Catalysis-Based Cataluminescent and Conductometric Gas Sensors: Sensing Nanomaterials, Mechanism, Applications and Perspectives
Abstract
:1. Introduction
2. Challenges for Catalysis-Based Gas Sensors
- (i)
- Developing small sized sensing materials is significant to achieve a high reactivity for catalytic reaction with target molecules. In recent years, nanomaterials have shown remarkably enhanced catalytic performance. Currently, a general preparation route that can apply extensive sensing nanomaterials is highly demanded.
- (ii)
- Dealing with multi-component gases, two potential strategies could be considered: (a) improving the selectivity of gas sensor, which only shows response to a specific target gas; and (b) fabricating sensor array for multi-channel signal analysis simultaneously. The responding behaviors of different sensing materials toward different gases are not the same, making it possible to distinguish each target by combining with some algorithms such as principal component analysis (PCA) [21,22].
- (iii)
- Acquiring weak sensing signals including cataluminescence and electric current is difficult when detecting trace concentration gases. In many cases, as the gas concentration reduces, sensing signal produced by sensors becomes poor [23,24]; thus, an efficient approach to acquire those signals and distinguish valuable data from noise is important for gas detection.
- (iv)
- In order to reduce cost and simplify the operation procedures, a stable sensing performance of catalysis-based gas sensors is essential. However, commonly, high sensitivity would be in opposition to good long-term stability. Obtaining acceptable sensitivity and stability simultaneously remains a challenge. To achieve this, fabricating multi-functional structure and composite would be a potential strategy. For example, porous single-crystalline nanostructure is benefit for good gas adsorption, high reactivity, and structural stability.
- (v)
- The catalytic mechanism of some sensing materials is not yet clear, which greatly restricts the design of novel high-performance sensing structures.
3. Cataluminescent Gas Sensors
3.1. Sensing Mechanism and Features
3.2. Typical Cataluminescent Detection System
3.3. Applications of Cataluminescent Gas Sensors
3.3.1. Cataluminescent Gas Sensors for Detecting Multi-Component Volatile Organic Compounds (VOCs)
3.3.2. Cataluminescent Gas Sensors for Detecting Alcohol
3.3.3. Cataluminescent Gas Sensors for Benzene Detection
3.3.4. Cataluminescent Gas Sensors for Ether Detection
3.3.5. Cataluminescent Gas Sensors for Detecting Aldehyde
3.3.6. Cataluminescent Gas Sensors for Detecting Inorganic Gas H2S
4. Catalysis-Based Conductometric Semiconductor Gas Sensors
4.1. Sensing Mechanism and Features
4.2. Conductometric Detection System
4.3. Applications of Catalysis-Based Conductometric Semiconductor Gas Sensors
4.3.1. Noble Metal Nanoparticle Enhanced Catalytically Sensing Effect
4.3.2. Small Size Effect on Catalysis-Based Conductometric Gas Sensors
4.3.3. Combination of the Catalytic Effects of Noble Metal Nanoparticles and Small Size
5. Summary and Perspective
Acknowledgments
Conflicts of Interest
References
- Mittal, M.; Kumar, A. Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning. Sens. Actuators B Chem. 2014, 203, 349–362. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.K.; Ahn, J.H. Flexible and stretchable oxide electronics. Adv. Electron. Mater. 2016, 2. [Google Scholar] [CrossRef]
