Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Catalytic Activity
3. Materials and Methods
3.1. Catalysts Preparation
3.2. Characterization Methods
3.3. Esterification Reaction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Climent, M.J.; Corma, A.; De Frutos, P.; Iborra, S.; Noy, M.; Velty, A.; Concepción, P. Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pair. J. Catal. 2010, 269, 140–149. [Google Scholar] [CrossRef]
- Hu, W.; Knight, D.; Lowry, B.; Varma, A. Selective oxidation of glycerol to dihydroxyacetone over Pt−Bi/C catalyst: Optimization of catalyst and reaction conditions. Ind. Eng. Chem. Res. 2010, 49, 10876–10882. [Google Scholar] [CrossRef]
- Ang, G.T.; Tan, K.T.; Lee, K.T. Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production. Renew. Sustain. Energy Rev. 2014, 31, 61–70. [Google Scholar] [CrossRef]
- Lakshmanan, P.; Upare, P.; Le, N.T.; Hwang, Y.K.; Hwang, D.W.; Lee, U.H.; Chang, J.S. Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid. Appl. Catal. A 2013, 468, 260–268. [Google Scholar] [CrossRef]
- Liu, B.; Greeley, J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt (111): A density functional theory study. J. Phys. Chem. C 2011, 115, 19702–19709. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Tomishige, K. Heterogeneous catalysis of the glycerol hydrogenolysis. Catal. Sci. Technol. 2011, 1, 179–190. [Google Scholar] [CrossRef]
- Katryniok, B.; Paul, S.; Belliere-Baca, V.; Rey, P.; Dumeignil, F. A long-life catalyst for glycerol dehydration to acrolein. Green Chem. 2010, 12, 1922–1925. [Google Scholar] [CrossRef]
- Rahmat, N.; Abdullah, A.; Mohamed, A. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renew. Sustain. Energy Rev. 2010, 14, 987–1000. [Google Scholar] [CrossRef]
- Bagheri, S.; Jukapli, N.; Dabdawb, W.; Mansouri, N. Biodiesel-Derived Raw Glycerol to Value-Added Products: Catalytic Conversion Approach. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Wiley: Hoboken, NJ, USA, 2017; Volume 3, pp. 309–366. [Google Scholar]
- Testa, M.L.; La Parola, V.; Liotta, L.F.; Venezia, A.M. Screening of different solid acid catalysts for glycerol acetylation. J. Mol. Catal. A Chem. 2013, 367, 69–76. [Google Scholar] [CrossRef]
- Beejapur, H.A.; La Parola, V.; Liotta, L.F.; Testa, M.L. Glycerol Acetylation over organic-inorganic Sulfonic or Phosphonic Silica Catalysts. Chem. Sel. 2017, 2, 4934–4941. [Google Scholar] [CrossRef]
- Gonçalves, V.L.; Pinto, B.P.; Silva, J.C.; Mota, C.J. Acetylation of glycerol catalyzed by different solid acids. Catal. Today 2008, 133, 673–677. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sudarsanam, P.; Raju, G.; Reddy, B.M. Selective acetylation of glycerol over CeO2–M and SO42−/CeO2–M (M = ZrO2 and Al2O3) catalysts for synthesis of bioadditives. J. Ind. Eng. Chem. 2012, 18, 648–654. [Google Scholar] [CrossRef]
- Silva, L.N.; Gonçalves, V.L.; Mota, C.J. Catalytic acetylation of glycerol with acetic anhydride. Catal. Commun. 2010, 11, 1036–1039. [Google Scholar] [CrossRef]
- Parangi, T.F.; Wani, B.N.; Chudasama, U.V. Acetalization of Carbonyl Compounds with Pentaerythritol Catalyzed by Metal(IV) Phosphates a solid Acid Catalysts. Ind. Eng. Chem. Res. 2013, 52, 8969–8977. [Google Scholar] [CrossRef]
- Chen, B.; Li, F.; Huang, Z.; Lu, T.; Yuan, Y.; Yuan, G. Integrated catalytic process to directly convert furfural to levulinate ester with high selectivity. ChemSusChem 2014, 7, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Alamo, J.; Roy, R. Zirconium phospho-sulphates with NaZr2(PO4)3-type structure. J. Solid State Chem. 1984, 51, 270–273. [Google Scholar] [CrossRef]
- Piffard, Y.; Verbaere, A.; Kinoshita, M. β-Zr2(PO4)2SO4: A zirconium phosphato-sulphate with a Sc2(WO4)3 structure. A comparison between garnet, nasicon, and Sc2(WO4)3 structure types. J. Solid State Chem. 1987, 71, 121–130. [Google Scholar]
- Thoma, S.G.; Jackson, N.B.; Nenoff, T.M.; Maxwell, R.S. Mixed Metal Phospho-Sulphates for Acid Catalysis. Mater. Res. Soc. Symp. Proc. 1997, 497, 191–199. [Google Scholar] [CrossRef]
