On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of Preparation Method on Pd Monometallic Catalysts
2.1.1. Temperature Programmed Reaction under Hydrogen (H2-TPR)
Catalysts | T (°C) | H2/Pd | μmol H2/gcatal |
---|---|---|---|
Pd(0.3)-HMOR(IE80) | 85–180 | 0.8 | 26 |
Pd(0.3)-HMOR(IE) | 70–200 | 0.9 | 39 |
Pd(0.3)-HMOR(IWI) | 85–200 | 1.0 | 29 |
Catalysts | Gaussian Peak A | Gaussian Peak B | ||
---|---|---|---|---|
T (°C) | Amount of Pd2+ | T (°C) | Amount of Pd2+ | |
Pd(0.3)-HMOR(IE80) | 129 | 78% | 144 | 22% |
Pd(0.3)-HMOR(IE) | 118 | 69% | 141 | 31% |
Pd(0.3)-HMOR(IWI) | 137 | 58% | 152 | 42% |
2.1.2. Diffuse Reflectance UV-Vis Spectroscopy (DRS UV-Vis)
2.1.3. NOx CH4-SCR
2.2. The Effect of Pd Loading on Pd/Ce Bimetallic Catalysts
2.2.1. Temperature Programmed Reaction under Hydrogen (H2-TPR)
Catalysts | Peak 1 | Peak 2 | ||||
---|---|---|---|---|---|---|
T (°C) | H2/Pd | μmol H2/gcatal. | T (°C) | H2/Ce | μmol H2/gcatal. | |
Ce(2)-HMOR | - | - | - | 335–810 | 0.13 | 19 |
Pd(0.15)Ce(2)-HMOR | 80–220 | 2.9 | 40 | 265–560 | 0.11 | 14 |
Pd(0.3)Ce(2)-HMOR | 95–215 | 1.4 | 39 | 240–560 | 0.28 | 37 |
Pd(0.5)Ce(2)-HMOR | 80–220 | 1.6 | 80 | 260–555 | 0.24 | 29 |
Pd(0.7)Ce(2)-HMOR | 75–220 | 1.4 | 91 | 240–560 | 0.38 | 51 |
2.2.2. Diffuse Reflectance UV-Vis Spectroscopy (DRS UV-Vis)
2.2.3. NOx CH4-SCR
2.3. The Effect of Metal Introduction Order
2.3.1. Temperature Programmed Reaction under Hydrogen (H2-TPR)
Catalysts | Peak 1 | Peak 2 | ||||
---|---|---|---|---|---|---|
T (°C) | H2/Pd | μmol H2/gcatal. | T (°C) | H2/Ce | μmol H2/gcatal. | |
Pd(0.3)Ce(2)-HMOR | 95–215 | 1.4 | 39 | 240–560 | 0.28 | 37 |
Ce(2)Pd(0.3)-HMOR | 70–220 | 1.9 | 76 | 250–560 | 0.25 | 32 |
2.3.2. Diffuse Reflectance UV-Vis Spectroscopy (DRS UV-Vis)
2.3.3. NOx CH4-SCR
3. Experimental Section
3.1. Catalyst Preparation
Catalysts | Al (wt. %) | Pd (wt. %) | Ce (wt. %) | ERPd * (%) | ERCe * (%) |
---|---|---|---|---|---|
Pd(0.3)-HMOR(IE80) | 3.6 | 0.35 | - | 5.0 | - |
Pd(0.3)-HMOR(IE) | 3.3 | 0.36 | - | 5.5 | - |
Pd(0.3)-HMOR(IWI) | 3.1 | 0.30 | - | 4.8 | - |
Ce(2)-HMOR | 3.3 | - | 2.1 | - | 36.6 |
Pd(0.15)Ce(2)-HMOR | 3.2 | 0.15 | 1.8 | 2.4 | 32.9 |
Pd(0.3)Ce(2)-HMOR | 3.4 | 0.29 | 1.9 | 4.3 | 32.2 |
Pd(0.5)Ce(2)-HMOR | 3.3 | 0.52 | 1.7 | 7.9 | 29.6 |
Pd(0.7)Ce(2)-HMOR | 3.2 | 0.70 | 1.9 | 11.3 | 35.0 |
Ce(2)Pd(0.3)-HMOR | 3.2 | 0.42 | 1.8 | 6.8 | 33.6 |
3.2. Catalyst Characterization
3.3. Catalyst Tests
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Environment Agency. Nec Directive Status Report 2013; European Environment Agency: Luxembourg, 2014. [Google Scholar]
- Granger, P.; Parvulescu, V.I. Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies. Chem. Rev. 2011, 111, 3155–3207. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Gao, P.X. A review of NOx storage/reduction catalysts: Mechanism, materials and degradation studies. Catal. Sci. Technol. 2011, 1, 552–568. [Google Scholar] [CrossRef]
