, 6, 2800–2815. [Google Scholar] [CrossRef]
- Sundararaman, S.; Aravind Kumar, J.; Deivasigamani, P.; Devarajan, Y. Emerging Pharma Residue Contaminants: Occurrence, Monitoring, Risk and Fate Assessment—A Challenge to Water Resource Management. Sci. Total Environ. 2022, 825, 153897. [Google Scholar] [CrossRef] [PubMed]
- Materon, E.M.; Ibáñez-Redín, G.; Joshi, N.; Gonçalves, D.; Oliveira, O.N.; Faria, R.C. Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. In Nanosensors for Environmental Applications; Springer: Cham, Switzerland, 2020; pp. 87–129. [Google Scholar]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef]
- Dubey, A.; Samra, S.; Sahu, V.K.; Dash, S.L.; Mishra, A. A Screening Models of (In Vivo and In Vitro) Used for the Study of Hepatoprotective Agents. J. Adv. Zool. 2023, 44, 173–187. [Google Scholar] [CrossRef]
- Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary Drugs in the Environment and Their Toxicity to Plants. Chemosphere 2016, 144, 2290–2301. [Google Scholar] [CrossRef] [PubMed]
- Küster, A.; Adler, N. Pharmaceuticals in the Environment: Scientific Evidence of Risks and Its Regulation. Philos. Trans. R. Soc. B 2014, 369, 20130587. [Google Scholar] [CrossRef] [PubMed]
- Litynska, M.; Kyrii, S.; Nosovska, O.; Ryzhenko, N. Problem of Antibiotics in Natural Water: A Review. Water Water Purif. Technol. Sci. Tech. News 2021, 31, 26–34. [Google Scholar] [CrossRef]
- Rai, B.; Shrivastav, A. Removal of Emerging Contaminants in Water Treatment by Nanofiltration and Reverse Osmosis. In Development in Wastewater Treatment Research and Processes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 605–628. ISBN 978-0-323-85583-9. [Google Scholar]
- Abada, B.; Alivio, T.E.G.; Shao, Y.; O’Loughlin, T.E.; Klemashevich, C.; Banerjee, S.; Jayaraman, A.; Chu, K.-H. Photodegradation of Fluorotelomer Carboxylic 5:3 Acid and Perfluorooctanoic Acid Using Zinc Oxide. Environ. Pollut. 2018, 243, 637–644. [Google Scholar] [CrossRef]
- Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Zhang, T.C.; Valero, J.R. Membrane Processes for Removal of Pharmaceutically Active Compounds (PhACs) from Water and Wastewaters. Sci. Total Environ. 2016, 547, 60–77. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A.; Rashid, J. A Review on Conventional and Advanced Hybrid Technologies for Pharmaceutical Wastewater Treatment. J. Clean. Prod. 2022, 356, 131826. [Google Scholar] [CrossRef]
- Cai, Z.; Dwivedi, A.D.; Lee, W.-N.; Zhao, X.; Liu, W.; Sillanpää, M.; Zhao, D.; Huang, C.-H.; Fu, J. Application of Nanotechnologies for Removing Pharmaceutically Active Compounds from Water: Development and Future Trends. Environ. Sci. Nano 2018, 5, 27–47. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Wang, G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. Asian J. 2020, 15, 3239–3253. [Google Scholar] [CrossRef] [PubMed]
- Armaković, S.J.; Savanović, M.M.; Armaković, S. Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts 2022, 13, 26. [Google Scholar] [CrossRef]
- Borysiewicz, M.A. ZnO as a Functional Material, a Review. Crystals 2019, 9, 505. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Chibac-Scutaru, A.L. Polymer Nanocomposites for Photocatalytic Applications. Catalysts 2019, 9, 986. [Google Scholar] [CrossRef]
- Dai, C.; Liu, B. Conjugated Polymers for Visible-Light-Driven Photocatalysis. Energy Environ. Sci. 2020, 13, 24–52. [Google Scholar] [CrossRef]
- Mangaraj, S.; Yadav, A.; Bal, L.M.; Dash, S.K.; Mahanti, N.K. Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. J. Packag. Technol. Res. 2019, 3, 77–96. [Google Scholar] [CrossRef]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A Comprehensive Review on Chemical Properties and Applications of Biopolymers and Their Composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef]
- Ojajuni, O.; Saroj, D.; Cavalli, G. Removal of Organic Micropollutants Using Membrane-Assisted Processes: A Review of Recent Progress. Environ. Technol. Rev. 2015, 4, 17–37. [Google Scholar] [CrossRef]
- Haider, R. The Future of Pharmaceuticals Industry 2024. J. Pharm. Pharmacol. Res. 2023, 6, 1–11. [Google Scholar] [CrossRef]
- Yu, W.; Xiong, L.; Teng, J.; Chen, C.; Li, B.; Zhao, L.; Lin, H.; Shen, L. Advances in Synthesis and Application of Amphoteric Polymer-Based Water Treatment Agents. Desalination 2024, 574, 119456119456. [Google Scholar] [CrossRef]
- Jin, J.; Li, C.; He, Y.; Pan, J.; Zhu, J.; Tang, J. Real World Drug Treatment Models for Pregnancy Complicated with Urinary Tract Infection in China from 2018 to 2022: A Cross-Section Analysis. Front. Pharmacol. 2024, 15, 1349121. [Google Scholar] [CrossRef] [PubMed]
- Gworek, B.; Kijeńska, M.; Wrzosek, J.; Graniewska, M. Pharmaceuticals in the Soil and Plant Environment: A Review. Water Air Soil Pollut. 2021, 232, 145. [Google Scholar] [CrossRef]
- Gorgaslidze, N.; Sulashvili, N.; Gabunia, L.; Pruidze-Liparteliani, N.; Giorgobiani, M. The Impact of Pharmaceuticals on the Ecology and Human Health. World Med. J. Biomed. Sci. 2024, 1, 65–89. [Google Scholar]
- Netshithothole, R.; Managa, M.; Botha, T.L.; Madikizel, L.M. Occurrence of Selected Pharmaceuticals in Wastewater and Sludge Samples from Wastewater Treatment Plants in Eastern Cape Province of South Africa. S. Afr. J. Chem. 2024, 78, 7–14. [Google Scholar] [CrossRef]
- Kock, A.; Glanville, H.; Law, A.; Stanton, T.; Carter, L.; Taylor, J. Emerging Challenges of the Impacts of Pharmaceuticals on Aquatic Ecosystems: A Diatom Perspective. Sci. Total Environ. 2023, 878, 162939. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Esrafili, A.; Gholami, M.; Jonidi Jafari, A.; Rezaei Kalantary, R.; Farzadkia, M.; Kermani, M.; Sobhi, H.R. Contaminants of Emerging Concern: A Review of New Approach in AOP Technologies. Environ. Monit. Assess. 2017, 189, 414. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Cardenas, J.A.; Esteban-García, B.; Agüera, A.; Sánchez-Pérez, J.A.; Manzano-Agugliaro, F. Wastewater Treatment by Advanced Oxidation Process and Their Worldwide Research Trends. Int. J. Environ. Res. Public Health 2020, 17, 170. [Google Scholar] [CrossRef]
- Kulišťáková, A. Removal of Pharmaceutical Micropollutants from Real Wastewater Matrices by Means of Photochemical Advanced Oxidation Processes–a Review. J. Water Process Eng. 2023, 53, 103727. [Google Scholar] [CrossRef]
- Roslan, N.N.; Lau, H.L.H.; Suhaimi, N.A.A.; Shahri, N.N.M.; Verinda, S.B.; Nur, M.; Lim, J.-W.; Usman, A. Recent Advances in Advanced Oxidation Processes for Degrading Pharmaceuticals in Wastewater—A Review. Catalysts 2024, 14, 189. [Google Scholar] [CrossRef]
- Bean, T.G.; Chadwick, E.A.; Herrero-Villar, M.; Mateo, R.; Naidoo, V.; Rattner, B.A. Do Pharmaceuticals in the Environment Pose a Risk to Wildlife? Environ. Toxicol. Chem. 2024, 43, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, C.; Hong, Y.; Lee, W.; Chung, H.; Jeong, D.-H.; Kim, H. Distribution and Removal of Pharmaceuticals in Liquid and Solid Phases in the Unit Processes of Sewage Treatment Plants. Int. J. Environ. Res. Public Health 2020, 17, 687. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Wang, Z.; Liu, Y.; Jia, Y.; Li, F.; Ren, R.; Ikhlaq, A.; Kumirska, J.; Siedlecka, E.M. Navigating the Complexity of Pharmaceutical Wastewater Treatment by “Effective Strategy, Emerging Technology, and Sustainable Solution”. J. Water Process Eng. 2024, 63, 105404. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Torres-Pinto, A.; Rosales, E.; Silva, C.G.; Faria, J.L.; Pazos, M.; Silva, A.M. Optimisation of a Photoelectrochemical System for the Removal of Pharmaceuticals in Water Using Graphitic Carbon Nitride. Catal. Today 2024, 432, 114578. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Escapa, C.; Otero, M. Removal of Pharmaceuticals from Water: Conventional and Alternative Treatments. Water 2021, 13, 487. [Google Scholar] [CrossRef]
- Leyva-Díaz, J.C.; Batlles-delaFuente, A.; Molina-Moreno, V.; Sánchez Molina, J.; Belmonte-Ureña, L.J. Removal of Pharmaceuticals from Wastewater: Analysis of the Past and Present Global Research Activities. Water 2021, 13, 2353. [Google Scholar] [CrossRef]
- Nguyen, M.-K.; Lin, C.; Bui, X.-T.; Rakib, M.R.J.; Nguyen, H.-L.; Truong, Q.-M.; Hoang, H.-G.; Tran, H.-T.; Malafaia, G.; Idris, A.M. Occurrence and Fate of Pharmaceutical Pollutants in Wastewater: Insights on Ecotoxicity, Health Risk, and State–of–the-Art Removal. Chemosphere 2024, 354, 141678. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Ahmaruzzaman, M. Bandgap Engineering Approach for Synthesising Photoactive Novel Ag/HAp/SnS2 for Removing Toxic Anti-Fungal Pharmaceutical from Aqueous Environment. J. Hazard. Mater. 2024, 461, 132458. [Google Scholar] [CrossRef]
