The Influence of Au Loading and TiO2 Support on the Catalytic Wet Air Oxidation of Glyphosate over TiO2+Au Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
Sample | SBET | Vpore | dpore | dAu * | Crystallite Size | dTiO2 | lTiO2 | SBH ** |
---|---|---|---|---|---|---|---|---|
m2/g | cm3/g | nm | nm | nm | nm | nm | eV | |
TP | 88 | 0.30 | 14.8 | / | 21.3 | 30 | 40 | / |
TP + 0.5% Au | 71 | 0.28 | 14.6 | 37.0 | 21.3 | 0.26 | ||
TP + 1% Au | 74 | 0.29 | 14.2 | 36.9 | 21.3 | 0.22 | ||
TP + 2% Au | 75 | 0.27 | 13.7 | 54.0 | 21.3 | 0.15 | ||
TR | 105 | 0.57 | 19.3 | / | 16.7 | 20 | 80–100 | / |
TR + 1% Au | 94 | 0.44 | 18.9 | 9.2 | 16.5 | 0.16 |
2.2. CWAO of Glyphosate
2.3. Identification of Degradation Products
3. Experimental
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Glyphosate Oxidation Runs in a Trickle-Bed Reactor
3.4. Analysis of the End-Product Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Vashishtha, M.; Saroha, A.K. Catalytic wet air oxidation of oxalic acid using platinum catalyst in bubble column reactor. J. Eng. Sci. Tech. Rev. 2010, 3, 95–107. [Google Scholar] [CrossRef]
- Luck, F. Wet air oxidation: Past, present and future. Catal. Today 1999, 53, 81–91. [Google Scholar] [CrossRef]
- Levec, J.; Pintar, A. Catalytic wet-air oxidation processes: A review. Catal. Today 2007, 124, 172–184. [Google Scholar] [CrossRef]
- Cybulski, A. Catalytic wet air oxidation: are monolithic catalysts and reactors feasible? Ind. Eng. Chem. Res. 2007, 46, 4007–4033. [Google Scholar] [CrossRef]
- Bistan, M.; Tišler, T.; Pintar, A. Catalytic and photocatalytic oxidation of aqueous bisphenol a solutions: Removal, toxicity, and estrogenicity. Ind. Eng. Chem. Res. 2011, 51, 8826–8834. [Google Scholar] [CrossRef]
- Pintar, A.; Batista, J.; Tišler, T. Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl. Catal. B 2008, 84, 30–41. [Google Scholar] [CrossRef]
- Erjavec, B.; Kaplan, R.; Djinović, P.; Pintar, A. Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl. Catal. B 2013, 132–133, 342–352. [Google Scholar] [CrossRef]
- Kaplan, R.; Erjavec, B.; Senila, M.; Pintar, A. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts. Environ. Sci. Pollut. Res. 2014, 21, 11313–11319. [Google Scholar] [CrossRef]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Bleak, T.C.; Calaf, G.M. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere 2021, 270, 128619. [Google Scholar] [CrossRef]
- Zhang, J.W.; Xu, D.Q.; Feng, X.Z. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. Chemosphere 2019, 237, 124435. [Google Scholar] [CrossRef]
- Kudsk, P.; Mathiassen, S.K. Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci. 2020, 68, 214–222. [Google Scholar] [CrossRef]
- Jacquet, F.; Delame, N.; Vita, J.L.; Huyghe, C.; Reboud, X. The microeconomic impacts of a ban on glyphosate and its replacement with mechanical weeding in French vineyards. Crop Prot. 2021, 150, 105778. [Google Scholar] [CrossRef]
- Matousek, T.; Mitter, H.; Kropf, B.; Schmid, E.; Vogel, S. Farmers’ intended weed management after a potential glyphosate Ban in Austria. Environ. Manag. 2022, 69, 871–886. [Google Scholar] [CrossRef]
- Leonelli, G.C. The glyphosate saga continues: ‘dissenting’member states and the European way forward. Transl. Environ. Law 2023, 12, 200–224. [Google Scholar] [CrossRef]
- Peruzzo, P.J.; Porta, A.A.; Ronco, A.E. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ. Pollut. 2008, 156, 61–66. [Google Scholar] [CrossRef]
- Botta, F.; Lavison, G.; Couturier, G.; Alliot, F.; Moreau-Guigon, E.; Fauchon, N.; Guery, B.; Chevreuil, M.; Blanchoud, H. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems. Chemosphere 2009, 77, 133–139. [Google Scholar] [CrossRef]