- Iwasaki, M.; Shinjoh, H. A comparative study of “standard”, “fast” and “NO2” SCR reactions over Fe/zeolite catalyst. Appl. Catal. A 2010, 390, 71–77. [Google Scholar] [CrossRef]
- Armor, J.N. Catalytic reduction of nitrogen-oxides with methane in the presence of excess oxygen—A review. Catal. Today 1995, 26, 147–158. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Capela, S.; da Costa, P.; Henriques, C.; Ribeiro, M.F.; Ribeiro, F.R. CH4-SCR of NO over Co and Pd ferrierite catalysts: Effect of preparation on catalytic performance. Catal. Today 2007, 119, 156–165. [Google Scholar] [CrossRef]
- Decolatti, H.; Solt, H.; Lonyi, F.; Valyon, J.; Miro, E.; Gutierrez, L. The role of Pd-In interactions on the performance of PdIn-Hmordenite in the SCR of NOx with CH4. Catal. Today 2011, 172, 124–131. [Google Scholar] [CrossRef]
- Sobalik, Z. Abatement of NOx and N2O using zeolite catalysts. In New and Future Developments in Catalysis: Catalysis for Remediation and Environmental Concerns; Suib, S.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 155–194. [Google Scholar]
- Pieterse, J.A.Z.; Booneveld, S. Catalytic reduction of NO, with H2/CO/CH4 over PdMOR catalysts. Appl. Catal. B 2007, 73, 327–335. [Google Scholar] [CrossRef]
- Costilla, I.O.; Sanchez, M.D.; Alicia Volpe, M.; Gigola, C.E. Ce effect on the selective catalytic reduction of NO with CH4 on Pd-mordenite in the presence of O2 and H2O. Catal. Today 2011, 172, 84–89. [Google Scholar] [CrossRef]
- Mendes, A.N.; Zholobenko, V.L.; Thibault-Starzyk, F.; da Costa, P.; Henriques, C. On the enhancing effect of Ce in Pd-MOR catalysts for NOx CH4-SCR: A structure-reactivity study. J. Catal. 2015. submitted. [Google Scholar]
- Homeyer, S.T.; Sachtler, W.M.H. Oxidative redispersion of palladium and formation of PdO particles in NaY—An application of high-precision TPR. Appl. Catal. 1989, 54, 189–202. [Google Scholar] [CrossRef]
- Adelman, B.J.; Sachtler, W.M.H. The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts. Appl. Catal. B 1997, 14, 1–11. [Google Scholar] [CrossRef]
- Reifsnyder, S.N.; Otten, M.M.; Lamb, H.H. Nucleation and growth of Pd clusters in mordenite. Catal. Today 1998, 39, 317–328. [Google Scholar] [CrossRef]
- Alayon, E.M.; Nachtegaal, M.; Ranocchiari, M.; van Bokhoven, J.A. Catalytic conversion of methane to methanol over Cu-mordenite. Chem. Commun. 2012, 48, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Sun, Q.; Sachtler, W.M.H. Function of Pd0n clusters, Pd2+(oxo-) ions, and Pdo clusters in the catalytic reduction of NO with methane over Pd/MFI catalysts. J. Catal. 2001, 204, 314–323. [Google Scholar] [CrossRef]
- De Oliveira, A.M.; Costilla, I.; Gigola, C.; Baibich, I.M.; da Silva, V.T.; Pergher, S.B.C. Characterization of Pd-mordenite catalysts for NO decomposition. Catal. Lett. 2010, 136, 185–191. [Google Scholar] [CrossRef]
- Shimizu, K.; Okada, F.; Nakamura, Y.; Satsuma, A.; Hattori, T. Mechanism of NO reduction by CH4 in the presence of O2 over Pd-H-mordenite. J. Catal. 2000, 195, 151–160. [Google Scholar] [CrossRef]