- Pica, M. Zirconium Phosphate Catalysts in the XXI Century: State of the Art from 2010 to Date. Catalysts 2017, 7, 190. [Google Scholar] [CrossRef]
- Bear, I.J.; Mumme, W.G. The crystal chemistry of zirconium sulphates. VI. The structure of α-Zr(SO4)2. Acta Cryst. B 1970, 26, 1140–1145. [Google Scholar]
- Ziyad, M.; Rouimi, M.; Portefaix, J.-L. Activity in hydrotreatment processes of Ni–Mo loaded zirconium phosphate Zr3(PO4)4. Appl. Catal. A 1999, 183, 93–105. [Google Scholar] [CrossRef]
- Jimenez-Morales, I.; Santamaria-Gonzales, J.; Maireles, P.; Torres, A.; Jimenez-Lopez, A. Calcined zirconium sulfate supported on MCM-41 silica as acid catalyst for ethanolysis of sunflower oil. Appl. Catal. B: Environ. 2011, 103, 91–98. [Google Scholar]
- Escalona Platero, E.; Peñarroya Mentruit, M.; Otero Areán, C.; Zecchina, A. FTIR Studies on the Acidity of Sulfated Zirconia Prepared by Thermolysis of Zirconium Sulfate. J. Catal. 1996, 162, 268–276. [Google Scholar] [CrossRef]
- Rack Sohn, J.; Hee Seo, D. Preparation of new solid superacid catalyst, zirconium sulfate supported on γ-alumina and activity for acid catalysis. Catal. Today 2003, 87, 219–226. [Google Scholar] [CrossRef]
- Takarroumta, N.; Kacimi, M.; Bozon-Verduraz, F.; Liotta, L.F.; Ziyad, M. Characterization and performance of the bifunctional platinum-loaded calcium-hydroxyapatite in the one-step synthesis of methyl isobutyl ketone. J. Mol. Catal. A 2013, 377, 42–50. [Google Scholar] [CrossRef]
- Ardizzone, S.; Bianchi, C.L. XPS characterization of sulphated zirconia catalysts: The role of iron. Surf. Interface Anal. 2000, 30, 77–80. [Google Scholar] [CrossRef]
- Gondal, M.A.; Fasasi, T.A.; Baig, U.; Mekki, A. Effects of Oxidizing Media on the Composition, Morphology and Optical Properties of Colloidal Zirconium Oxide Nanoparticles Synthesized via Pulsed Laser Ablation in Liquid Technique. Nanosci. Nanotechnol. 2017, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.M.; Wang, Y.J.; Luo, G.S.; Dai, Y.Y. Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions. Micropor. Mesopor. Mater. 2005, 84, 275–282. [Google Scholar] [CrossRef]
Sample | BET (m2/g) | Vp (cm3/g) | Acid Capacity (mmol H+/g) |
---|---|---|---|
Zr(SO4)2 | 14.5 | 0.1 | 2.9 |
Zr4(PO4)2(SO4)5 | 15.0 | 0.1 | 7.5 (2.76) 1 |
Zr3(PO4)2(SO4)3 | 12.5 | 0.1 | 5.0 |
Zr2(PO4)2SO4 | 11.0 | 0.09 | 3.2 |
Zr3(PO4)4 | 105.0 | 0.3 | 2.0 |
Sample | Zr3d5/2 (eV) | Zr/P/S/O (at.%) Theoretical | Zr/P/S/O (at.%) XPS Derived |
---|---|---|---|
Zr(SO4)2 | 182.1 (5%)–184.0 (95%) | 9/0/18/73 | 7/0/21/70 |
Zr4(PO4)2(SO4)5 | 185.2 (100%) | 10/5/13/72 | 10/4/17/69 |
First cycle | 182.8 (8%)–184.0 (92%) | 13/5/11/71 | |
Fifth cycle | 183.2 (9%)–184.0 (91%) | 13/7/7/73 | |
Zr3(PO4)2(SO4)3 | 185.2 (100%) | 11/7/11/71 | 10/5/17/68 |
Zr2(PO4)2SO4 | 183.0 (7%)–184.7 (93%) | 12/12/6/71 | 11/14/8/66 |
Zr3(PO4)4 | 183.3 (14%)–184.7 (86%) | 13/17/0/70 | 14/22/0/64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, M.L.; La Parola, V.; Mesrar, F.; Ouanji, F.; Kacimi, M.; Ziyad, M.; Liotta, L.F. Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives. Catalysts 2019, 9, 148. https://doi.org/10.3390/catal9020148
Testa ML, La Parola V, Mesrar F, Ouanji F, Kacimi M, Ziyad M, Liotta LF. Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives. Catalysts. 2019; 9(2):148. https://doi.org/10.3390/catal9020148
Chicago/Turabian StyleTesta, Maria Luisa, Valeria La Parola, Farah Mesrar, Fatiha Ouanji, Mohamed Kacimi, Mahfoud Ziyad, and Leonarda Francesca Liotta. 2019. "Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives" Catalysts 9, no. 2: 148. https://doi.org/10.3390/catal9020148
APA StyleTesta, M. L., La Parola, V., Mesrar, F., Ouanji, F., Kacimi, M., Ziyad, M., & Liotta, L. F. (2019). Use of Zirconium Phosphate-Sulphate as Acid Catalyst for Synthesis of Glycerol-Based Fuel Additives. Catalysts, 9(2), 148. https://doi.org/10.3390/catal9020148