- Yu, T.; Chen, H.; Hu, T.; Feng, J.; Xing, W.; Tang, L.; Tang, W. Recent Advances in the Applications of Encapsulated Transition-Metal Nanoparticles in Advanced Oxidation Processes for Degradation of Organic Pollutants: A Critical Review. Appl. Catal. B Environ. 2024, 342, 123401. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, G.; Wang, W.; Jiang, L.; Guo, Z. Photocatalytic Upgrading of 5-Hydroxymethylfurfural–Aerobic or Anaerobic? Green Chem. 2024, 26, 2949–2966. [Google Scholar] [CrossRef]
- Bilić, A.; Armaković, S.J.; Savanović, M.M.; Zahović, I.; Dodić, J.; Trivunović, Z.; Savić, I.; Gajo, T.; Armaković, S. Photocatalytic Application of Bacterial-Derived Biopolymer in Removing Pharmaceutical Contaminants from Water. Catal. Commun. 2024, 186, 106821. [Google Scholar] [CrossRef]
- Saikia, C.; Gogoi, P. Chitosan: A Promising Biopolymer in Drug Delivery Applications. J. Mol. Genet. Med. S 2015, 4, 899–910. [Google Scholar] [CrossRef]
- Muzammal, S.; Ahmad, A.; Sheraz, M.; Kim, J.; Ali, S.; Hanif, M.B.; Hussain, I.; Pandiaraj, S.; Alodhayb, A.; Javed, M.S. Polymer-Supported Nanomaterials for Photodegradation: Unraveling the Methylene Blue Menace. Energy Convers. Manag. X 2024, 22, 100547. [Google Scholar] [CrossRef]
- De Oliveira, C.; Renda, C.G.; Moreira, A.J.; Pereira, O.A.P.; Pereira, E.C.; Freschi, G.P.G.; Bertholdo, R. Evaluation of a Graphitic Porous Carbon Modified with Iron Oxides for Atrazine Environmental Remediation in Water by Adsorption. Environ. Res. 2023, 219, 115054. [Google Scholar] [CrossRef] [PubMed]
- Renda, C.G.; Contreras Medrano, C.P.; Costa, L.J.D.; Litterst, F.J.; Saitovitch, E.M.B.; Magon, C.J.; Gualdi, A.J.; Venâncio, T.; Bertholdo, R.; Moreira, A.J.; et al. Role of Ferrocene-Derived Iron Species in the Catalytic Graphitization of Novolak Resins. J. Mater. Sci. 2021, 56, 1298–1311. [Google Scholar] [CrossRef]
- Moreira, A.J.; Dos Santos, B.R.M.; Dias, J.A.; Rabello, P.T.; Coelho, D.; Mascaro, L.H.; Freschi, G.P.G.; Gobato, Y.G.; Galeti, H.V.A.; Mastelaro, V.R.; et al. Photoactivity of Boron-or Nitrogen-Modified TiO2 for Organic Pollutants Degradation: Unveiling the Photocatalytic Mechanisms and by-Products. J. Environ. Chem. Eng. 2023, 11, 109207. [Google Scholar] [CrossRef]
- Wendott, J.K.; Were, M.L.L.; Cherutoi, J.; Odero, M.P. Occurrence and Removal Efficiencies of Four Antibiotics in Kisii and Kabarnet Waste Water Treatment Plants, Kenya. Asian J. Appl. Chem. Res. 2024, 15, 1–6. [Google Scholar] [CrossRef]
- Hricová, K.; Röderová, M.; Fryčák, P.; Pauk, V.; Kurka, O.; Mezerová, K.; Štosová, T.; Bardoň, J.; Milde, D.; Kučová, P. Prevalence of Vancomycin-Resistant Enterococci and Antimicrobial Residues in Wastewater and Surface Water. Life 2021, 11, 1403. [Google Scholar] [CrossRef]
- Ren, B.; Geng, J.; Wang, Y.; Wang, P. Emission and Ecological Risk of Pharmaceuticals and Personal Care Products Affected by Tourism in Sanya City, China. Environ. Geochem. Health 2021, 43, 3083–3097. [Google Scholar] [CrossRef]
- Molnarova, L.; Halesova, T.; Tomesova, D.; Vaclavikova, M.; Bosakova, Z. Monitoring Pharmaceuticals and Personal Care Products in Healthcare Effluent Wastewater Samples and the Effectiveness of Drug Removal in Wastewater Treatment Plants Using the UHPLC-MS/MS Method. Molecules 2024, 29, 1480. [Google Scholar] [CrossRef]
- El-Yazbi, A.; Korany, M.A.; Nabil, S. Simple Rapid Eco-Friendly Chromatographic Analytical Method for Ten Residual Cephalosporins in Wastewater after Their Pharmaceutical Production. J. Adv. Pharm. Sci. 2024, 1, 48–57. [Google Scholar] [CrossRef]
- Baranauskaite-Fedorova, I.; Dvarioniene, J. Management of Macrolide Antibiotics (Erythromycin, Clarithromycin and Azithromycin) in the Environment: A Case Study of Environmental Pollution in Lithuania. Water 2022, 15, 10. [Google Scholar] [CrossRef]
- Rafi, J.; Daniel, M.; Neppolian, B. Ultrasensitive Detection of Chloramphenicol in Water Using Functionalized Polymers with an Aluminium Organic Framework. Chemosphere 2024, 357, 141981. [Google Scholar] [CrossRef]
- Kairigo, P.; Ngumba, E.; Sundberg, L.-R.; Gachanja, A.; Tuhkanen, T. Occurrence of Antibiotics and Risk of Antibiotic Resistance Evolution in Selected Kenyan Wastewaters, Surface Waters and Sediments. Sci. Total Environ. 2020, 720, 137580. [Google Scholar] [CrossRef]
- Mtetwa, H.N.; Amoah, I.D.; Kumari, S.; Bux, F.; Reddy, P. Optimization of Analytical Methods for Tuberculosis Drug Detection in Wastewater: A Multinational Study. Heliyon 2024, 10, e30720. [Google Scholar] [CrossRef]
- Hossain, M.N.; Hossain, Z.Z.; Roy, A.K.; Akhter, H.; Begum, A. Detection of Oxytetracycline and Chloramphenicol in Untreated Wastewater Effluents by Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) Technique. Afr. J. Pharm. Pharmacol. 2022, 16, 11–18. [Google Scholar]
- Lanaro, V.M.; Sombra, L.L.; Altamirano, J.C.; Almeida, C.A.; Stege, P.W. Chiral Separation of Propranolol by Electrokinetic Chromatography Using Nanodiamonds and Human Serum Albumin as a Pseudo-stationary Phase in River Water. Chirality 2024, 36, e23640. [Google Scholar] [CrossRef]
- Ng, K.; Alygizakis, N.A.; Thomaidis, N.S.; Slobodnik, J. Wide-Scope Target and Suspect Screening of Antibiotics in Effluent Wastewater from Wastewater Treatment Plants in Europe. Antibiotics 2023, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Wei, X.; Zhu, H.; Wang, X.; Zhou, G.; Huang, M.; He, Y. Feasibility of Ultrafiltration-Based Processes for Simultaneous Removal of Trace-Level Ofloxacin and Sulfamethazine from the Effluent of WWTPs. J. Water Process Eng. 2024, 60, 105118. [Google Scholar] [CrossRef]
- Vargas-Muñoz, M.; Boudenne, J.-L.; Coulomb, B.; Robert-Peillard, F.; Palacio, E. Automated Method for the Solid Phase Extraction of Tetracyclines in Wastewater Followed by Fluorimetric Determination. Talanta 2024, 270, 125544. [Google Scholar] [CrossRef]
- Habibi-Yangjeh, A.; Pournemati, K. A Review on Emerging Homojunction Photocatalysts with Impressive Performances for Wastewater Detoxification. Crit. Rev. Environ. Sci. Technol. 2024, 54, 290–320. [Google Scholar] [CrossRef]
- Zhen, C.; Chen, X.; Chen, R.; Fan, F.; Xu, X.; Kang, Y.; Guo, J.; Wang, L.; Lu, G.Q.; Domen, K.; et al. Liquid Metal-Embraced Photoactive Films for Artificial Photosynthesis. Nat. Commun. 2024, 15, 1672. [Google Scholar] [CrossRef] [PubMed]
- Morshedy, A.S.; El-Fawal, E.M.; Zaki, T.; El-Zahhar, A.A.; Alghamdi, M.M.; El Naggar, A.M.A. A Review on Heterogeneous Photocatalytic Materials: Mechanism, Perspectives, and Environmental and Energy Sustainability Applications. Inorg. Chem. Commun. 2024, 163, 112307. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, X.; Tebyetekerwa, M.; Wang, Z.; Bie, C.; Sun, X.; Marriam, I.; Zhang, X. Engineering 2D Photocatalysts for Solar Hydrogen Peroxide Production. Adv. Energy Mater. 2024, 14, 2400740. [Google Scholar] [CrossRef]
- Khoo, V.; Ng, S.; Haw, C.; Ong, W. Additive Manufacturing: A Paradigm Shift in Revolutionizing Catalysis with 3D Printed Photocatalysts and Electrocatalysts Toward Environmental Sustainability. Small 2024, 2401278. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.H.; Abdellah, M.; Alhakemy, A.Z.; Mekhemer, I.M.A.; Aboubakr, A.E.A.; Chen, B.-H.; Sabbah, A.; Lin, K.-H.; Chiu, W.-S.; Lin, S.-J.; et al. Overcoming Small-Bandgap Charge Recombination in Visible and NIR-Light-Driven Hydrogen Evolution by Engineering the Polymer Photocatalyst Structure. Nat. Commun. 2024, 15, 707. [Google Scholar] [CrossRef]
- Ma, L.; Gao, Y.; Wei, B.; Huang, L.; Zhang, N.; Weng, Q.; Zhang, L.; Liu, S.F.; Jiang, R. Visible-Light Photocatalytic H2O2 Production Boosted by Frustrated Lewis Pairs in Defected Polymeric Carbon Nitride Nanosheets. ACS Catal. 2024, 14, 2775–2786. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Xu, Y.-J. Heterogeneous Photocatalysis. In Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Helali, S.; Polo-López, M.I.; Fernández-Ibáñez, P.; Ohtani, B.; Amano, F.; Malato, S.; Guillard, C. Solar Photocatalysis: A Green Technology for E. coli Contaminated Water Disinfection. Effect of Concentration and Different Types of Suspended Catalyst. J. Photochem. Photobiol. A Chem. 2014, 276, 31–40. [Google Scholar] [CrossRef]