- Mortier, W.J. Compilation of Extra Framework Sites in Zeolites; Butterworth Scientific Limited: Surrey, UK, 1982. [Google Scholar]
- Kaucky, D.; Vondrova, A.; Dedecek, J.; Wichterlova, B. Activity of Co ion sites in ZSM-5, ferrierite, and mordenite in selective catalytic reduction of NO with methane. J. Catal. 2000, 194, 318–329. [Google Scholar] [CrossRef]
- Marques, R.; Mazri, L.; da Costa, S.; Delacroix, F.; Djega-Mariadassou, G.; da Costa, P. Selective reduction of NOx by hydrogen and methane in natural gas stationary sources over alumina-supported Pd, Co and Co/Pd catalysts—Part A. On the effect of palladium precursors and catalyst pre-treatment. Catal. Today 2008, 137, 179–184. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Cordoba, L.F.; Flytzani-Stephanopoulos, M.; de Correa, C.M. Lean NOx reduction with dodecane over cerium and palladium loaded mordenite. Appl. Catal. B 2001, 33, 25–33. [Google Scholar] [CrossRef]
- Li, Z.J.; Flytzani-Stephanopoulos, M. On the promotion of Ag-ZSM-5 by cerium for the SCR of NO by methane. J. Catal. 1999, 182, 313–327. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Dieguez, L.C. Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Appl. Catal. A 2000, 201, 241–251. [Google Scholar] [CrossRef]
- Marques, R.; Mazri, L.; da Costa, S.; Delacroix, F.; Djega-Mariadassou, G.; da Costa, P. Selective reduction of NOx by hydrogen and methane in natural gas stationary sources over alumina supported Pd, Co and Co/Pd catalysts—Part B: On the effect of bimetallic catalyst preparation. Catal. Today 2008, 137, 185–190. [Google Scholar] [CrossRef]
- Gelin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. Appl. Catal. B 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Li, Y.J.; Armor, J.N. Catalytic combustion of methane over palladium exchanged zeolites. Appl. Catal. B 1994, 3, 275–282. [Google Scholar] [CrossRef]
- Descorme, C.; Gélin, P.; Lécuyer, C.; Primet, M. Catalytic reduction of nitric oxide by methane in the presence of oxygen on palladium-exchanged mordenite zeolites. J. Catal. 1998, 177, 352–362. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, A.N.; Ribeiro, M.F.; Henriques, C.; Da Costa, P. On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application. Catalysts 2015, 5, 1815-1830. https://doi.org/10.3390/catal5041815
Mendes AN, Ribeiro MF, Henriques C, Da Costa P. On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application. Catalysts. 2015; 5(4):1815-1830. https://doi.org/10.3390/catal5041815
Chicago/Turabian StyleMendes, Acácio Nobre, Maria Filipa Ribeiro, Carlos Henriques, and Patrick Da Costa. 2015. "On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application" Catalysts 5, no. 4: 1815-1830. https://doi.org/10.3390/catal5041815
APA StyleMendes, A. N., Ribeiro, M. F., Henriques, C., & Da Costa, P. (2015). On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application. Catalysts, 5(4), 1815-1830. https://doi.org/10.3390/catal5041815