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Fan, H.Z.; Peng, Z.K.; Yang, H.W.; Zhou, K.W. A new cataluminescence-based gas sensor for simultaneously discriminating benzene and ammonia. Anal. Methods 2016, 8, 1257–1264. [Google Scholar] [CrossRef]
- Wan, X.Y.; Wu, L.Q.; Zhang, L.C.; Song, H.J.; Lv, Y. Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. Sens. Actuators B Chem. 2015, 220, 614–621. [Google Scholar] [CrossRef]
- Griffin, M.J.; Kabir, K.M.M.; Coyle, V.E.; Kandjani, A.E.; Sabri, Y.M.; Ippolito, S.J.; Bhargava, S.K. A nanoengineered conductometric device for accurate analysis of elemental mercury vapor. Environ. Sci. Technol. 2016, 50, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Xu, X.X.; Liu, X.X.; Lau, K.T. Fabrication of textile based conductometric polyaniline gas sensor. Sens. Actuators B Chem. 2014, 202, 732–740. [Google Scholar] [CrossRef]
- Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R.J.J. Chemiluminescense during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal. 1976, 45, 137–144. [Google Scholar] [CrossRef]
- Rao, Z.M.; Liu, L.J.; Xie, J.Y. Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3. Luminescence 2008, 23, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Sha, W.; Ni, S.W.; Zheng, C.H. Development of cataluminescence sensor system for benzene and toluene determination. Sens. Actuators B Chem. 2015, 209, 297–305. [Google Scholar] [CrossRef]
- Men, H.; Chen, D.L.; Zhang, X.T.; Liu, J.J.; Ning, K. Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. J. Sens. 2014, 2014. [Google Scholar] [CrossRef]
- Liu, C.; Wang, B.Q.; Liu, T.; Sun, P.; Gao, Y.; Liu, F.M.; Lu, GY. Facile synthesis and gas sensing properties of the flower-like NiO-decorated ZnO microstructures. Sens. Actuators B Chem. 2016, 235, 294–301. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J. Enhanced gas sensing mechanisms of metal oxide heterojunction gas sensors. Acta Phys. Chim. Sin. 2016, 32, 1087–1104. [Google Scholar]
- Tang, F.; Guo, C.A.; Chen, J.; Zhang, X.R.; Zhang, S.C.; Wang, X.H. Cataluminescence-based sensors: Principle, instrument and application. Luminescence 2015, 30, 919–939. [Google Scholar] [PubMed]
- Zhang, C.C.; Chen, P.L.; Hu, W.P. Organic field-effect transistor-based gas sensors. Chem. Soc. Rev. 2015, 44, 2087–2107. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.G.; Chatterjee, S.; Ray, A.K.; Chakraborty, A.K. Graphene-metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B Chem. 2015, 221, 1170–1181. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Sanger, A.; Kumar, A.; Kumar, A.; Chandra, R. Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens. Actuators B Chem. 2016, 23, 8–14. [Google Scholar] [CrossRef]
- Alizadeh, T.; Soltani, L.H. Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor. Sens. Actuators B Chem. 2016, 234, 361–370. [Google Scholar] [CrossRef]
- Zhao, L.; Li, X.G.; Wang, J.; Yao, P.J.; Akbar, S.A. Detection of formaldehyde in mixed VOCs gases using sensor array with neural networks. IEEE Sens. J. 2016, 16, 6081–6086. [Google Scholar] [CrossRef]
- Vorobyeva, N.; Rumyantseva, M.; Filatova, D.; Konstantinova, E.; Grishina, D.; Abakumov, A.; Turner, S.; Gaskov, A. Nanocrystalline ZnO(Ga): Paramagnetic centers, surface acidity and gas sensor properties. Sens. Actuators B Chem. 2013, 182, 555–564. [Google Scholar] [CrossRef]
