Biocatalysis and Biotransformations
1. Background
2. The Present Issue
Acknowledgments
Conflicts of Interest
References
- Martínez-Martínez, M.; Bargiela, R.; Ferrer, M. Metagenomics and the search for industrial enzymes. In Biotechnology of Microbial Enzymes, 1st ed.; Brahmachari, G., Demain, A.L., Adrio, J.L., Eds.; Academic Press: Chennai, India, 2015; pp. 167–184. [Google Scholar]
- Alcalde, M.; Ferrer, M.; Plou, F.J.; Ballesteros, A. Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends Biotechnol. 2006, 24, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrio, J.L.; Demain, A.L. Microbial enzymes: Tools for biotechnological processes. Biomolecules 2014, 4, 117–139. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, M.; Bargiela, R.; Coscolín, C.; Navarro-Fernández, J.; Golyshin, P.N.; Ferrer, M. Functionalization and modification of hydrocarbon-like molecules guided by metagenomics: Enzymes most requested at the industrial scale for chemical synthesis as study cases. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals; Lee, S.Y., Ed.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 1–26. [Google Scholar]
- Schmid, A.; Dordick, J.S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, M.; Coscolín, C.; Santiago, G.; Chow, J.; Stogios, P.; Bargiela, R.; Gertler, C.; Navarro-Fernández, J.; Bollinger, A.; Thies, S.; et al. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem. Biol. 2018, 13, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Yarza, P.; Yilmaz, P.; Pruesse, E.; Glöckner, F.O.; Ludwig, W.; Schleifer, K.H.; Whitman, W.B.; Euzéby, J.; Amann, R.; Rosselló-Móra, R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014, 12, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.; Martínez-Martínez, M.; Bargiela, R.; Streit, W.R.; Golyshina, O.V.; Golyshin, P.N. Estimating the success of enzyme bioprospecting through metagenomics: Current status and future trends. Microb. Biotechnol. 2016, 9, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Korendovych, I.V.; DeGrado, W.F. Catalytic efficiency of designed catalytic proteins. Curr. Opin. Struct. Biol. 2014, 27, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Molina-Espeja, P.; Viña-Gonzalez, J.; Gomez-Fernandez, B.J.; Martin-Diaz, J.; Garcia-Ruiz, E.; Alcalde, M. Beyond the outer limits of nature by directed evolution. Biotechnol. Adv. 2016, 34, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Santiago, G.; Martínez-Martínez, M.; Alonso, S.; Bargiela, R.; Coscolín, C.; Golyshin, P.N.; Guallar, V.; Ferrer, M. Rational engineering of multiple active sites in an ester hydrolase. Biochemistry 2018, 57, 2245–2255. [Google Scholar] [CrossRef] [PubMed]
- Bommarius, A.S.; Paye, M.F. Stabilizing biocatalysts. Chem. Soc. Rev. 2013, 42, 6534–6565. [Google Scholar] [CrossRef] [PubMed]
- Fresco-Taboada, A.; Fernández-Lucas, J.; Acebal, C.; Arroyo, M.; Ramón, F.; de la Mata, I.; Mancheño, J. 2′-Deoxyribosyltransferase from Bacillus psychrosaccharolyticus: A mesophilic-like biocatalyst for the synthesis of modified nucleosides from a psychrotolerant bacterium. Catalysts 2018, 8, 8. [Google Scholar] [CrossRef]
- Acosta, J.; del Arco, J.; Martinez-Pascual, S.; Clemente-Suárez, V.; Fernández-Lucas, J. One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry. Catalysts 2018, 8, 9. [Google Scholar] [CrossRef]
- Ahsan, M.; Sung, S.; Jeon, H.; Patil, M.; Chung, T.; Yun, H. Biosynthesis of medium- to long-chain α,ω-diols from free fatty acids using CYP153A monooxygenase, carboxylic acid reductase, and E. coli endogenous aldehyde reductases. Catalysts 2018, 8, 4. [Google Scholar] [CrossRef]
- Huang, S.; Hung, T.; Liu, Y.; Kuo, C.; Shieh, C. Green synthesis of ultraviolet absorber 2-ethylhexyl salicylate: Experimental design and artificial neural network modeling. Catalysts 2017, 7, 342. [Google Scholar] [CrossRef]
- García-Fernández, J.; Galán, B.; Felpeto-Santero, C.; Barredo, J.; García, J. Production of 4-ene-3-ketosteroids in Corynebacterium glutamicum. Catalysts 2017, 7, 316. [Google Scholar] [CrossRef]
- De Gonzalo, G.; Fürst, M.; Fraaije, M. Polycyclic ketone monooxygenase (PockeMO): A robust biocatalyst for the synthesis of optically active sulfoxides. Catalysts 2017, 7, 288. [Google Scholar] [CrossRef]
- Wei, T.; Zang, J.; Zheng, Y.; Tang, H.; Huang, S.; Mao, D. Characterization of a novel nicotine hydroxylase from Pseudomonas sp. ZZ-5 that catalyzes the conversion of 6-hydroxy-3-succinoylpyridine into 2,5-dihydroxypyridine. Catalysts 2017, 7, 257. [Google Scholar] [CrossRef]