- Sharma, S.U.; Elsayed, M.H.; Mekhemer, I.M.; Meng, T.S.; Chou, H.-H.; Kuo, S.-W.; Mohamed, M.G. Rational Design of Pyrene and Thienyltriazine-Based Conjugated Microporous Polymers for High-Performance Energy Storage and Visible-Light Photocatalytic Hydrogen Evolution from Water. Giant 2024, 17, 100217. [Google Scholar] [CrossRef]
- Parkatzidis, K.; Wang, H.S.; Anastasaki, A. Photocatalytic Upcycling and Depolymerization of Vinyl Polymers. Angew. Chem. 2024, 136, e202402436. [Google Scholar] [CrossRef]
- Dey, S.; Manna, K.; Pradhan, P.; Sarkar, A.N.; Roy, A.; Pal, S. Review of Polymeric Nanocomposites for Photocatalytic Wastewater Treatment. ACS Appl. Nano Mater. 2024, 7, 4588–4614. [Google Scholar] [CrossRef]
- Xu, R.; Lai, S.; Zhang, Y.; Zhang, X. Research Progress of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. Nanomaterials 2024, 14, 832. [Google Scholar] [CrossRef]
- Han, C.; Kundu, B.K.; Liang, Y.; Sun, Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. Adv. Mater. 2024, 36, 2307759. [Google Scholar] [CrossRef] [PubMed]
- Tomić, J.; Malinović, N. Titanium Dioxide Photocatalyst: Present Situation and Future Approaches. AIDASCO Rev. 2023, 1, 26–30. [Google Scholar] [CrossRef]
- He, J.; Tallman, D.E.; Bierwagen, G.P. Conjugated Polymers for Corrosion Control: Scanning Vibrating Electrode Studies of Polypyrrole-Aluminum Alloy Interactions. J. Electrochem. Soc. 2004, 151, B644. [Google Scholar] [CrossRef]
- Yan, M.; Tallman, D.; Rasmussen, S.; Bierwagen, G. Corrosion Control Coatings for Aluminum Alloys Based on Neutral and N-Doped Conjugated Polymers. J. Electrochem. Soc. 2009, 156, C360. [Google Scholar] [CrossRef]
- Rohan Khizer, M.; Saddique, Z.; Imran, M.; Javaid, A.; Latif, S.; Mantzavinos, D.; Momotko, M.; Boczkaj, G. Polymer and Graphitic Carbon Nitride Based Nanohybrids for the Photocatalytic Degradation of Pharmaceuticals in Wastewater Treatment—A Review. Sep. Purif. Technol. 2024, 350, 127768. [Google Scholar] [CrossRef]
- Pavliuk, M.V.; Wrede, S.; Liu, A.; Brnovic, A.; Wang, S.; Axelsson, M.; Tian, H. Preparation, Characterization, Evaluation and Mechanistic Study of Organic Polymer Nano-Photocatalysts for Solar Fuel Production. Chem. Soc. Rev. 2022, 51, 6909–6935. [Google Scholar] [CrossRef]
- Nanda, K.K.; Swain, S.; Satpati, B.; Besra, L.; Mishra, B.; Chaudhary, Y.S. Enhanced Photocatalytic Activity and Charge Carrier Dynamics of Hetero-Structured Organic–Inorganic Nano-Photocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 7970–7978. [Google Scholar] [CrossRef]
- Goutham, R.; Badri Narayan, R.; Srikanth, B.; Gopinath, K.P. Supporting Materials for Immobilisation of Nano-Photocatalysts. In Nanophotocatalysis and Environmental Applications; Inamuddin, Sharma, G., Kumar, A., Lichtfouse, E., Asiri, A.M., Eds.; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2019; Volume 29, pp. 49–82. ISBN 978-3-030-10608-9. [Google Scholar]
- Sadowski, R.; Wach, A.; Buchalska, M.; Kuśtrowski, P.; Macyk, W. Photosensitized TiO2 Films on Polymers—Titania-Polymer Interactions and Visible Light Induced Photoactivity. Appl. Surf. Sci. 2019, 475, 710–719. [Google Scholar] [CrossRef]
- Wang, Z.; Bockstaller, M.R.; Matyjaszewski, K. Synthesis and Applications of ZnO/Polymer Nanohybrids. ACS Mater. Lett. 2021, 3, 599–621. [Google Scholar] [CrossRef]
- Ponnamma, D.; Cabibihan, J.-J.; Rajan, M.; Pethaiah, S.S.; Deshmukh, K.; Gogoi, J.P.; Pasha, S.K.K.; Ahamed, M.B.; Krishnegowda, J.; Chandrashekar, B.N.; et al. Synthesis, Optimization and Applications of ZnO/Polymer Nanocomposites. Mater. Sci. Eng. C 2019, 98, 1210–1240. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, Y.; Li, T.; Hussain, S.; Zhu, M. Deep Eutectic Solvents as an Emerging Green Platform for the Synthesis of Functional Materials. Green Chem. 2024, 26, 3627–3669. [Google Scholar] [CrossRef]
- Scharf, S.; Notz, S.; Lang, H. Twin Polymerization: A Unique Strategy towards Versatile Functional Materials. Eur. J. Inorg. Chem. 2024, 27, e202300406. [Google Scholar] [CrossRef]
- Affrald R, J.; Narayan, S. Intranasal Drug Delivery of Antiviral Agents—A Revisit and WayForward. Curr. Drug Ther. 2024, 19, 130–150. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Siraj Lopa, N.; Park, J.; Zhuiykov, S. Plasmonic Nanodomains Decorated on Two-Dimensional Oxide Semiconductors for Photonic-Assisted CO2 Conversion. Materials 2023, 16, 3675. [Google Scholar] [CrossRef]
- Sakhadeo, N.N.; Patro, T.U. Exploring the Multifunctional Applications of Surface-Coated Polymeric Foams─A Review. Ind. Eng. Chem. Res. 2022, 61, 5366–5387. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Tao, M.; Shen, L.; Li, R.; Zhang, M.; Jiao, Y.; Hong, H.; Xu, Y.; Lin, H. In-Situ Growth of UiO-66-NH2 in Porous Polymeric Substrates at Room Temperature for Fabrication of Mixed Matrix Membranes with Fast Molecular Separation Performance. Chem. Eng. J. 2022, 435, 134804. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, M.; Shen, L.; Wang, X.; Ying, D.; Lin, H.; Li, R.; Xu, Y.; Hong, H. High Propensity of Membrane Fouling and the Underlying Mechanisms in a Membrane Bioreactor during Occurrence of Sludge Bulking. Water Res. 2023, 229, 119456. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Liu, Y.; Xu, Y.; Li, R.; Hong, H.; Shen, L.; Lin, H.; Liao, B.-Q. Enhanced Permeability and Antifouling Performance of Polyether Sulfone (PES) Membrane via Elevating Magnetic Ni@MXene Nanoparticles to Upper Layer in Phase Inversion Process. J. Membr. Sci. 2021, 623, 119080. [Google Scholar] [CrossRef]
- Ghali, M.; Brahmi, C.; Benltifa, M.; Vaulot, C.; Airoudj, A.; Fioux, P.; Dumur, F.; Simonnet-Jégat, C.; Morlet-Savary, F.; Jellali, S.; et al. Characterization of Polyoxometalate/Polymer Photo-composites: A Toolbox for the Photodegradation of Organic Pollutants. J. Polym. Sci. 2021, 59, 153–169. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced Functional Polymer Membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
- Srivastava, V.; Srivastava, R. On the Polymeric Foams: Modeling and Properties. J. Mater. Sci. 2014, 49, 2681–2692. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I. The Superhydrophobicity of Polymer Surfaces: Recent Developments. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1203–1217. [Google Scholar] [CrossRef]
- Liu, H.-Z.; Shu, X.-X.; Huang, M.; Wu, B.-B.; Chen, J.-J.; Wang, X.-S.; Li, H.-L.; Yu, H.-Q. Tailoring D-Band Center of High-Valent Metal-Oxo Species for Pollutant Removal via Complete Polymerization. Nat. Commun. 2024, 15, 2327. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.; Duan, X.; Wang, S. Oxidative Polymerization versus Degradation of Organic Pollutants in Heterogeneous Catalytic Persulfate Chemistry. Water Res. 2024, 255, 121485. [Google Scholar] [CrossRef]
- Lee, D.-E.; Danish, M.; Alam, U.; Jo, W.-K. Review on Inorganic and Polymeric Materials-Coordinated Metal-Organic-Framework Photocatalysts for Green Hydrogen Evolution. J. Energy Chem. 2024, 92, 322–356. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Y.; Sun, X.; Li, J.; Wu, J.; Shi, Y.; Pan, L. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromol. Rapid Commun. 2024, 45, 2300246. [Google Scholar] [CrossRef]
- Thien, G.S.H.; Chan, K.-Y.; Marlinda, A.R.; Yap, B.K. Polymer-Enhanced Perovskite Oxide-Based Photocatalysts: A Review. Nanoscale 2023, 15, 19039–19061. [Google Scholar] [CrossRef]
- Kumar, R.; Travas-Sejdic, J.; Padhye, L.P. Conducting Polymers-Based Photocatalysis for Treatment of Organic Contaminants in Water. Chem. Eng. J. Adv. 2020, 4, 100047. [Google Scholar] [CrossRef]
- Li, H.-Y.; Li, Z.-S.; Qiu, G.-H.; Zhang, R.-R.; Wang, Y.-R.; Wang, F.; Huang, R.-W.; Liu, X.-F.; Zang, S.-Q. Viologen-Based Ionic Conjugated Mesoporous Polymer as the Electron Conveyer for Efficient Polysulfide Trapping and Conversion. Sci. Bull. 2024, 69, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Mansha, M.; Ahmad, T.; Ullah, N.; Akram Khan, S.; Ashraf, M.; Ali, S.; Tan, B.; Khan, I. Photocatalytic Water-Splitting by Organic Conjugated Polymers: Opportunities and Challenges. Chem. Rec. 2022, 22, e202100336. [Google Scholar] [CrossRef] [PubMed]
- Enesca, A.; Cazan, C. Polymer Composite-Based Materials with Photocatalytic Applications in Wastewater Organic Pollutant Removal: A Mini Review. Polymers 2022, 14, 3291. [Google Scholar] [CrossRef] [PubMed]
- Ajay, A.; Ramaswamy, K.P.; Thomas, A.V. A Critical Review on the Durability of Geopolymer Composites in Acidic Environment. IOP Conf. Ser. Earth Environ. Sci. 2020, 491, 012044. [Google Scholar] [CrossRef]