- Manchukutty, S.; Vasa, N.J.; Agarwal, V.; Chandapillai, J. Dual Photoionization source-based differential mobility sensor for trace gas detection in human breath. IEEE Sens. J. 2015, 15, 4899–4904. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, L.C.; Hu, J.; Cai, P.Y.; Lv, Y. A cataluminescence gas sensor based on nanosized V2O5 for tert-butyl mercaptan. Talanta 2010, 82, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.Z.; Zhang, L.C.; Song, H.J.; Jiang, X.M.; Lv, Y. Hierarchical SnO2 architectures: Controllable growth on graphene by atmospheric pressure chemical vapour deposition and application in cataluminescence gas sensor. CrystEngComm 2014, 16, 3331–3340. [Google Scholar] [CrossRef]
- Calestani, D.; Mosca, R.; Zanichelli, M.; Villani, M.; Zappettini, A. Aldehyde detection by ZnO tetrapod-based gas sensors. J. Mater. Chem. 2011, 21, 15532–15536. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Li, Z.H.; Xi, W.; Lu, C. Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescencesensing platform. Sens. Actuators B Chem. 2015, 219, 354–360. [Google Scholar] [CrossRef]
- Han, J.Y.; Han, F.F.; Ouyang, J.; He, L.X.; Zhang, Y.T.; Na, N. Low temperature CO sensor based on cataluminescence from plasma-assisted catalytic oxidation on Ag doped alkaline-earth nanomaterials. Nanoscale 2014, 6, 3069–3072. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.L.; Sun, B.; Jin, Z.; Liu, J.H.; Li, M.Q. Synthesis of SiO2/Fe3O4 nanomaterial and its application as cataluminescence gas sensor material for ether. Sens. Actuators B Chem. 2012, 171, 699–704. [Google Scholar] [CrossRef]
- Weng, Y.Y.; Zhang, L.C.; Zhu, W.; Lv, Y. One-step facile synthesis of coral-like Zn-doped SnO2 and its cataluminescence sensing of 2-butanone. J. Mater. Chem. A 2015, 3, 7132–7138. [Google Scholar] [CrossRef]
- Xu, H.L.; Li, Q.Y.; Zhang, L.C.; Zeng, B.R.; Deng, D.Y.; Lv, Y. Transient cataluminescence on flowerlike MgO for discrimination and detection of volatile organic compounds. Anal. Chem. 2016, 88, 8137–8144. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Song, H.J.; Zeng, B.R.; Zhang, L.C.; Lv, Y. Cataluminescence gas sensor for ketones based on nanosized NaYF4:Er. Sens. Actuators B Chem. 2016, 222, 300–306. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, Z.W.; Chen, X.; Sun, B.; Li, M.Q.; Liu, J.H.; Huang, X.J. Novel cocoon-like Au/La2O3 nanomaterials: Synthesis and their ultra-enhanced cataluminescence performance to volatile organic compounds. J. Mater. Chem. 2011, 21, 1874–1879. [Google Scholar] [CrossRef]
- Liao, L.; Mai, H.X.; Yuan, Q.; Lu, H.B.; Li, J.C.; Liu, C.; Yan, C.H.; Shen, Z.X.; Yu, T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C 2008, 112, 9061–9065. [Google Scholar] [CrossRef]
- Guo, W.Y.; Li, J.J.; Tu, Y.F. Studies on the electrochemiluminescent behavior of luminol on indium tin oxide (ITO) glass. J. Lumin. 2010, 130, 2022–2025. [Google Scholar] [CrossRef]
- Yu, L.Z.; Song, H.J.; Tang, Y.R.; Zhang, L.C.; Lv, Y. Controllable deposition of ZnO-doped SnO2 nanowires on Au/graphene and their application in cataluminescence sensing for alcohols and ketones. Sens. Actuators B Chem. 2014, 203, 726–735. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.F.; Shi, G.L.; Liu, J.H. A research on detection and identification of volatile organic compounds utilizing cataluminescence-based sensor array. Sens. Actuators B Chem. 2013, 177, 1167–1172. [Google Scholar] [CrossRef]