- Niu, W.; Cao, S.; Yang, M.; Xu, L. Enzymatic synthesis of S-adenosylmethionine using immobilized methionine adenosyltransferase variants on the 50-mm scale. Catalysts 2017, 7, 238. [Google Scholar]
- Rodríguez-Alonso, M.; Rodríguez-Vico, F.; Las Heras-Vázquez, F.; Clemente-Jiménez, J. L-Amino acid production by a immobilized double-racemase hydantoinase process: Improvement and comparison with a free protein system. Catalysts 2017, 7, 192. [Google Scholar] [CrossRef]
- Kumar, H.; Fraaije, M. Conversion of furans by Baeyer-Villiger monooxygenases. Catalysts 2017, 7, 179. [Google Scholar] [CrossRef]
- Chávez-Flores, L.; Beltran, H.; Arrieta-Baez, D.; Reyes-Duarte, D. Regioselective synthesis of lactulose esters by Candida antarctica and Thermomyces lanuginosus lipases. Catalysts 2017, 7, 263. [Google Scholar] [CrossRef]
- Jeon, H.; Yoon, S.; Ahsan, M.; Sung, S.; Kim, G.; Sundaramoorthy, U.; Rhee, S.; Yun, H. The Kinetic resolution of racemic amines using a whole-cell biocatalyst co-expressing amine dehydrogenase and NADH oxidase. Catalysts 2017, 7, 251. [Google Scholar] [CrossRef]
- Yañez-Ñeco, C.; Rodriguez-Colinas, B.; Amaya-Delgado, L.; Ballesteros, A.; Gschaedler, A.; Plou, F.; Arrizon, J. Galactooligosaccharide production from Pantoea anthophila strains isolated from “Tejuino”, a Mexican traditional fermented beverage. Catalysts 2017, 7, 242. [Google Scholar] [CrossRef]
- Koumba-Yoya, G.; Stevanovic, T. Transformation of sugar maple bark through catalytic organosolv pulping. Catalysts 2017, 7, 294. [Google Scholar] [CrossRef]
- Haske-Cornelius, O.; Pellis, A.; Tegl, G.; Wurz, S.; Saake, B.; Ludwig, R.; Sebastian, A.; Nyanhongo, G.; Guebitz, G. Enzymatic Systems for Cellulose Acetate Degradation. Catalysts 2017, 7, 287. [Google Scholar] [CrossRef]
- Li, H.; Yu, Q.; Wang, H.; Cao, X.; Ma, L.; Li, Z. A new homo-hexamer Mn-containing catalase from Geobacillus sp. WCH70. Catalysts 2017, 7, 277. [Google Scholar] [CrossRef]
- Wang, J.; Lu, L.; Feng, F. Improving the indigo carmine decolorization ability of a bacillus amyloliquefaciens laccase by site-directed mutagenesis. Catalysts 2017, 7, 275. [Google Scholar] [CrossRef]
- Tu, N.; Shou, J.; Dong, H.; Huang, J.; Li, Y. Improved catalytic performance of lipase supported on clay/chitosan composite beads. Catalysts 2017, 7, 302. [Google Scholar] [CrossRef]
- Sakurada, Y.; Takeda, K.; Ohno, H.; Nakamura, N. Immobilization of pyrroloquinoline quinone-dependent alcohol dehydrogenase with a polyion complex and redox polymer for a bioanode. Catalysts 2017, 7, 296. [Google Scholar] [CrossRef]
- Zaak, H.; Peirce, S.; de Albuquerque, T.; Sassi, M.; Fernandez-Lafuente, R. Exploiting the versatility of aminated supports activated with glutaraldehyde to immobilize β-galactosidase from Aspergillus oryzae. Catalysts 2017, 7, 250. [Google Scholar] [CrossRef]
- Wang, L.; Qu, X.; Xie, Y.; Lv, S. Study of 8 types of glutathione peroxidase mimics based on β-cyclodextrin. Catalysts 2017, 7, 289. [Google Scholar] [CrossRef]
- Huang, Y.; Ge, D.; Zong, H.; Yin, J.; Qu, X.; Lv, S. Active site mimicry of glutathione peroxidase by glutathione imprinted selenium-containing trypsin. Catalysts 2017, 7, 282. [Google Scholar] [CrossRef]
- Maslova, O.; Aslanli, A.; Stepanov, N.; Lyagin, I.; Efremenko, E. Catalytic characteristics of new antibacterials based on hexahistidine-containing organophosphorus hydrolase. Catalysts 2017, 7, 271. [Google Scholar] [CrossRef]
- Coscolín, C.; Martínez-Martínez, M.; Chow, J.; Bargiela, R.; García-Moyano, A.; Bjerga, G.; Bollinger, A.; Stokke, R.; Steen, I.; Golyshina, O.; et al. Relationships between substrate promiscuity and chiral selectivity of esterases from phylogenetically and environmentally diverse microorganisms. Catalysts 2018, 8, 10. [Google Scholar] [CrossRef]
- Nguyen, A.; Hwang, I.; Lee, O.; Hur, D.; Jeon, Y.; Hadiyati, S.; Kim, M.; Yoon, S.; Jeong, H.; Lee, E. Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts 2018, 8, 117. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, M. Biocatalysis and Biotransformations. Catalysts 2018, 8, 216. https://doi.org/10.3390/catal8050216
Ferrer M. Biocatalysis and Biotransformations. Catalysts. 2018; 8(5):216. https://doi.org/10.3390/catal8050216
Chicago/Turabian StyleFerrer, Manuel. 2018. "Biocatalysis and Biotransformations" Catalysts 8, no. 5: 216. https://doi.org/10.3390/catal8050216
APA StyleFerrer, M. (2018). Biocatalysis and Biotransformations. Catalysts, 8(5), 216. https://doi.org/10.3390/catal8050216