- Daems, K.; Yadav, P.; Dermenci, K.B.; Van Mierlo, J.; Berecibar, M. Advances in Inorganic, Polymer and Composite Electrolytes: Mechanisms of Lithium-Ion Transport and Pathways to Enhanced Performance. Renew. Sustain. Energy Rev. 2024, 191, 114136. [Google Scholar] [CrossRef]
- Xue, M.; Zhang, L.; Wang, X.; Dong, Q.; Zhu, Z.; Wang, X.; Gu, Q.; Kang, F.; Li, X.; Zhang, Q. A Metal-Free Helical Covalent Inorganic Polymer: Preparation, Crystal Structure and Optical Properties. Angew. Chem. Int. Ed. 2024, 63, e202315338. [Google Scholar] [CrossRef] [PubMed]
- Intisar, A.; Ramzan, A.; Hafeez, S.; Hussain, N.; Irfan, M.; Shakeel, N.; Gill, K.A.; Iqbal, A.; Janczarek, M.; Jesionowski, T. Adsorptive and Photocatalytic Degradation Potential of Porous Polymeric Materials for Removal of Pesticides, Pharmaceuticals, and Dyes-Based Emerging Contaminants from Water. Chemosphere 2023, 336, 139203. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Hey-Hawkins, E.; Manners, I. Smart Inorganic Polymers. Chem. Soc. Rev. 2016, 45, 5144–5146. [Google Scholar] [CrossRef]
- Sołoducho, J.; Zając, D.; Spychalska, K.; Baluta, S.; Cabaj, J. Conducting Silicone-Based Polymers and Their Application. Molecules 2021, 26, 2012. [Google Scholar] [CrossRef]
- Chauhan, N.P.S.; Hosmane, N.S.; Mozafari, M. Boron-Based Polymers: Opportunities and Challenges. Mater. Today Chem. 2019, 14, 100184. [Google Scholar] [CrossRef]
- Ghorai, A.; Banerjee, S. Phosphorus-Containing Aromatic Polymers: Synthesis, Structure, Properties and Membrane-Based Applications. Prog. Polym. Sci. 2023, 138, 101646. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Huang, H.; Cao, X.; Chen, X.; Cao, D. Porous Organic Polymers as a Platform for Sensing Applications. Chem. Soc. Rev. 2022, 51, 2031–2080. [Google Scholar] [CrossRef] [PubMed]
- Kartsonakis, I.A.; Koumoulos, E.P.; Balaskas, A.C.; Pappas, G.S.; Charitidis, C.A.; Kordas, G.C. Hybrid Organic–Inorganic Multilayer Coatings Including Nanocontainers for Corrosion Protection of Metal Alloys. Corros. Sci. 2012, 57, 56–66. [Google Scholar] [CrossRef]
- Han, M.G.; Lee, Y.J.; Byun, S.W.; Im, S.S. Physical Properties and Thermal Transition of Polyaniline Film. Synth. Met. 2001, 124, 337–343. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Zhang, J.; Chen, Z.; Liu, X.; Wang, K.; Sobolev, A.V.; Savilov, S.V.; Chen, M. High Pseudocapacitance Electrode Enabled by Heterovalent Doping and Surface Coating for Rapid Charge Storage. Surf. Coat. Technol. 2024, 476, 130169. [Google Scholar] [CrossRef]
- Kazemi, F.; Naghib, S.M.; Zare, Y.; Rhee, K.Y. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. Polym. Rev. 2021, 61, 553–597. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lee, H.S.; Lee, C.-G.; Park, S.-J.; Lee, J.; Jung, S.; Shin, G.-A. Application of PANI/TiO2 Composite for Photocatalytic Degradation of Contaminants from Aqueous Solution. Appl. Sci. 2020, 10, 6710. [Google Scholar] [CrossRef]
- Duygun, İ.K.; Altin, Y.; Bedeloglu, A.C. Conducting Polymer Blends, Interpenetrating Polymeric Networks, and Gels Based on Polyvinyl Chloride. In Poly(vinyl chloride)-Based Blends, IPNs, and Gels; Elsevier: Amsterdam, The Netherlands, 2024; pp. 431–455. ISBN 978-0-323-99474-3. [Google Scholar]
- Boudjelida, S.; Li, X.; Djellali, S.; Chiappetta, G.; Russo, F.; Figoli, A.; Carraro, M. Synthesis and Characterization of Polyaniline Emeraldine Salt (PANI-ES) Colloids Using Potato Starch as a Stabilizer, to Enhance the Physicochemical Properties and Processibility. Materials 2024, 17, 2941. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Hu, X.; Wang, T.; Parkin, I.P.; Wang, M.; Boruah, B.D. Polyaniline and Water Pre-Intercalated V2O5 Cathodes for High-Performance Planar Zinc-Ion Micro-Batteries. Chem. Eng. J. 2024, 487, 150384. [Google Scholar] [CrossRef]
- Kundu, S.; Majumder, R.; Pal Chowdhury, M. Superior Ammonia Sensing Properties of PET-supported Polyaniline/Reduced Graphene Oxide/Zinc Ferrite Ternary Nanocomposite Thin Film at Room Temperature. J. Appl. Polym. Sci. 2024, 141, e54755. [Google Scholar] [CrossRef]
- Bekele Mekonnen, T. Electrochemical Sensor Based on Polyaniline Supported CdS/CeO2/Ag3PO4 Nanocomposite for Malathion Detection. Sens. Int. 2024, 5, 100251. [Google Scholar] [CrossRef]
- Ali, M.R.R.; Tigno, S.D.; Honeyman, J.S.; Caldona, E.B. Adhesion-Diffusional-Based Corrosion Protection Mechanisms of Polyaniline-Primed Fluoropolymer Coatings. ACS Appl. Polym. Mater. 2024, 6, 2719–2732. [Google Scholar] [CrossRef]
- Atassi, Y.; Tally, M. Electrochemical Polymerization of Anilinium Hydrochloride. arXiv 2013, arXiv:1307.5668. [Google Scholar]
- Kalaleh, H.-A.; Tally, M.; Atassi, Y. Preparation of a Clay Based Superabsorbent Polymer Composite of Copolymer Poly(Acrylate-Co-Acrylamide) with Bentonite via Microwave Radiation. arXiv 2013, arXiv:1311.6445. [Google Scholar]
- Ullah, R.; Ullah, H.; Shah, A.-H.A.; Bilal, S.; Ali, K. Oligomeric Synthesis and Density Functional Theory of Leucoemeraldine Base Form of Polyaniline. J. Mol. Struct. 2017, 1127, 734–741. [Google Scholar] [CrossRef]
- Yoon, S.-B.; Yoon, E.-H.; Kim, K.-B. Electrochemical Properties of Leucoemeraldine, Emeraldine, and Pernigraniline Forms of Polyaniline/Multi-Wall Carbon Nanotube Nanocomposites for Supercapacitor Applications. J. Power Sources 2011, 196, 10791–10797. [Google Scholar] [CrossRef]
- Quillard, S.; Louarn, G.; Lefrant, S.; Macdiarmid, A.G. Vibrational Analysis of Polyaniline: A Comparative Study of Leucoemeraldine, Emeraldine, and Pernigraniline Bases. Phys. Rev. B 1994, 50, 12496–12508. [Google Scholar] [CrossRef] [PubMed]
- Bobrowska, D.M.; Gdula, K.; Breczko, J.; Basa, A.; Markiewicz, K.H.; Winkler, K. Poly(p-Phenylene Vinylene) Incorporated into Carbon Nanostructures. J. Nanopart. Res. 2022, 24, 222. [Google Scholar] [CrossRef]
- Banerjee, J.; Dutta, K. A Short Overview on the Synthesis, Properties and Major Applications of Poly(p-Phenylene Vinylene). Chem. Pap. 2021, 75, 5139–5151. [Google Scholar] [CrossRef]
- Blayney, A.J.; Perepichka, I.F.; Wudl, F.; Perepichka, D.F. Advances and Challenges in the Synthesis of Poly(p-phenylene Vinylene)-Based Polymers. Isr. J. Chem. 2014, 54, 674–688. [Google Scholar] [CrossRef]
- Basyouni, M.Z.; Abdu, M.E.; Radwan, M.F.; Spring, A.M. From Monomer to Polymer: Controlled Synthesis and Comprehensive Analysis of Poly(p-phenylene vinylene) via ROMP. J. Mol. Struct. 2024, 1310, 138001. [Google Scholar] [CrossRef]
- García-Eguizábal, A.; Gomez Mendoza, M.; Barawi, M.; Collado, L.; Sánchez-Ruiz, A.; García Martínez, J.C.; Liras, M.; De La Peña O’Shea, V.A. Nanostructuration Effect of Carbon-Based Phenylene Vinylene Conjugated Porous Polymers on TiO2 Hybrid Materials for Artificial Photosynthesis. Small Struct. 2024, 5, 2300410. [Google Scholar] [CrossRef]
- Acelas, M.; Pérez, L.D.; Sierra, C.A. Boosting the Photocatalytic Performance of the Oligo (Phenylene Vinylene) Moiety by Copolymerization for the Heterogeneous Degradation of Indigo Carmine Dye. J. Polym. Eng. 2023, 43, 37–46. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Xie, G.; Bai, X.D.; Chen, Y.J. Preparation and Characterisation of Poly(P-phenylene Vinylene)/Semiconductor Nanofibres. Pigment. Resin Technol. 2008, 37, 279–283. [Google Scholar] [CrossRef]
- Postacchini, B.B.; Zucolotto, V.; Dias, F.B.; Monkman, A.; Oliveira, O.N. Energy Transfer in Nanostructured Films Containing Poly(p-Phenylene Vinylene) and Acceptor Species. J. Phys. Chem. C 2009, 113, 10303–10306. [Google Scholar] [CrossRef]
- Pesco, B.; Rodrigues, R.R.; Siqueira, L.J.A.D.; Péres, L.O. Poly(p-Phenylene Vinylene-b-Ethylene Glycol) Dispersed in Butyltrimethylammonium Bis(Trifluoromethanesulfonyl)Imide as Luminescent Ionic Liquids. Mater. Chem. Phys. 2022, 284, 126021. [Google Scholar] [CrossRef]
- Bernhardt, S.; Düring, J.; Haschke, S.; Barr, M.K.S.; Stiegler, L.; Schühle, P.; Bachmann, J.; Hirsch, A.; Gröhn, F. Tunable Photocatalytic Activity of PEO-Stabilized ZnO–Polyoxometalate Nanostructures in Aqueous Solution. Adv. Mater. Interfaces 2021, 8, 2002130. [Google Scholar] [CrossRef]
- Liu, Y.; Zong, L.; Zhang, C.; Liu, W.; Fakhri, A.; Gupta, V.K. Design and Structural of Sm-Doped SbFeO3 Nanopowders and Immobilized on Poly(Ethylene Oxide) for Efficient Photocatalysis and Hydrogen Generation under Visible Light Irradiation. Surf. Interfaces 2021, 26, 101292. [Google Scholar] [CrossRef]
- Malwal, D.; Gopinath, P. Fabrication and Characterization of Poly(Ethylene Oxide) Templated Nickel Oxide Nanofibers for Dye Degradation. Environ. Sci. Nano 2015, 2, 78–85. [Google Scholar] [CrossRef]