- Hui, J.J.; Li, J.J.; Zhu, Y.; Wei, F.; Zhang, X.R. Nanosized SrCO3-based chemiluminescence sensor for ethanol. Anal. Chim. Acta 2002, 466, 69–78. [Google Scholar]
- Zhang, Z.Y.; Zhang, C.; Zhang, X.R. Development of a chemiluminescence ethanol sensor based on nanosized ZrO2. Analyst 2002, 127, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Xu, K.; Baeyens, W.R.G.; Zhang, X.R. An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors. Anal. Chim. Acta 2005, 535, 145–152. [Google Scholar] [CrossRef]
- Wang, S.M.; Shi, W.Y.; Lu, C. Chemisorbed oxygen on the surface of catalyst-improved cataluminescence selectivity. Anal. Chem. 2016, 88, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Shi, J.J.; Zhang, Z.Y.; Zhang, C.; Zhang, X.R. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem. 2002, 74, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.R.; Li, Y.M.; Zheng, C.; Ye, J.; Hou, X.; Lv, Y. An ethanol sensor based on cataluminescence on ZnO nanoparticles. Talanta 2007, 72, 1593–1597. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, Y.J.; Liu, J.F.; Xie, X.; Zou, D.; Li, M.Q.; Liu, J.H. Sensitive and selective system of benzene detection based on a cataluminescence sensor. Luminescence 2014, 29, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Zhang, S.C.; Zhang, X.R. Recent development and applications of chemiluminescence sensors. Anal. Chim. Acta 2005, 541, 37–47. [Google Scholar] [CrossRef]
- Song, J.; Huang, K.J.; Wang, N. Gas-sensing properties and in situ diffuse-reflectance Fourier-transform infrared spectroscopy study of diethyl ether adsorption and reactions on SnO2/rGO film. J. Mater. Res. 2016, 31, 2035–2045. [Google Scholar] [CrossRef]
- Farbod, M.; Joula, M.H.; Vaezi, M. Promoting effect of adding carbon nanotubes on sensing characteristics of ZnO hollow sphere-based gas sensors to detect volatile organic compounds. Mater. Chem. Phys. 2016, 176, 12–23. [Google Scholar] [CrossRef]
- Rad, A.S. Al-doped graphene as modified nanostructure sensor for some ether molecules: Ab-initio study. Synth. Met. 2015, 209, 419–425. [Google Scholar] [CrossRef]
- McCord, P.; Yau, S.L.; Bard, A.J. Chemiluminescence of anodized and etched silicon: Evidence for a luminescent siloxene-like layer on porous silicon. Science 1992, 257, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Li, B.; Wang, Y.H.; Shou, Z.X.; Shi, G.L. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination. Luminescence 2015, 30, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.A.; Zhang, Z.Y.; Zhang, X.R. A novel gaseous acetaldehyde sensor utilizing cataluminescence on nanosized BaCO3. Sens. Actuators B Chem. 2004, 99, 30–35. [Google Scholar] [CrossRef]
- Yang, P.; Lau, C.; Liang, J.Y.; Lu, J.Z.; Liu, X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence 2007, 22, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.W.; Ji, X.L.; Zhang, N.; Zhang, X.R. On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sens. Actuators B Chem. 2006, 119, 392–397. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jiang, H.J.; Zhang, X.R. A highly selective chemiluminescent H2S sensor. Sens. Actuators B Chem. 2004, 102, 155–161. [Google Scholar] [CrossRef]