- European Community Council. L330, 32-5498/83 EEC Directive Concerning the Quality of Water Intended for Human Consumption; Official Journal of the European Communities: Luxembourg, 1998. [Google Scholar]
- Muñoz, P.G.; Dachtler, W.; Altmayer, B.; Schulz, R.; Robert, D.; Seitz, F.; Rosenfeldt, R.; Keller, N. Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chem. Eng. J. 2020, 384, 123315. [Google Scholar] [CrossRef]
- El Agrebi, N.; Tosi, S.; Wilmart, O.; Scippo, M.L.; de Graaf, D.C.; Saegerman, C. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): Residues in beebread, wax, and honey. Sci. Total Environ. 2020, 704, 135312. [Google Scholar] [CrossRef]
- Manassero, A.; Passalia, C.; Negro, A.C.; Cassano, A.E.; Zalazar, C.S. Glyphosate degradation in water employing the H2O2/UVC process. Water Res. 2010, 44, 3875–3882. [Google Scholar] [CrossRef]
- Bonansea, R.I.; Filippi, I.; Wunderlin, D.A.; Marino, D.J.G.; Amé, M.V. The fate of glyphosate and AMPA in a freshwater endorheic basin: An ecotoxicological risk assessment. Toxics 2017, 6, 3. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Gupta, P.; Pandey, K.; Verma, N. Augmented complete mineralization of glyphosate in wastewater via microbial degradation post CWAO over supported Fe-CNF. J. Chem. Eng. 2022, 428, 132008. [Google Scholar] [CrossRef]
- Gupta, P.; Verma, N. Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. J. Chem. Eng. 2021, 417, 128029. [Google Scholar] [CrossRef]
- Xing, B.; Chen, H.; Zhang, X. Efficient degradation of organic phosphorus in glyphosate wastewater by catalytic wet oxidation using modified activated carbon as a catalyst. Environ. Technol. 2018, 39, 749–758. [Google Scholar] [CrossRef]
- Žerjav, G.; Kaplan, R.; Pintar, A. Catalytic wet air oxidation of bisphenol A aqueous solution in trickle-bed reactor over single TiO2 polymorphs and their mixtures. J. Environ. Chem. Eng. 2018, 6, 2148–2158. [Google Scholar] [CrossRef]
- Cojocaru, B.; Andrei, V.; Tudorache, M.; Lin, F.; Cadigan, C.; Richards, R.; Parvulescu, V.I. Enhanced photo-degradation of bisphenol pollutants onto gold-modified photocatalysts. Catal. Today 2017, 284, 153–159. [Google Scholar] [CrossRef]
- Shi, D.; Liu, J.; Ji, S. Preparation of Au/TiO2 catalyst and the performance of liquid methanol catalytic oxidation to formic acid. Ind. Eng. Chem. Res. 2017, 56, 11028–11033. [Google Scholar] [CrossRef]
- Alvaro, M.; Cojocaru, B.; Ismail, A.A.; Petrea, N.; Ferrer, B.; Harraz, F.A.; Parvulescu, V.I.; Garcia, H. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl. Catal. B 2010, 99, 191–197. [Google Scholar] [CrossRef]
- Mrowetz, M.; Villa, A.; Prati, L.; Selli, E. Effects of Au nanoparticles on TiO2 in the photocatalytic degradation of an azo dye. Gold Bull. 2007, 40, 154–160. [Google Scholar] [CrossRef]
- Žerjav, G.; Say, Z.; Zavašnik, J.; Finšgar, M.; Langhammer, C.; Pintar, A. Photo, thermal and photothermal activity of TiO2 supported Pt catalysts for plasmon-driven environmental applications. J. Environ. Chem. Eng. 2023, 11, 110209. [Google Scholar] [CrossRef]
- D’Agostino, C.; Brett, G.; Divitini, G.; Ducati, C.; Hutchings, G.J.; Mantle, M.D.; Gladden, L.F. Increased affinity of small gold particles for glycerol oxidation over Au/TiO2 probed by NMR relaxation methods. ACS Catal. 2017, 7, 4235–4241. [Google Scholar] [CrossRef]
- Žerjav, G.; Roškarič, M.; Zavašnik, J.; Kovač, J.; Pintar, A. Effect of Au loading on Schottky barrier height in TiO2 + Au plasmonic photocatalysts. Appl. Surf. Sci. 2022, 579, 152196. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Yu, J.G.; Xiong, J.F.; Cheng, B.; Liu, S.W. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B 2005, 60, 211–221. [Google Scholar] [CrossRef]