- Soitong, T.; Wongsaenmai, S. Photo-Oxidative Degradation Polyethylene Containing Titanium Dioxide and Poly(ethylene oxide). Key Eng. Mater. 2017, 751, 796–800. [Google Scholar] [CrossRef]
- Ma, L.; Deng, L.; Chen, J. Applications of Poly(Ethylene Oxide) in Controlled Release Tablet Systems: A Review. Drug Dev. Ind. Pharm. 2014, 40, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Duraibabu, D.; Sasikumar, Y. Role of Conducting Polymer Nanostructures in Advanced Photocatalytic Applications. In Green Photocatalysts; Naushad, M., Rajendran, S., Lichtfouse, E., Eds.; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2020; Volume 34, pp. 189–208. ISBN 978-3-030-15607-7. [Google Scholar]
- Uday, S.; Chawla, H.; Chandra, A.; Garg, S. Conducting Polymer Hybrid Nanocomposites-Based Photocatalytic Material for Energy Applications. In Photocatalysis for Environmental Remediation and Energy Production; Garg, S., Chandra, A., Eds.; Green Chemistry and Sustainable Technology; Springer International Publishing: Cham, Switzerland, 2023; pp. 417–438. ISBN 978-3-031-27706-1. [Google Scholar]
- Murugan, R. Heterocycles in Polymers. In Progress in Heterocyclic Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; Volume 35, pp. 93–118. ISBN 978-0-443-21936-8. [Google Scholar]
- García Rueda, F.C.; González, J.T. Electrochemical Polymerization of Polypyrrole Coatings on Hard-Anodized Coatings of the Aluminum Alloy 2024-T3. Electrochim. Acta 2020, 347, 136272. [Google Scholar] [CrossRef]
- Huang, Z.-B.; Yin, G.-F.; Liao, X.-M.; Gu, J.-W. Conducting Polypyrrole in Tissue Engineering Applications. Front. Mater. Sci. 2014, 8, 39–45. [Google Scholar] [CrossRef]
- Li, M.; Luo, C.; Zhang, J.; Yang, J.; Xu, J.; Yao, W.; Tan, R.; Duan, X.; Jiang, F. Electrochemical Doping Tuning of Flexible Polypyrrole Film with Enhanced Thermoelectric Performance. Surf. Interfaces 2020, 21, 100759. [Google Scholar] [CrossRef]
- Mikalo, R.P.; Hoffmann, P.; Heller, T.; Batchelor, D.R.; Appel, G.; Schmeißer, D. Doping and Defect Inhomogeneities of Polypyrrole Tosylate Films as Revealed by μ-NEXAFS. Mater. Sci. Eng. C 1999, 8–9, 257–265. [Google Scholar] [CrossRef]
- Toh, H.W.; Toong, D.W.Y.; Ng, J.C.K.; Ow, V.; Lu, S.; Tan, L.P.; Wong, P.E.H.; Venkatraman, S.; Huang, Y.; Ang, H.Y. Polymer Blends and Polymer Composites for Cardiovascular Implants. Eur. Polym. J. 2021, 146, 110249. [Google Scholar] [CrossRef]
- Li, S.; Gao, M.; Zhou, K.; Li, X.; Xian, K.; Zhao, W.; Chen, Y.; He, C.; Ye, L. Achieving Record-High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute-absorber Strategy. Adv. Mater. 2023, 36, 2307278. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Xian, K.; Qiao, J.; Chen, Z.; Bi, P.; Zhang, T.; Zheng, Z.; Hao, X.; Ye, L.; et al. Regulating Phase Separation Kinetics for High-Efficiency and Mechanically Robust All-Polymer Solar Cells. Adv. Mater. 2024, 36, 2305424. [Google Scholar] [CrossRef]
- Hyvärinen, M.; Jabeen, R.; Kärki, T. The Modelling of Extrusion Processes for Polymers—A Review. Polymers 2020, 12, 1306. [Google Scholar] [CrossRef]
- Gaspar-Cunha, A.; Covas, J.A.; Sikora, J. Optimization of Polymer Processing: A Review (Part I—Extrusion). Materials 2022, 15, 384. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; He, C.; Zhang, P. Unified Viscous-to-Inertial Scaling in Liquid Droplet Coalescence. arXiv 2019, arXiv:1906.04970. [Google Scholar]
- Wilczyński, K.; Wilczyński, K.J.; Buziak, K. Modeling and Experimental Studies on Polymer Melting and Flow in Injection Molding. Polymers 2022, 14, 2106. [Google Scholar] [CrossRef]
- Hilger, D.; Hosters, N. A Data-Driven Reduced Order Modeling Approach Applied in Context of Numerical Analysis and Optimization of Plastic Profile Extrusion. arXiv 2022, arXiv:2209.03121. [Google Scholar]
- Carrola, M.; Asadi, A.; Zhang, H.; Papageorgiou, D.G.; Bilotti, E.; Koerner, H. Best of Both Worlds: Synergistically Derived Material Properties via Additive Manufacturing of Nanocomposites. arXiv 2022, arXiv:2202.02378. [Google Scholar] [CrossRef]
- Idumah, C.I.; Obele, C.M. Understanding Interfacial Influence on Properties of Polymer Nanocomposites. Surf. Interfaces 2021, 22, 100879. [Google Scholar] [CrossRef]
- Ingole, S.B.; Sharma, P.; Verma, R.; Chowdhury, S.; Patil, P.P.; Dwivedi, S.P.; Khan, A.K. Enhancing Mechanical and Thermal Properties of Polymer Matrix Nanocomposites through Tailored Nanomaterial Architectures. E3S Web Conf. 2024, 511, 01016. [Google Scholar] [CrossRef]
- Cantarella, M.; Impellizzeri, G.; Di Mauro, A.; Privitera, V.; Carroccio, S.C. Innovative Polymeric Hybrid Nanocomposites for Application in Photocatalysis. Polymers 2021, 13, 1184. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.S.A.; Mostafa, M.H.; Al-Harbi, L.M. Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci. 2022, 23, 1023. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, W.; Tiwari, A.; Tyagi, M.; Singh, P.; Saxena, A.; Verma, D.K.; Dagdag, O.; Sharma, H.K.; Fuertes, P.O.; El Aatiaoui, A. Carbon Dots Nanoparticles: A Promising Breakthrough in Biosensing, Catalysis, Biomedical and Authers Applications. Nano-Struct. Nano-Objects 2024, 37, 101074. [Google Scholar] [CrossRef]
- Genix, A.-C.; Bocharova, V.; Carroll, B.; Dieudonné-George, P.; Chauveau, E.; Sokolov, A.P.; Oberdisse, J. How Tuning Interfaces Impacts the Dynamics and Structure of Polymer Nanocomposites Simultaneously. ACS Appl. Mater. Interfaces 2023, 15, 7496–7510. [Google Scholar] [CrossRef] [PubMed]
- Sobiech, M.; Bujak, P.; Luliński, P.; Pron, A. Semiconductor Nanocrystal–Polymer Hybrid Nanomaterials and Their Application in Molecular Imprinting. Nanoscale 2019, 11, 12030–12074. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y. Gentler, Nanoscale Ion Implantation. Nat. Nanotechnol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.; Kaushik, N.; Linh, N.; Ghimire, B.; Pengkit, A.; Sornsakdanuphap, J.; Lee, S.-J.; Choi, E. Plasma and Nanomaterials: Fabrication and Biomedical Applications. Nanomaterials 2019, 9, 98. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Kumar, V.; Subramaniyan, V.; Nagarajan, K.; Sekar, M.; Chinni, S.V.; Ramachawolran, G. Plasma Modification Techniques for Natural Polymer-Based Drug Delivery Systems. Pharmaceutics 2023, 15, 2066. [Google Scholar] [CrossRef] [PubMed]
- Kaseem, M.; Fatimah, S.; Nashrah, N.; Ko, Y.G. Recent Progress in Surface Modification of Metals Coated by Plasma Electrolytic Oxidation: Principle, Structure, and Performance. Prog. Mater. Sci. 2021, 117, 100735. [Google Scholar] [CrossRef]
- Puliyalil, H.; Cvelbar, U. Selective Plasma Etching of Polymeric Substrates for Advanced Applications. Nanomaterials 2016, 6, 108. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, I.; Xu, S.; Baranov, O.; Bazaka, O.; Ivanova, E.; Bazaka, K. Plasma and Polymers: Recent Progress and Trends. Molecules 2021, 26, 4091. [Google Scholar] [CrossRef]
- Russo, M.; Iervolino, G.; Vaiano, V.; Palma, V. Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020, 10, 1438. [Google Scholar] [CrossRef]
- Ramar, P.; Raghavendra, V.; Murugan, P.; Samanta, D. Immobilization of Polymers to Surfaces by Click Reaction for Photocatalysis with Recyclability. Langmuir 2022, 38, 13344–13357. [Google Scholar] [CrossRef]
- Borodin, D.; Rahinov, I.; Shirhatti, P.R.; Huang, M.; Kandratsenka, A.; Auerbach, D.J.; Zhong, T.; Guo, H.; Schwarzer, D.; Kitsopoulos, T.N.; et al. Following the Microscopic Pathway to Adsorption through Chemisorption and Physisorption Wells. Science 2020, 369, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, A.; Segala, M.; Escobar Colla, T. Equilibrium Conformations and Surface Charge Regulation of Spherical Polymer Brushes in Stretched Regimes. Macromolecules 2022, 55, 35–48. [Google Scholar] [CrossRef]
- Liu, G.; Sun, X.; Li, X.; Wang, Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers 2022, 14, 826. [Google Scholar] [CrossRef] [PubMed]
- Hetemi, D.; Pinson, J. Surface Functionalisation of Polymers. Chem. Soc. Rev. 2017, 46, 5701–5713. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Kumacheva, E. Patterning Surfaces with Functional Polymers. Nat. Mater 2008, 7, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Booth, J.-P.; Mozetič, M.; Nikiforov, A.; Oehr, C. Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications. Plasma Sources Sci. Technol. 2022, 31, 103001. [Google Scholar] [CrossRef]