- Zhou, K.W.; Fan, H.Z.; Gu, C.X.; Liu, B.N. Simultaneous determination of formaldehyde and hydrogen sulfide in air using the cataluminescence of nanosized Zn3SnLa2O8. Microchim. Acta 2016, 183, 1063–1068. [Google Scholar] [CrossRef]
- Zeng, B.R.; Zhang, L.C.; Wan, X.Y.; Song, H.J.; Lv, Y. Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescencesensing of H2S. Sens. Actuators B Chem. 2015, 211, 370–376. [Google Scholar] [CrossRef]
- Yuliarto, B.; Gumilar, G.; Septiani, N. SnO2 nanostructure as pollutant gas sensors: Synthesis, sensing performances, and mechanism. Adv. Mater. Sci. Eng. 2015, 2015, 694823. [Google Scholar] [CrossRef]
- Sutka, A.; Gross, K.A. Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 2016, 222, 95–105. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, H.M.; Na, C.W.; Yoon, J.W.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.H. Highly selective and sensitive xylene sensors using Cr2O3-ZnCr2O4 hetero-nanostructures prepared by galvanic replacement. Sens. Actuators B Chem. 2016, 235, 498–506. [Google Scholar] [CrossRef]
- Mirzaei, A.; Hashemi, B.; Janghorban, K. alpha-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci. Mater. Electron. 2016, 27, 3109–3144. [Google Scholar] [CrossRef]
- Huang, X.J.; Wang, L.C.; Sun, Y.F.; Meng, F.L.; Liu, J.H. Quantitative analysis of pesticide residue based on the dynamic response of a single SnO2 gas sensor. Sens. Actuators B Chem. 2004, 99, 330–335. [Google Scholar] [CrossRef]
- Sun, Y.F.; Huang, X.J.; Meng, F.L.; Liu, J.H. Study of influencing factors of dynamic measurements based on SnO2 gas sensor. Sensors 2004, 4, 95–104. [Google Scholar] [CrossRef]
- Meng, F.L.; Li, M.Q.; Chen, Y.; Jia, Y.; Liu, J.Y.; Huang, J.R.; Liu, J.H. Dynamic prebreakdown current measurement of nanotips-based gas ionization sensor application at ambient atmosphere. IEEE Sens. J. 2009, 9, 435–440. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [PubMed]
- San, X.G.; Wang, G.S.; Liang, B.; Song, Y.M.; Gao, S.Y.; Zhang, J.S.; Meng, F.L. Catalyst-free growth of one-dimensional ZnO nanostructures on SiO2 substrate and in situ investigation of their H2 sensing properties. J. Alloy Compd. 2015, 622, 73–78. [Google Scholar] [CrossRef]
- Wu, H.; Xu, C.; Xu, J.; Lu, L.F.; Fan, Z.Y.; Chen, X.Y.; Song, Y.; Li, D.D. Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 2013, 24, 455401. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, D.D.; Zhu, X.F.; Yang, C.Y.; Liu, D.F.; Chen, X.Y.; Song, Y.; Lu, L.F. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 2014, 116, 129–136. [Google Scholar] [CrossRef]
- Meng, F.L.; Zhang, L.; Jia, Y.; Liu, J.Y.; Sun, Y.F.; Luo, T.; Li, M.Q.; Liu, J.H.; Huang, X.J. Electronic chip based on self-oriented carbon nanotube microelectrode array to enhance the sensitivity of indoor air pollutants capacitive detection. Sens. Actuators B Chem. 2011, 153, 103–109. [Google Scholar] [CrossRef]
- Biswal, R.C. Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B Chem. 2011, 157, 183–188. [Google Scholar] [CrossRef]
- Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C.K.; Bhattacharyya, P. Anomalous recovery characteristics of Pd modified ZnO nanorod based acetone sensor. J. Nanosci. Nanotechnol. 2013, 13, 6826–6834. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Wang, W.; Liu, Y.L. Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO. Sens. Actuators B Chem. 2012, 168, 39–45. [Google Scholar] [CrossRef]
