A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Characterization of Mayenite Catalyst
3.3. TCE Oxidation Reactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujita, S.; Ohkawa, M.; Suzuki, K.; Nakano, H.; Mori, T.; Masuda, H. Controlling the Quantity of Radical Oxygen Occluded in a New Aluminum Silicate with Nanopores. Chem. Mater. 2003, 15, 4879–4881. [Google Scholar] [CrossRef]
- Sushko, P.V.; Shluger, A.L.; Hayashi, K.; Hirano, M.; Hosono, H. Mechanisms of oxygen ion diffusion in a nanoporous complex oxide 12CaO∙7Al2O3. Phys. Rev. B 2006, 73, 014101. [Google Scholar] [CrossRef]
- Matsuishi, S.; Toda, Y.; Miyakawa, M.; Hayashi, K.; Kamiya, T.; Hirano, M.; Tanaka, I.; Hosono, H. High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e−). Science 2003, 301, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Aiba, S.; Miyakawa, M.; Nomura, K.; Matsuishi, S.; Hayashi, K.; Ueda, K.; Hirano, M.; Hosono, H. Field-Induced Current Modulation in Nanoporous Semiconductor, Electron-Doped 12CaO·7Al2O3. Chem. Mater. 2005, 17, 6311–6316. [Google Scholar] [CrossRef]
- Baptista, M.; Kovalevsky, A.V.; Sarabando, A.R.; Ferro, M.C.; Capela, I.; Frade, J.R. Highly-porous mayenite-based ceramics by combined suspension emulsification and reactive sintering. Mater. Lett. 2019, 237, 41–44. [Google Scholar] [CrossRef]
- Cucciniello, R.; Proto, A.; Rossi, F.; Motta, O. Mayenite based supports for atmospheric NOx sampling. Atmos. Environ. 2013, 79, 666–671. [Google Scholar] [CrossRef]
- Li, C.; Hirabayashi, D.; Suzuki, K. A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Appl. Catal. B Environ. 2009, 88, 351–360. [Google Scholar] [CrossRef]
- Huang, J.; Valenzano, L.; Sant, G. Framework and Channel Modifications in Mayenite (12CaO·7Al2O3) Nanocages By Cationic Doping. Chem. Mater. 2015, 27, 4731–4741. [Google Scholar] [CrossRef]
- Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.-W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, F.; Tomota, Y.; Kitano, M.; Toda, Y.; Yokoyama, T.; Hosono, H. NH2– Dianion Entrapped in a Nanoporous 12CaO·7AlO3 Crystal by Ammonothermal Treatment: Reaction Pathways, Dynamics, and Chemical Stability. J. Am. Chem. Soc. 2014, 136, 11698–11706. [Google Scholar] [CrossRef]
- Ruszak, M.; Witkowski, S.; Sojka, Z. EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O. Res. Chem. Intermed. 2007, 33, 689–703. [Google Scholar] [CrossRef]
- Ruszak, M.; Inger, M.; Witkowski, S.; Wilk, M.; Kotarba, A.; Sojka, Z. Selective N2O Removal from the Process Gas of Nitric Acid Plants Over Ceramic 12CaO·7Al2O3, Catalyst. Catal. Lett. 2008, 126, 72–77. [Google Scholar] [CrossRef]
- Proto, A.; Cucciniello, R.; Genga, A.; Capacchione, C. A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium. Catal. Commun. 2015, 68, 41–45. [Google Scholar] [CrossRef]
- Lacerda, M.; Irvine, J.T.S.; Glasser, F.P.; West, A.R. High oxide ion conductivity in Ca12Al14O33. Nature 1988, 332, 525–526. [Google Scholar] [CrossRef]
- Ude, S.N.; Rawn, C.J.; Peascoe, R.A.; Kirkham, M.J.; Jones, G.L.; Payzant, E.A. High temperature X-ray studies of mayenite synthesized using the citrate sol-gel method. Ceram. Int. 2014, 40, 1117–1123. [Google Scholar] [CrossRef]
- Li, C.; Hirabayashi, D.; Suzuki, K. Synthesis of higher surface area mayenite by hydrothermal method. Mater. Res. Bull. 2011, 46, 1307–1310. [Google Scholar] [CrossRef]
- Solsona, B.; Sanchis, R.; Dejoz, A.M.; García, T.; Ruiz-Rodríguez, L.; López Nieto, J.M.; Cecilia, J.A.; Rodríguez-Castellón, E. Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts 2017, 7, 96. [Google Scholar] [CrossRef]