- Shu, Y.; Ji, J.; Zhou, M.; Liang, S.; Xie, Q.; Li, S.; Liu, B.; Deng, J.; Cao, J.; Liu, S.; et al. Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Appl. Catal. B 2022, 300, 120688. [Google Scholar] [CrossRef]
- Jovic, V.; Al-Azri, Z.H.N.; Chen, W.T.; Sun-Waterhouse, D.; Idriss, H.; Waterhouse, G.I.N. Photocatalytic H2 production from ethanol-water mixtures over Pt/TiO2 and Au/TiO2 photocatalysts: A comparative study. Top. Catal. 2013, 56, 1139–1151. [Google Scholar] [CrossRef]
- Serpone, N.; Lawless, D.; Khairutdinov, R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization or direct transitions in this indirect semiconductor? J. Phys. Chem. 1995, 99, 16646–16654. [Google Scholar] [CrossRef]
- Nakajima, H.; Mori, T.; Watanabe, M. Influence of platinum loading on photoluminescence of TiO2 powder. J. Appl. Phys. 2004, 96, 925–927. [Google Scholar] [CrossRef]
- Nakajima, H.; Mori, T. Photoluminescence of Pt-loaded TiO2 powder. Phys. B 2006, 376–377, 820–822. [Google Scholar] [CrossRef]
- Abazović, N.D.; Čomor, M.I.; Dramićanin, M.D.; Jovanović, D.J.; Ahrenkiel, S.P.; Nedeljković, J.M. Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 2006, 110, 25366–25370. [Google Scholar] [CrossRef]
- Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Fedorenko, L.; Kshnyakin, V.; Baran, J. Room temperature photoluminescence of anatase and rutile TiO2 powders. J. Lumin. 2014, 146, 199–204. [Google Scholar] [CrossRef]
- Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Schumacher, B.; Plzak, V.; Cai, J.; Behm, R.J. Reproducibility of highly active Au/TiO2 catalyst preparation and conditioning. Catal. Lett. 2005, 101, 215–224. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Ma, Y.; Cao, Y.; Yao, J.; Zhang, J.; Hu, T. Synthesis and characterization of titania prepared by using a photoassisted sol−gel method. Langmuir 2003, 19, 3001–3005. [Google Scholar] [CrossRef]
- Chen, H.; Li, P.; Umezawa, N.; Abe, H.; Ye, J.; Shiraishi, K.; Ohta, A.; Miyazaki, S. Bonding and Electron Energy-Level Alignment at Metal/TiO2 Interfaces: A Density Functional Theory Study. J. Phys. Chem. C 2016, 120, 5549–5556. [Google Scholar] [CrossRef]
- Arshad, M.S.; Trafela, Š.; Rožman, K.Ž.; Kovač, J.; Djinović, P.; Pintar, A. Determination of Schottky barrier height and enhanced photoelectron generation in novel plasmonic immobilized multisegmented (Au/TiO2) nanorod arrays (NRAs) suitable for solar energy conversion applications. J. Mater. Chem. C 2017, 5, 10509–10516. [Google Scholar] [CrossRef]
- Yang, J.H.; Henao, J.D.; Raphulu, M.C.; Wang, Y.; Caputo, T.; Groszek, A.J.; Kung, M.C.; Scurrell, M.S.; Miller, J.T.; Kung, H.H. Activation of Au/TiO2 Catalyst for CO Oxidation. J. Phys. Chem. B 2005, 109, 10319–10326. [Google Scholar] [CrossRef]
- Murdoch, M.; Waterhouse, G.I.N.; Nadeem, M.A.; Metson, J.B.; Keane, M.A.; Howe, R.F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489–492. [Google Scholar] [CrossRef]
- Jovic, V.; Chen, W.-T.; Sun-Waterhouse, D.; Blackford, M.G.; Idriss, H.; Waterhouse, G.I.N. Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol–water mixtures. J. Catal. 2013, 305, 307–317. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Qian, K.; Sweeny, B.C.; Johnston-Peck, A.C.; Niu, W.; Graham, J.O.; DuChene, J.S.; Qiu, J.; Wang, Y.-C.; Engelhard, M.H.; Su, D.; et al. Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842–9845. [Google Scholar] [CrossRef]
- Erjavec, B.; Tišler, T.; Kaplan, R.; Pintar, A. Titanate nanotubes as a novel catalyst for removal of toxicity and estrogenicity of bisphenol A in the CWAO process. Ind. Eng. Chem. Res. 2013, 52, 12559–12566. [Google Scholar] [CrossRef]