- Yin, M.L.; Liu, M.D.; Liu, S.Z. Diameter regulated ZnO nanorod synthesis and its application in gas sensor optimization. J. Alloy Compd. 2014, 586, 436–440. [Google Scholar] [CrossRef]
- Song, H.Y.; Yang, H.; Ma, X.C. A comparative study of porous ZnO nanostructures synthesized from different zinc salts as gas sensor materials. J. Alloy Compd. 2013, 578, 272–278. [Google Scholar] [CrossRef]
- Wang, L.W.; Wang, S.R.; Xu, M.J.; Hu, X.J.; Zhang, H.X.; Wang, Y.S.; Huang, W.P. A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys. Chem. Chem. Phys. 2013, 15, 17179–17186. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.P.; Li, S.S.; Huang, J.R.; Shi, C.C.; Liu, J.H. Preferential growth of long ZnO nanowires and its application in gas sensor. Sens. Actuators B Chem. 2013, 177, 453–459. [Google Scholar] [CrossRef]
- Yeo, J.; Hong, S.; Wanit, M.; Kang, H.W.; Lee, D.; Grigoropoulos, C.P.; Sung, H.J.; Ko, S.H. Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv. Funct. Mater. 2013, 23, 3316–3323. [Google Scholar] [CrossRef]
- Lim, Y.T.; Son, J.Y.; Rhee, J.S. Vertical ZnO nanorod array as an effective hydrogen gas sensor. Ceram. Int. 2013, 39, 887–890. [Google Scholar] [CrossRef]
- Ghosh, M.; Karmakar, D.; Basu, S.; Jha, S.N.; Bhattacharyya, D.; Gadkari, S.C.; Gupta, S.K. Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures. J. Phys. Chem. Solids 2014, 75, 543–549. [Google Scholar] [CrossRef]
- Zhang, S.L.; Lim, J.O.; Huh, J.S.; Noh, J.S.; Lee, W. Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 2013, 13 (Suppl. 2), S156–S161. [Google Scholar] [CrossRef]
- Xiang, D.; Qu, F.Y.; Chen, X.; Yu, Z.; Cui, L.R.; Zhang, X.; Jiang, J.J.; Lin, H.M. Synthesis of porous ZnO nanospheres for gas sensor and photocatalysis. J. Sol-Gel Sci. Technol. 2014, 69, 370–377. [Google Scholar] [CrossRef]
- Meng, F.L.; Hou, N.N.; Jin, Z.; Sun, B.; Guo, Z.; Kong, L.T.; Xiao, X.H.; Wu, H.; Li, M.Q.; Liu, J.H. Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol. Sens. Actuators B Chem. 2015, 209, 975–982. [Google Scholar] [CrossRef]
- Sun, Y.F.; Ge, S.; Huang, H.H.; Zheng, H.X.; Jin, Z.; Shan, J.H.; Gu, C.P.; Huang, X.J.; Meng, F.L. Novel volatile organic compound (VOC) sensor based on Ag-decorated porous single-crystalline ZnO nanosheets. Mater. Express 2016, 6, 191–197. [Google Scholar] [CrossRef]
- Gu, C.P.; Huang, H.H.; Huang, J.R.; Jin, Z.; Zheng, H.X.; Liu, N.; Li, M.Q.; Liu, J.H.; Meng, L.M. Chlorobenzene sensor based on Pt-decorated poroussingle-crystalline ZnO nanosheets. Sens. Actuators A Phys. 2016, 252, 96–103. [Google Scholar] [CrossRef]
- Qin, Y.X.; Fan, G.T.; Liu, K.X.; Hu, M. Vanadium pentoxide hierarchical structure networks for high performance ethanol gas sensor with dual working temperature characteristic. Sens. Actuators B Chem. 2014, 190, 141–148. [Google Scholar] [CrossRef]
- Hou, N.N.; Jin, Z.; Sun, B.; Sun, Y.F.; Shen, W.; Guo, Z.; Kong, L.T.; Li, M.Q.; Meng, F.L. New strategy for rapid detection of the simulants of persistent organic pollutants using gas sensor based on 3D porous single-crystalline ZnO nanosheets. IEEE Sens. J. 2015, 15, 3668–3674. [Google Scholar] [CrossRef]