- Intiso, A.; Martinez-Triguero, J.; Cucciniello, R.; Rossi, F.; Palomares, A.E. Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Sci. Rep. 2018. [Google Scholar] [CrossRef]
- Cucciniello, R.; Proto, A.; Rossi, F.; Marchettini, N.; Motta, O. An improved method for BTEX extraction from charcoal. Anal. Meth. 2015, 7, 4811–4815. [Google Scholar] [CrossRef]
- Broda, M.; Müller, C.R. Synthesis of Highly Efficient, Ca-Based, Al2O3-Stabilized, Carbon Gel-Templated CO2 Sorbents. Adv. Mater. 2012, 24, 3059–3064. [Google Scholar] [CrossRef] [PubMed]
- Cucciniello, R.; Proto, A.; Alfano, D.; Motta, O. Synthesis, characterization and field evaluation of a new calcium-based CO2 absorbent for radial diffusive sampler. Atmos. Environ. 2012, 60, 82–87. [Google Scholar] [CrossRef]
- Yang, S.; Kondo, J.N.; Hayashi, K.; Hirano, M.; Domen, K.; Hosono, H. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO·7Al2O3. Chem. Mater. 2004, 16, 104–110. [Google Scholar] [CrossRef]
- Teusner, M.; De Souza, R.A.; Krause, H.; Ebbinghaus, S.G.; Belghoul, B.; Martin, M. Oxygen Diffusion in Mayenite. J. Phys. Chem. C 2015, 119, 9721–9727. [Google Scholar] [CrossRef]
- Fujita, S.; Nakano, H.; Suzuki, K.; Mori, T.; Masuda, H. Oxidative Destruction of Hydrocarbons on Ca12Al14−xSix O33+0.5x (0 ≤ x ≤ 4) with Radical Oxygen Occluded in Nanopores. Catal. Lett. 2006, 106, 139–143. [Google Scholar] [CrossRef]
- Cucciniello, R.; Intiso, A.; Castiglione, S.; Genga, A.; Proto, A.; Rossi, F. Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Appl. Catal. B Environ. 2017, 204, 167–172. [Google Scholar] [CrossRef]
- Intiso, A.; Cucciniello, R.; Castiglione, S.; Proto, A.; Rossi, F. Environmental Application of Extra-Framework Oxygen Anions in the Nano-Cages of Mayenite. In Advanced Bionanomaterials; Springer: Cham, Switzerland, 2018; pp. 131–139. [Google Scholar] [CrossRef]
- Schmidt, A.; Lerch, M.; Eufinger, J.-P.; Janek, J.; Tranca, I.; Islam, M.M.; Bredow, T.; Dolle, R.; Wiemhöfer, H.-D.; Boysen, H.; et al. Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ion. 2014, 254, 48–58. [Google Scholar] [CrossRef]
- Blanch-Raga, N.; Palomares, A.E.; Martínez-Triguero, J.; Valencia, S. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Appl. Catal. B Environ. 2016, 187, 90–97. [Google Scholar] [CrossRef] [Green Version]
Catalyst | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Mayenite | 35.5 | 0.252 | 11.88 |
Mayenite 10 | 47.1 | 0.183 | 8.98 |
Mayenite 20 | 41.9 | 0.183 | 9.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Intiso, A.; Martinez-Triguero, J.; Cucciniello, R.; Proto, A.; Palomares, A.E.; Rossi, F. A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts 2019, 9, 27. https://doi.org/10.3390/catal9010027
Intiso A, Martinez-Triguero J, Cucciniello R, Proto A, Palomares AE, Rossi F. A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts. 2019; 9(1):27. https://doi.org/10.3390/catal9010027
Chicago/Turabian StyleIntiso, Adriano, Joaquin Martinez-Triguero, Raffaele Cucciniello, Antonio Proto, Antonio Eduardo Palomares, and Federico Rossi. 2019. "A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation" Catalysts 9, no. 1: 27. https://doi.org/10.3390/catal9010027
APA StyleIntiso, A., Martinez-Triguero, J., Cucciniello, R., Proto, A., Palomares, A. E., & Rossi, F. (2019). A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts, 9(1), 27. https://doi.org/10.3390/catal9010027