- Xu, R.; Gao, Z.; Chen, J.; Yan, W. From Zeolite to Porous MOF Materials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Luxembourg, D.; Flamant, G.; Laplaze, D. Solar synthesis of single-walled carbon nanotubes at medium scale. Carbon 2005, 43, 2302–2310. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, H.; Zong, R.; Zhu, Y. Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J. Phys. Chem. C 2009, 113, 2368–2374. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y. Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere 2007, 67, 1010–1017. [Google Scholar] [CrossRef]
- Echavia, G.R.M.; Matzusawa, F.; Negishi, N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 2009, 76, 595–600. [Google Scholar] [CrossRef]
- Barrett, K.A.; McBride, M.B. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ. Sci. Technol. 2005, 39, 9223–9228. [Google Scholar] [CrossRef] [PubMed]
- Muneer, M.; Boxall, C. Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide. Int. J. Photoenergy 2008, 2008, 197346. [Google Scholar] [CrossRef]
- Žerjav, G.; Arshad, M.S.; Djinović, P.; Zavašnik, J.; Pintar, A. Electron trapping energy states of TiO2-WO3 composites and their influence on photocatalytic degradation of bisphenol A. Appl. Catal. B 2017, 209, 273–284. [Google Scholar] [CrossRef]
Sample | Amount of Acidic Sites | Density of Acidic Sites | Peak of Pyridine Desorption |
---|---|---|---|
mmol/g | mmol/(m2/g) | °C | |
TP | 0.174 | 0.0019 | 312, 454, 554, above 700 |
TP * | 0.183 | 0.0021 | 310, 450, 550 |
TP + 0.5% Au | 0.121 | 0.0017 | 320, 441, 619 |
TP + 1% Au | 0.139 | 0.0018 | 320, 453, 614 |
TP + 1% Au * | 0.140 | 0.0018 | 318, 451, 613 |
TP + 2% Au | 0.068 | 0.0009 | 376, above 700 |
TR | 0.210 | 0.0020 | 310, 630 |
TR * | 0.204 | 0.0019 | 310, 630 |
TR + 1% Au | 0.190 | 0.0020 | 310, 629, above 750 |
TR + 1% Au * | 0.190 | 0.0020 | 308, 625, above 750 |
Sample | Glyphosate Conversion | TOC Conversion | TCfresh | TCspent | TOCaccu | TOCminer |
---|---|---|---|---|---|---|
0–96 h | 0–96 h | |||||
% | mg/g | % | ||||
TP | 35 | 19 | 0.16 | 0.27 | 2.7 | 16.3 |
TP + 0.5% Au | 51 | 41 | 0.13 | 0.46 | 8.1 | 33.9 |
TP + 1% Au | 67 | 48 | 0.11 | 0.36 | 6.1 | 41.9 |
TP + 2% Au | 45 | 30 | 0.17 | 0.50 | 8.1 | 21.9 |
TR | 51 | 29 | 0.13 | 0.33 | 4.9 | 24.1 |
TR + 1% Au | 65 | 42 | 0.15 | 0.57 | 10.3 | 31.7 |
Time on Stream | Glyoxylic Acid | Sarcosine | Glycine | Oxalic Acid | MPA | AMPA |
---|---|---|---|---|---|---|
h | mg/L | |||||
0 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.73 |
20 | 0.21 | n.d. | 0.18 | n.d. | n.d. | 1.20 |
40 | 0.25 | n.d. | 0.32 | n.d. | n.d. | 1.69 |
90 | 0.31 | n.d. | 0.50 | n.d. | n.d. | 2.30 |
Parameter | Value |
---|---|
Mass of catalyst in bed, g | 0.3 |
Reaction temperature, °C | 135–150 |
Total operating pressure, bar | 13.1–14.7 |
Oxygen partial pressure, bar | 10.0 |
Gas flow rate, mL/min | 60.0 |
Liquid flow rate, mL/min | 1.0 |
Glyphosate feed concentration, mg/L | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žerjav, G.; Albreht, A.; Pintar, A. The Influence of Au Loading and TiO2 Support on the Catalytic Wet Air Oxidation of Glyphosate over TiO2+Au Catalysts. Catalysts 2024, 14, 448. https://doi.org/10.3390/catal14070448
Žerjav G, Albreht A, Pintar A. The Influence of Au Loading and TiO2 Support on the Catalytic Wet Air Oxidation of Glyphosate over TiO2+Au Catalysts. Catalysts. 2024; 14(7):448. https://doi.org/10.3390/catal14070448
Chicago/Turabian StyleŽerjav, Gregor, Alen Albreht, and Albin Pintar. 2024. "The Influence of Au Loading and TiO2 Support on the Catalytic Wet Air Oxidation of Glyphosate over TiO2+Au Catalysts" Catalysts 14, no. 7: 448. https://doi.org/10.3390/catal14070448
APA StyleŽerjav, G., Albreht, A., & Pintar, A. (2024). The Influence of Au Loading and TiO2 Support on the Catalytic Wet Air Oxidation of Glyphosate over TiO2+Au Catalysts. Catalysts, 14(7), 448. https://doi.org/10.3390/catal14070448