- Meng, D.; Wang, G.S.; San, X.G.; Song, Y.M.; Shen, Y.B.; Zhang, Y.J.; Wang, K.J.; Meng, F.L. Synthesis of WO3 flower-like hierarchical architectures and their sensing properties. J. Alloy Compd. 2015, 649, 731–738. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Henley, S.J.; Emerson, N.G.; Silva, S.R.P. From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 2014, 6, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Ge, S.; Jia, Y.; Sun, B.; Sun, Y.; Wang, C.; Wu, H.; Jin, Z.; Li, M. Interlaced nanoflake-assembled flower-like hierarchical ZnO microspheres prepared by bisolvents and their sensing properties to ethanol. J. Alloy Compd. 2015, 632, 645–650. [Google Scholar] [CrossRef]
- Meng, F.L.; Hou, N.N.; Ge, S.; Sun, B.; Jin, Z.; Shen, W.; Kong, L.T.; Guo, Z.; Sun, Y.F.; Wu, H.; et al. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J. Alloy Compd. 2015, 626, 124–130. [Google Scholar] [CrossRef]
- Meng, F.L.; Hou, N.N.; Jin, Z.; Sun, B.; Li, W.Q.; Xiao, X.H.; Wang, C.; Li, M.Q.; Liu, J.H. Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures. Sens. Actuators B Chem. 2015, 219, 209–217. [Google Scholar] [CrossRef]
- Lai, H.Y.; Chen, C.H. Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles. J. Mater. Chem. 2012, 22, 13204–13208. [Google Scholar] [CrossRef]
- Liu, C.; Kuang, Q.; Xie, Z.X.; Zheng, L.S. The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: A case study on the {221} high-index faceted SnO2 octahedra. CrystEngComm 2015, 17, 6308–6313. [Google Scholar] [CrossRef]
- Jeon, J.M.; Shim, Y.S.; Han, S.D.; Kim, D.H.; Kim, Y.H.; Kang, C.Y.; Kim, J.S.; Kim, M.Y.; Jang, H.W. Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases. J. Mater. Chem. A 2015, 3, 17939–17945. [Google Scholar] [CrossRef]
- Shim, Y.S.; Kim, D.H.; Jeong, H.Y.; Kim, Y.H.; Nahm, S.H.; Kang, C.Y.; Kim, J.S.; Lee, W.Y.; Jang, H.W. Utilization of both-side metal decoration in close-packed SnO2 nanodome arrays for ultrasensitive gas sensing. Sens. Actuators B Chem. 2015, 213, 314–321. [Google Scholar] [CrossRef]
- Shim, Y.S.; Moon, H.G.; Kim, D.H.; Zhang, L.H.; Yoon, S.J.; Yoon, Y.S.; Kang, C.Y.; Jang, H.W. Au-decorated WO3 cross-linked nanodomes for ultrahigh sensitive and selective sensing of NO2 and C2H5OH. RSC Adv. 2013, 3, 10452–10459. [Google Scholar] [CrossRef]
- Shim, Y.S.; Zhang, L.H.; Kim, D.H.; Kim, Y.H.; Choi, Y.R.; Nahm, S.H.; Kang, C.Y.; Lee, W.Y.; Jang, H.W. Highly sensitive and selective H2 and NO2 gas sensors based on surface-decorated WO3 nanoigloos. Sens. Actuators B Chem. 2014, 198, 294–301. [Google Scholar] [CrossRef]
- Xu, C.N.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem. 1991, 3, 147–155. [Google Scholar] [CrossRef]
- Meng, F.L.; Li, H.H.; Kong, L.T.; Liu, J.Y.; Jin, Z.; Li, W.; Jia, Y.; Liu, J.H.; Huang, X.J. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles. Anal. Chim. Acta 2012, 736, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Mansha, M.; Qurashi, A.; Ullah, N.; Bakare, F.O.; Khan, I.; Yamani, Z.H. Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 2016, 42, 11490–11495. [Google Scholar] [CrossRef]
- Liu, J.Y.; Guo, Z.; Meng, F.L.; Jia, Y.; Liu, J.H. A novel antimony-carbon nanotube-tin oxide thin film: Carbon nanotubes as growth guider and energy buffer. Application for indoor air pollutants gas sensor. J. Phys. Chem. C 2008, 112, 6119–6125. [Google Scholar] [CrossRef]
- Meng, F.L.; Jia, Y.; Liu, J.Y.; Li, M.Q.; Sun, Y.F.; Liu, J.H.; Huang, X.J. Nanocomposites of sub-10 nm SnO2 nanoparticles and MWCNTs for detection of aldrin and DDT. Anal. Methods 2010, 2, 1710–1714. [Google Scholar] [CrossRef]