- Tillet, G.; Boutevin, B.; Ameduri, B. Chemical Reactions of Polymer Crosslinking and Post-Crosslinking at Room and Medium Temperature. Prog. Polym. Sci. 2011, 36, 191–217. [Google Scholar] [CrossRef]
- Lorke, S.; Müller, U.; Meissl, R.; Brüggemann, O. Covalent Cross-Linking of Polymers at Room Temperature. Int. J. Adhes. Adhes. 2019, 91, 150–159. [Google Scholar] [CrossRef]
- Huang, S.; Kong, X.; Xiong, Y.; Zhang, X.; Chen, H.; Jiang, W.; Niu, Y.; Xu, W.; Ren, C. An Overview of Dynamic Covalent Bonds in Polymer Material and Their Applications. Eur. Polym. J. 2020, 141, 110094. [Google Scholar] [CrossRef]
- Fujiyabu, T.; Sakumichi, N.; Katashima, T.; Liu, C.; Mayumi, K.; Chung, U.; Sakai, T. Tri-Branched Gels: Rubbery Materials with the Lowest Branching Factor Approach the Ideal Elastic Limit. Sci. Adv. 2022, 8, eabk0010. [Google Scholar] [CrossRef]
- Yan, C.; Wan, Y.; Long, H.; Luo, H.; Liu, X.; Luo, H.; Chen, S. Improved Capacitive Energy Storage at High Temperature via Constructing Physical Cross-Link and Electron–Hole Pairs Based on P-Type Semiconductive Polymer Filler. Adv. Funct. Mater. 2024, 34, 2312238. [Google Scholar] [CrossRef]
- Irzhak, V.I.; Uflyand, I.E.; Dzhardimalieva, G.I. Self-Healing of Polymers and Polymer Composites. Polymers 2022, 14, 5404. [Google Scholar] [CrossRef] [PubMed]
- König, B. (Ed.) Chemical Photocatalysis; De Gruyter: Berlin, Germany, 2020; ISBN 978-3-11-057676-4. [Google Scholar]
- Tran, V.V.; Nu, T.T.V.; Jung, H.-R.; Chang, M. Advanced Photocatalysts Based on Conducting Polymer/Metal Oxide Composites for Environmental Applications. Polymers 2021, 13, 3031. [Google Scholar] [CrossRef]
- Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent Advances and Perspectives for Solar-Driven Water Splitting Using Particulate Photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.J.; Winey, K.I. Dynamics of Polymer Segments, Polymer Chains, and Nanoparticles in Polymer Nanocomposite Melts: A Review. Prog. Polym. Sci. 2020, 105, 101242. [Google Scholar] [CrossRef]
- Alipoori, S.; Rouhi, H.; Linn, E.; Stumpfl, H.; Mokarizadeh, H.; Esfahani, M.R.; Koh, A.; Weinman, S.T.; Wujcik, E.K. Polymer-Based Devices and Remediation Strategies for Emerging Contaminants in Water. ACS Appl. Polym. Mater. 2021, 3, 549–577. [Google Scholar] [CrossRef]
- Hussain, E.; Ahtesham, A.; Shahadat, M.; Ibrahim, M.N.M.; Ismail, S. Recent Advances of Clay/Polymer-Based Nanomaterials for the Treatment of Environmental Contaminants in Wastewater: A Review. J. Environ. Chem. Eng. 2024, 12, 112401. [Google Scholar] [CrossRef]
- Scopus Preview—Scopus—Welcome to Scopus. Available online: https://www.scopus.com/home.uri (accessed on 2 July 2024).
- Nosrati, R.; Olad, A.; Maramifar, R. Degradation of Ampicillin Antibiotic in Aqueous Solution by ZnO/Polyaniline Nanocomposite as Photocatalyst under Sunlight Irradiation. Environ. Sci. Pollut. Res. 2012, 19, 2291–2299. [Google Scholar] [CrossRef] [PubMed]
- Asgari, E.; Esrafili, A.; Jafari, A.J.; Kalantary, R.R.; Nourmoradi, H.; Farzadkia, M. The Comparison of ZnO/Polyaniline Nanocomposite under UV and Visible Radiations for Decomposition of Metronidazole: Degradation Rate, Mechanism and Mineralization. Process Saf. Environ. Prot. 2019, 128, 65–76. [Google Scholar] [CrossRef]
- Šojić Merkulov, D.V.; Despotović, V.N.; Banić, N.D.; Armaković, S.J.; Finčur, N.L.; Lazarević, M.J.; Četojević-Simin, D.D.; Orčić, D.Z.; Radoičić, M.B.; Šaponjić, Z.V.; et al. Photocatalytic Decomposition of Selected Biologically Active Compounds in Environmental Waters Using TiO2/Polyaniline Nanocomposites: Kinetics, Toxicity and Intermediates Assessment. Environ. Pollut. 2018, 239, 457–465. [Google Scholar] [CrossRef]
- Fatima, T.; Husain, S.; Khanuja, M. Superior Photocatalytic and Electrochemical Activity of Novel WS2/PANI Nanocomposite for the Degradation and Detection of Pollutants: Antibiotic, Heavy Metal Ions, and Dyes. Chem. Eng. J. Adv. 2022, 12, 100373. [Google Scholar] [CrossRef]
- Ujwal, M.P.; Yashas, S.R.; Shivaraju, H.P.; Kumara Swamy, N. Gadolinium Ortho-Ferrite Interfaced Polyaniline: Bi-Functional Catalyst for Electrochemical Detection and Photocatalytic Degradation of Acetaminophen. Surf. Interfaces 2022, 30, 101878. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nawaz, T.; Nabi, G.; Sagir, M.; Rafique, M.; Ahmed, A.; Muhammad, S. Photocatalytic Degradation and Hydrogen Evolution Using Bismuth Tungstate Based Nanocomposites under Visible Light Irradiation. Int. J. Hydrogen Energy 2020, 45, 22833–22847. [Google Scholar] [CrossRef]
- Kumar, A.; Chandel, M.; Sharma, A.; Thakur, M.; Kumar, A.; Pathania, D.; Singh, L. Robust Visible Light Active PANI/LaFeO3/CoFe2O4 Ternary Heterojunction for the Photo-Degradation and Mineralization of Pharmaceutical Effluent: Clozapine. J. Environ. Chem. Eng. 2021, 9, 106159. [Google Scholar] [CrossRef]
- Dai, W.; Jiang, L.; Wang, J.; Pu, Y.; Zhu, Y.; Wang, Y.; Xiao, B. Efficient and Stable Photocatalytic Degradation of Tetracycline Wastewater by 3D Polyaniline/Perylene Diimide Organic Heterojunction under Visible Light Irradiation. Chem. Eng. J. 2020, 397, 125476. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, D.; Xie, Z.; He, Q.; Yu, J. The Degradation of Ibuprofen in a Novel Microbial Fuel Cell with PANi@CNTs/SS Bio-Anode and CuInS2 Photocatalytic Cathode: Property, Efficiency and Mechanism. J. Clean. Prod. 2020, 265, 121872. [Google Scholar] [CrossRef]
- Tian, X.; Liu, S.; Zhang, B.; Wang, S.; Dong, S.; Liu, Y.; Feng, L.; Zhang, L. Carbonized Polyaniline-Activated Peracetic Acid Advanced Oxidation Process for Organic Removal: Efficiency and Mechanisms. Environ. Res. 2023, 219, 115035. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, S.; Ferreira, C.D.; Oliveira, V.; Varejão, J.M.T.B.; Labrincha, J.A.; Tobaldi, D.M. Synthesis of PPy-ZnO Composite Used as Photocatalyst for the Degradation of Diclofenac under Simulated Solar Irradiation. J. Photochem. Photobiol. A Chem. 2019, 375, 261–269. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, S.; Gu, P.; Zhang, T.; Chen, D.; Li, N.; Xu, Q.; Lu, J. Conjugate Polymer-Clothed TiO2@V2O5 Nanobelts and Their Enhanced Visible Light Photocatalytic Performance in Water Remediation. J. Colloid Interface Sci. 2020, 578, 402–411. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Divya, P.L.; Nima, J. Utilization of Polypyrrole Coated Iron-Doped Titania Based Hydrogel for the Removal of Tetracycline Hydrochloride from Aqueous Solutions: Adsorption and Photocatalytic Degradation Studies. Environ. Nanotechnol. Monit. Manag. 2015, 4, 106–117. [Google Scholar] [CrossRef]
- Zia, J.; Kashyap, J.; Riaz, U. Facile Synthesis of Polypyrrole Encapsulated V2O5 Nanohybrids for Visible Light Driven Green Sonophotocatalytic Degradation of Antibiotics. J. Mol. Liq. 2018, 272, 834–850. [Google Scholar] [CrossRef]
- Kumar, R.S.; Govindan, K.; Ramakrishnan, S.; Kim, A.R.; Kim, J.-S.; Yoo, D.J. Fe3O4 Nanorods Decorated on Polypyrrole/Reduced Graphene Oxide for Electrochemical Detection of Dopamine and Photocatalytic Degradation of Acetaminophen. Appl. Surf. Sci. 2021, 556, 149765. [Google Scholar] [CrossRef]
- Zhu, Z.; Tang, X.; Ma, C.; Song, M.; Gao, N.; Wang, Y.; Huo, P.; Lu, Z.; Yan, Y. Fabrication of Conductive and High-Dispersed Ppy@Ag/g-C3N4 Composite Photocatalysts for Removing Various Pollutants in Water. Appl. Surf. Sci. 2016, 387, 366–374. [Google Scholar] [CrossRef]
- Abinaya, M.; Rajakumaran, R.; Chen, S.-M.; Karthik, R.; Muthuraj, V. In Situ Synthesis, Characterization, and Catalytic Performance of Polypyrrole Polymer-Incorporated Ag2MoO4 Nanocomposite for Detection and Degradation of Environmental Pollutants and Pharmaceutical Drugs. ACS Appl. Mater. Interfaces 2019, 11, 38321–38335. [Google Scholar] [CrossRef] [PubMed]
- Das, K.K.; Patnaik, S.; Mansingh, S.; Behera, A.; Mohanty, A.; Acharya, C.; Parida, K.M. Enhanced Photocatalytic Activities of Polypyrrole Sensitized Zinc Ferrite/Graphitic Carbon Nitride n-n Heterojunction towards Ciprofloxacin Degradation, Hydrogen Evolution and Antibacterial Studies. J. Colloid Interface Sci. 2020, 561, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Ye, Z.; Liu, Z.; Chen, Z.; Li, J.; Xiang, Z. Adsorption Characteristics of Polymer Solutions on Media Surfaces and Their Main Influencing Factors. Polymers 2021, 13, 1774. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sharma, V.; Mishra, P.K.; Ekielski, A. A Review on Polyacrylonitrile as an Effective and Economic Constituent of Adsorbents for Wastewater Treatment. Molecules 2022, 27, 8689. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E. Advantages and Disadvantages of Techniques Used for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S.; Shahzad, K. A Review on Removal of Pharmaceuticals from Water by Adsorption. Desalination Water Treat. 2016, 57, 12842–12860. [Google Scholar] [CrossRef]