- Srivastava, V.; Jain, K. At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor. Mater. Lett. 2016, 169, 28–32. [Google Scholar] [CrossRef]
- Meng, F.L.; Guo, Z.; Huang, X.J. Graphene-based hybrids for chemiresistive gas sensors. TrAC Trend Anal. Chem. 2015, 68, 37–47. [Google Scholar] [CrossRef]
- Ge, S.; Zheng, H.X.; Sun, Y.F.; Jin, Z.; Shan, J.H.; Wang, C.; Wu, H.; Li, M.Q.; Meng, F.L. Ag/SnO2/graphene ternary nanocomposites and their sensing properties to volatile organic compounds. J. Alloy Compd. 2016, 659, 127–131. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, Y.; Liu, S.; Zhang, T. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sens. Actuators B Chem. 2016, 222, 893–903. [Google Scholar] [CrossRef]
Cataluminescent Sensing Catalysts | Target Gases | Limit of Detection | Linear Range of Cataluminescence Intensity vs. Concentration | Reference |
---|---|---|---|---|
Nanosized NaYF4:Er | acetone and butanone | 1.7 µg·mL−1 for acetone; 0.7 µg·mL−1 for butanone | 2.388–143.28 µg·mL−1 for acetone; 2.45–49.0 µg·mL−1 for butanone | [34] |
Nanosized SrCO3 | ethanol | 2.1 ppm | 6–3750 ppm | [40] |
Nanosized ZrO2 | ethanol | 0.6 µg·mL−1 | 1.6–160 µg·mL−1 | [41] |
Eu3+-doped nanosized ZrO2 | ethanol | 15 ppm | 45–550 ppm | [42] |
Y2O3 | ethyl ether | 0.5 mM | 1.0−100 mM | [43] |
TiO2 | ethanol and acetone | 10.5 µg·mL−1 for ethanol; 6.7 µg·mL−1 for acetone | 40–400 µg·mL−1 for ethanol and 20–200 µg·mL−1 for acetone | [44] |
ZnO nanoparticles | ethanol | 0.7 ppm | 1.0–100 ppm | [45] |
Au/La2O3 nanomaterials | benzene | 0.7 ppm | 1–4000 ppm | [46] |
SiO2/Fe3O4 microspheres | ether | 6.7 ppm | 10–3000 ppm | [31] |
CdO nanostructure | acetone and diethyl ether | 6.5 ppm for acetone; and 6.7 ppm for diethyl ether | 8–3000 ppm for acetone; and 10–4000 ppm for diethyl ether | [52] |
Zeolite | Acetaldehyde | 0.02 µg·mL−1 | 0.06–31.2 µg·mL−1 | [54] |
Nanosized V2Ti4O13 | formaldehyde | 0.06 mg·m−3 | 0.1–40 mg·m−3 | [55] |
Fe2O3 | H2S | 3 ppm | 8–2000 ppm | [56] |
Nanosized Zn3SnLa2O8 | formaldehyde and H2S | 0.07 mg·m−3 for formaldehyde; and 0.22 mg·m−3 for H2S | 0.2–61.7 mg·m−3 for formaldehyde; and 0.4–68.5 mg·m−3 for H2S | [57] |
Metal-organic frameworks | H2S | 4.4 ppm | 100–300 mL·min−1 | [6] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Han, T.; Sun, B.; Kong, L.; Jin, Z.; Huang, X.; Liu, J.; Meng, F. Catalysis-Based Cataluminescent and Conductometric Gas Sensors: Sensing Nanomaterials, Mechanism, Applications and Perspectives. Catalysts 2016, 6, 210. https://doi.org/10.3390/catal6120210
Liu J, Han T, Sun B, Kong L, Jin Z, Huang X, Liu J, Meng F. Catalysis-Based Cataluminescent and Conductometric Gas Sensors: Sensing Nanomaterials, Mechanism, Applications and Perspectives. Catalysts. 2016; 6(12):210. https://doi.org/10.3390/catal6120210
Chicago/Turabian StyleLiu, Jinyun, Tianli Han, Bai Sun, Lingtao Kong, Zhen Jin, Xingjiu Huang, Jinhuai Liu, and Fanli Meng. 2016. "Catalysis-Based Cataluminescent and Conductometric Gas Sensors: Sensing Nanomaterials, Mechanism, Applications and Perspectives" Catalysts 6, no. 12: 210. https://doi.org/10.3390/catal6120210
APA StyleLiu, J., Han, T., Sun, B., Kong, L., Jin, Z., Huang, X., Liu, J., & Meng, F. (2016). Catalysis-Based Cataluminescent and Conductometric Gas Sensors: Sensing Nanomaterials, Mechanism, Applications and Perspectives. Catalysts, 6(12), 210. https://doi.org/10.3390/catal6120210