- Shaipulizan, N.S.; Md Jamil, S.N.A.; Kamaruzaman, S.; Subri, N.N.S.; Adeyi, A.A.; Abdullah, A.H.; Abdullah, L.C. Preparation of Ethylene Glycol Dimethacrylate (EGDMA)-Based Terpolymer as Potential Sorbents for Pharmaceuticals Adsorption. Polymers 2020, 12, 423. [Google Scholar] [CrossRef]
- Kamaraj, M.; Suresh Babu, P.; Shyamalagowri, S.; Pavithra, M.K.S.; Aravind, J.; Kim, W.; Govarthanan, M. β-Cyclodextrin Polymer Composites for the Removal of Pharmaceutical Substances, Endocrine Disruptor Chemicals, and Dyes from Aqueous Solution—A Review of Recent Trends. J. Environ. Manag. 2024, 351, 119830. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Mary, Y.S.; Resmi, K.S.; Narayana, B.; Sarojini, S.B.K.; Armaković, S.; Armaković, S.J.; Vijayakumar, G.; Alsenoy, C.V.; Mohan, B.J. Synthesis and Spectroscopic Study of Two New Pyrazole Derivatives with Detailed Computational Evaluation of Their Reactivity and Pharmaceutical Potential. J. Mol. Struct. 2019, 1181, 599–612. [Google Scholar] [CrossRef]
- Mary, Y.S.; Mary, Y.S.; Thomas, R.; Narayana, B.; Samshuddin, S.; Sarojini, B.K.; Armaković, S.; Armaković, S.J.; Pillai, G.G. Theoretical Studies on the Structure and Various Physico-Chemical and Biological Properties of a Terphenyl Derivative with Immense Anti-Protozoan Activity. Polycycl. Aromat. Compd. 2021, 41, 825–840. [Google Scholar] [CrossRef]
- Beegum, S.; Mary, Y.S.; Mary, Y.S.; Thomas, R.; Armaković, S.; Armaković, S.J.; Zitko, J.; Dolezal, M.; Van Alsenoy, C. Exploring the Detailed Spectroscopic Characteristics, Chemical and Biological Activity of Two Cyanopyrazine-2-Carboxamide Derivatives Using Experimental and Theoretical Tools. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117414. [Google Scholar] [CrossRef] [PubMed]
- Haruna, K.; Kumar, V.S.; Armaković, S.J.; Armaković, S.; Mary, Y.S.; Thomas, R.; Popoola, S.A.; Almohammedi, A.R.; Roxy, M.S.; Al-Saadi, A.A. Spectral Characterization, Thermochemical Studies, Periodic SAPT Calculations and Detailed Quantum Mechanical Profiling Various Physico-Chemical Properties of 3,4-Dichlorodiuron. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117580. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, J.S.; Mary, Y.S.; Armaković, S.; Thomas, R. Hybrid and Bioactive Cocrystals of Pyrazinamide with Hydroxybenzoic Acids: Detailed Study of Structure, Spectroscopic Characteristics, Other Potential Applications and Noncovalent Interactions Using SAPT. J. Mol. Struct. 2020, 1202, 127316. [Google Scholar] [CrossRef]
- Bielenica, A.; Beegum, S.; Mary, Y.S.; Mary, Y.S.; Thomas, R.; Armaković, S.; Armaković, S.J.; Madeddu, S.; Struga, M.; Van Alsenoy, C. Experimental and Computational Analysis of 1-(4-Chloro-3-Nitrophenyl)-3-(3,4-Dichlorophenyl)Thiourea. J. Mol. Struct. 2020, 1205, 127587. [Google Scholar] [CrossRef]
- Neto, O.P.V. Intelligent Computational Nanotechnology: The Role of Computational Intelligence in the Development of Nanoscience and Nanotechnology. J. Comput. Theor. Nanosci. 2014, 11, 928–944. [Google Scholar] [CrossRef]
- Gooneie, A.; Schuschnigg, S.; Holzer, C. A Review of Multiscale Computational Methods in Polymeric Materials. Polymers 2017, 9, 16. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods II. Applications. J. Comput. Chem. 1989, 10, 221–264. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods I. Method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods VI: More Modifications to the NDDO Approximations and Re-Optimization of Parameters. J. Mol. Model. 2013, 19, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S.; Grimme, S. Extended Tight-Binding Quantum Chemistry Methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput. 2021, 17, 4250–4261. [Google Scholar] [CrossRef] [PubMed]
- Pracht, P.; Caldeweyher, E.; Ehlert, S.; Grimme, S. A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for Large Molecules. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef] [PubMed]
- Blau, S.; Spotte-Smith, E.W.C.; Wood, B.; Dwaraknath, S.; Persson, K. Accurate, Automated Density Functional Theory for Complex Molecules Using On-the-Fly Error Correction. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Yan, Y.; Yu, X.; Shao, C.; Hu, Y.; Huang, W.; Li, Y. Atomistic Structural Engineering of Conjugated Microporous Polymers Promotes Photocatalytic Biomass Valorization. Adv. Funct. Mater. 2023, 33, 2304604. [Google Scholar] [CrossRef]
- Mizera, A.; Dubis, A.T.; Łapiński, A. Density Functional Theory Studies of Polypyrrole and Polypyrrole Derivatives; Substituent Effect on the Optical and Electronic Properties. Polymer 2022, 255, 125127. [Google Scholar] [CrossRef]
- Adekoya, O.C.; Adekoya, G.J.; Sadiku, E.R.; Hamam, Y.; Ray, S.S. Application of DFT Calculations in Designing Polymer-Based Drug Delivery Systems: An Overview. Pharmaceutics 2022, 14, 1972. [Google Scholar] [CrossRef] [PubMed]
- Shah, E.V.; Patel, C.M.; Roy, D.R. Structure, Electronic, Optical and Thermodynamic Behavior on the Polymerization of PMMA: A DFT Investigation. Comput. Biol. Chem. 2018, 72, 192–198. [Google Scholar] [CrossRef]
- Franco, F.C.; Padama, A.A.B. DFT and TD-DFT Study on the Structural and Optoelectronic Characteristics of Chemically Modified Donor-Acceptor Conjugated Oligomers for Organic Polymer Solar Cells. Polymer 2016, 97, 55–62. [Google Scholar] [CrossRef]
- Nicholls, I.A.; Golker, K.; Olsson, G.D.; Suriyanarayanan, S.; Wiklander, J.G. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers 2021, 13, 2841. [Google Scholar] [CrossRef]
- Grimme-Lab/Xtb 2024. Available online: https://github.com/grimme-lab/xtb/releases (accessed on 24 June 2024).
- User Guide to Semiempirical Tight Binding—Xtb Doc 2023 Documentation. Available online: https://xtb-docs.readthedocs.io/en/latest/ (accessed on 29 May 2024).
- Startseite. Available online: https://www.chemie.uni-bonn.de/grimme/de (accessed on 29 May 2024).
- Armaković, S.; Armaković, S.J. Online and Desktop Graphical User Interfaces for Xtb Programme from Atomistica.Online Platform. Mol. Simul. 2024, 50, 560–570. [Google Scholar] [CrossRef]
- Armaković, S.; Armaković, S.J. Atomistica.Online—Web Application for Generating Input Files for ORCA Molecular Modelling Package Made with the Anvil Platform. Mol. Simul. 2023, 49, 117–123. [Google Scholar] [CrossRef]
- Liakos, D.G.; Guo, Y.; Neese, F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A 2020, 124, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Riplinger, C.; Liakos, D.G.; Becker, U.; Saitow, M.; Neese, F. Linear Scaling Perturbative Triples Correction Approximations for Open-Shell Domain-Based Local Pair Natural Orbital Coupled Cluster Singles and Doubles Theory [DLPNO-CCSD(T0/T)]. J. Chem. Phys. 2020, 152, 024116. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The SHARK Integral Generation and Digestion System. J. Comput. Chem. 2022, 44, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Teale, A.M.; Helgaker, T.; Savin, A.; Adamo, C.; Aradi, B.; Arbuznikov, A.V.; Ayers, P.W.; Baerends, E.J.; Barone, V.; Calaminici, P.; et al. DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science. Phys. Chem. Chem. Phys. 2022, 24, 28700–28781. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- ORCA Forum—Portal. Available online: https://orcaforum.kofo.mpg.de/app.php/portal (accessed on 29 May 2024).
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Multiwfn Website. Available online: http://sobereva.com/multiwfn/ (accessed on 30 May 2024).
- Saleh, G.; Gatti, C.; Lo Presti, L. Non-Covalent Interaction via the Reduced Density Gradient: Independent Atom Model vs Experimental Multipolar Electron Densities. Comput. Theor. Chem. 2012, 998, 148–163. [Google Scholar] [CrossRef]
- Schrödinger—Physics-Based Software Platform for Molecular Discovery & Design. Available online: https://www.schrodinger.com/ (accessed on 30 May 2024).
- Materials Science. Available online: https://www.schrodinger.com/materials-science/ (accessed on 30 May 2024).
- Schrödinger Platform Application: Polymeric Materials. Available online: https://www.schrodinger.com/materials-science/solutions/polymeric-materials/ (accessed on 30 May 2024).
- Kumar, R.; Akbarinejad, A.; Jasemizad, T.; Fucina, R.; Travas-Sejdic, J.; Padhye, L.P. The Removal of Metformin and Other Selected PPCPs from Water by Poly(3,4-Ethylenedioxythiophene) Photocatalyst. Sci. Total Environ. 2021, 751, 142302. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Vijayanandan, A. Review on Support Materials Used for Immobilization of Nano-Photocatalysts for Water Treatment Applications. Inorg. Chim. Acta 2023, 545, 121284. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Gao, X.; Ding, Y.; Zhang, S.; Zhao, J.; Liu, S.; Yang, M. Immobilization of TiO2 Nanoparticles in Polymeric Substrates by Chemical Bonding for Multi-Cycle Photodegradation of Organic Pollutants. J. Hazard. Mater. 2012, 227–228, 185–194. [Google Scholar] [CrossRef]
- Melinte, V.; Culica, M.E.; Chibac-Scutaru, A.L. Cellulose Acetate/Polyurethane Blend as Support Matrix with High Optical Transparency and Improved Mechanical Properties for Photocatalyst CeO2 Nanoparticles Immobilization. Int. J. Biol. Macromol. 2023, 251, 126210. [Google Scholar] [CrossRef]
- Park, H.; Park, Y.; Kim, W.; Choi, W. Surface Modification of TiO2 Photocatalyst for Environmental Applications. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 1–20. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Cheng, G.; Luo, Q.; An, J.; Wang, Y. Preparation of Polyaniline-Modified TiO2 Nanoparticles and Their Photocatalytic Activity under Visible Light Illumination. Appl. Catal. B Environ. 2008, 81, 267–273. [Google Scholar] [CrossRef]
- Liang, H.; Li, X. Visible-Induced Photocatalytic Reactivity of Polymer–Sensitized Titania Nanotube Films. Appl. Catal. B Environ. 2009, 86, 8–17. [Google Scholar] [CrossRef]
- Muktha, B.; Mahanta, D.; Patil, S.; Madras, G. Synthesis and Photocatalytic Activity of Poly(3-Hexylthiophene)/TiO2 Composites. J. Solid State Chem. 2007, 180, 2986–2989. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Luo, Q.; Li, X.; Duan, Y.; An, J. Characterization and Photocatalytic Activity of Poly(3-Hexylthiophene)-Modified TiO2 for Degradation of Methyl Orange under Visible Light. J. Hazard. Mater. 2009, 169, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dan, Y. Photocatalytic Activity of Poly(3-Hexylthiophene)/Titanium Dioxide Composites for Degrading Methyl Orange. Sol. Energy Mater. Sol. Cells 2010, 94, 1658–1664. [Google Scholar] [CrossRef]
- Song, L.; Qiu, R.; Mo, Y.; Zhang, D.; Wei, H.; Xiong, Y. Photodegradation of Phenol in a Polymer-Modified TiO2 Semiconductor Particulate System under the Irradiation of Visible Light. Catal. Commun. 2007, 8, 429–433. [Google Scholar] [CrossRef]
- Valadez-Renteria, E.; Oliva, J.; Rodriguez-Gonzalez, V. Photocatalytic Materials Immobilized on Recycled Supports and Their Role in the Degradation of Water Contaminants: A Timely Review. Sci. Total Environ. 2022, 807, 150820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Biswas, M.R.U.D.; Oh, W.-C. A Novel BiVO4-GO-TiO2-PANI Composite for Upgraded Photocatalytic Performance under Visible Light and Its Non-Toxicity. Environ. Sci. Pollut. Res. 2019, 26, 11888–11904. [Google Scholar] [CrossRef] [PubMed]
- Ok, S.; Vayer, M.; Sinturel, C. A Decade of Innovation and Progress in Understanding the Morphology and Structure of Heterogeneous Polymers in Rigid Confinement. Soft Matter 2021, 17, 7430–7458. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, Y.; Li, H. Incorporating Polymers within a Single-crystal: From Heterogeneous Structure to Multiple Functions. J. Polym. Sci. 2022, 60, 1151–1173. [Google Scholar] [CrossRef]
- Ghobeira, R.; Esbah Tabaei, P.S.; Morent, R.; De Geyter, N. Chemical Characterization of Plasma-Activated Polymeric Surfaces via XPS Analyses: A Review. Surf. Interfaces 2022, 31, 102087. [Google Scholar] [CrossRef]
- Ran, X.; Duan, L.; Chen, X.; Yang, X. Photocatalytic Degradation of Organic Dyes by the Conjugated Polymer Poly(1,3,4-Oxadiazole)s and Its Photocatalytic Mechanism. J. Mater. Sci. 2018, 53, 7048–7059. [Google Scholar] [CrossRef]
- Chin, S.S.; Chiang, K.; Fane, A.G. The Stability of Polymeric Membranes in a TiO2 Photocatalysis Process. J. Membr. Sci. 2006, 275, 202–211. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Garratt, A.; Nguyen, K.; Brooke, A.; Taylor, M.J.; Francesconi, M.G. Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid. ACS Environ. Au 2023, 3, 342–347. [Google Scholar] [CrossRef] [PubMed]
Type of Polymer Composite | Synthesis of Photocatalyst | Contaminant | Light | Removal Efficiency (%) | Lamp Power | Reference |
---|---|---|---|---|---|---|
ZnO/PANI nanocomposite | Chemical adsorption | Ampicillin | Sunlight | 41% in 120 min | - | [198] |
ZnO/PANI nanocomposite | In situ chemical polymerization | Metronidazole | Visible | 97% in 180 min | 300 W Xenon lamp | [199] |
TiO2/PANI nanocomposite | Oxidative polymerization | Propranolol | UV irradiation | 34% in 60 min | 125 W High-pressure mercury lamp | [200] |
TiO2/PANI nanocomposite | Oxidative polymerization | Amitriptyline | UV irradiation | 45% in 60 min | 125 W High-pressure mercury lamp | [200] |
WS2/PANI nanocomposite | In situ polymerization | Nitrofurantoin | Visible | 99% in 120 min | Xenon arc lamp | [201] |
GdFeO3/PANI | In situ oxidative polymerization | Acetaminophen | Visible | 88% in 60 min | 30 W Light emitting diode | [202] |
Bi2WO6/PANI | Intercalation | Ciprofloxacin | Visible | 98% in 90 min | 50 W Halogen lamp | [203] |
PANI/LaFeO3/CoFe2O4 ternary heterojunction | In situ polymerization | Clozapine | Visible | 92% in 120 min | 50 W Halogen lamp | [204] |
3D PANI/Perylene diimide | In situ growth | Tetracycline | Visible | 70% in 120 min | 5 W LED lamp (420 nm cut-off filter) | [205] |
PANi@carbon nanotubes/stainless steel | In situ polymerization | Ibuprofen | Visible | 76% in 35 min | 300 W Xenon lamp | [206] |
Carbonized PANI-activated peracetic acid | Interfacial polymerization | Sulfamethoxazole | Visible | 100% in 60 min | 30 W Light emitting diode | [207] |
Carbonized PANI-activated peracetic acid | Interfacial polymerization | Naproxen | Visible | 100% in 60 min | 30 W Light emitting diode | [207] |
Carbonized PANI-activated peracetic acid | Interfacial polymerization | Antipyrine | Visible | 30% in 60 min | 30 W Light emitting diode | [207] |
Type of Polymer Composite | Synthesis of Photocatalyst | Contaminant | Light | Removal Efficiency (%) | Lamp Power | Reference |
---|---|---|---|---|---|---|
PPy-ZnO | Polymerization | Diclofenac | UV and visible | 81% in 60 min | Xenon lamp (wavelength range 250–800 nm) | [208] |
TiO2@V2O5-PPy | In situ polymerization | Tetracycline | Visible | 98% in 120 min | 300 W Xenon lamp | [209] |
TiO2@V2O5-PPy | In situ polymerization | Doxycycline | Visible | 96% in 120 min | 300 W Xenon lamp | [209] |
TiO2@V2O5-PPy | In situ polymerization | Oxytetracycline | Visible | 85% in 120 min | 300 W Xenon lamp | [209] |
Fe-TiO2-PPy | Polymerization | Tetracycline hydrochloride | Sunlight | 96% in 180 min | - | [210] |
PPy/V2O5 | Ultrasound-assisted synthesis | Ciprofloxacin | Visible | 53% in 50 min | 300 W Xenon arc lamp | [211] |
PPy/V2O5 | Ultrasound-assisted synthesis | Erythromycin | Visible | 76% in 50 min | 300 W Xenon arc lamp | [211] |
Fe3O4@PPy/rGO | Chemical reflux | Acetaminophen | UV and visible | 84% in 120 min | 250 W tungsten-halogen | [212] |
PPy@Ag/g-C3N4 | Calcination followed by surface polymerization | Danofloxacin | Visible | 90% in 60 min | 300 W Xenon lamp | [213] |
PPy@Ag/g-C3N4 | Calcination followed by surface polymerization | Tetracycline | Visible | 95% in 60 min | 300 W Xenon lamp | [213] |
PPy@Ag/g-C3N4 | Calcination followed by surface polymerization | Ciprofloxacin | Visible | 92% in 60 min | 300 W Xenon lamp | [213] |
PPy@Ag/g-C3N4 | Calcination followed by surface polymerization | Gatifloxacin | Visible | 89% in 60 min | 300 W Xenon lamp | [213] |
PPy@Ag/g-C3N4 | Calcination followed by surface polymerization | Enrofloxacin hydrochloride | Visible | 91% in 60 min | 300 W Xenon lamp | [213] |
Ag2MoO4/PPy | In situ synthesis | Ciprofloxacin | Sunlight | 100% in 10 min | - | [214] |
PPy-sensitized zinc ferrite/graphitic carbon nitride | In situ polymerization | Ciprofloxacin | Visible | 92% in 120 min | 300 W Xenon lamp | [215] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armaković, S.J.; Armaković, S.; Savanović, M.M. Photocatalytic Application of Polymers in Removing Pharmaceuticals from Water: A Comprehensive Review. Catalysts 2024, 14, 447. https://doi.org/10.3390/catal14070447
Armaković SJ, Armaković S, Savanović MM. Photocatalytic Application of Polymers in Removing Pharmaceuticals from Water: A Comprehensive Review. Catalysts. 2024; 14(7):447. https://doi.org/10.3390/catal14070447
Chicago/Turabian StyleArmaković, Sanja J., Stevan Armaković, and Maria M. Savanović. 2024. "Photocatalytic Application of Polymers in Removing Pharmaceuticals from Water: A Comprehensive Review" Catalysts 14, no. 7: 447. https://doi.org/10.3390/catal14070447
APA StyleArmaković, S. J., Armaković, S., & Savanović, M. M. (2024). Photocatalytic Application of Polymers in Removing Pharmaceuticals from Water: A Comprehensive Review. Catalysts, 14(7), 447. https://doi.org/10.3390/catal14070447