Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristic Crystallographic Element Norm
2.2. Molecular Simulations
3. Results
3.1. CCE Norm Application to Perfect Crystals
3.2. CCE Norm Application to Computer-Generated, 3-D Bulk Systems
3.3. CCE Application to Computer-Generated, 2-D Thin-Film Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BCC | Body Centered Cubic |
CCE | Characteristic Crystallographic Element (norm) |
CAN | Common Neighbor Analysis |
FCC | Face Centered Cubic |
FIV | Fivefold |
HCP | Hexagonal Close Packed |
HEX | Hexagonal |
HON | Honeycomb |
HS | Hard Sphere |
MC | Monte Carlo |
RCP | Random Close Packing |
PEN | Pentagonal |
RHCP | Random Hexagonal Close Packed |
SQU | Square |
SSP | Short-Range Order Symmetry Parameter |
SW | Square Well |
TRI | Triangular |
Appendix A
References
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Ma, E. Tuning order in disorder. Nat. Mater. 2015, 14, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Tanaka, H. Structural order as a genuine control parameter of dynamics in simple glass formers. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. Vmd: Visual molecular dynamics. J. Mol. Graph. Model. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Ahrens, J.; Geveci, B.; Law, C. Paraview: An End-User Tool for Large Data Visualization; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. Ucsf chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modell. Simul. Mater. Sci. Eng. 2010, 18. [Google Scholar] [CrossRef]
- Bumstead, M.; Liang, K.Y.; Hanta, G.; Hui, L.S.; Turak, A. Dislocate: Tools to rapidly quantify local intermolecular structure to assess two-dimensional order in self-assembled systems. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- McQuarrie, D.A. Statistical Mechanics; Viva Books: Kolkata, India, 2011. [Google Scholar]
- Honeycutt, J.D.; Andersen, H.C. Molecular-dynamics study of melting and freezing of small lennard-jones clusters. J. Phys. Chem. 1987, 91, 4950–4963. [Google Scholar] [CrossRef]
- Ganesh, P.; Widom, M. Signature of nearly icosahedral structures in liquid and supercooled liquid copper. Phys. Rev. B 2006, 74. [Google Scholar] [CrossRef] [Green Version]
- Faken, D.; Jónsson, H. Systematic analysis of local atomic structure combined with 3d computer graphics. Comput. Mater. Sci. 1994, 2, 279–286. [Google Scholar] [CrossRef]
- Martin, A.V.; Kozlov, A.; Berntsen, P.; Roque, F.G.; Flueckiger, L.; Saha, S.; Greaves, T.L.; Conn, C.E.; Hawley, A.M.; Ryan, T.M.; et al. Fluctuation x-ray diffraction reveals three-dimensional nanostructure and disorder in self-assembled lipid phases. Commun. Mater. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Nelson, D.R.; Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 1983, 28, 784–805. [Google Scholar] [CrossRef]
- Larsen, P.M.; Schmidt, S.; Schiotz, J. Robust structural identification via polyhedral template matching. Modell. Simul. Mater. Sci. Eng. 2016, 24. [Google Scholar] [CrossRef]
- Torquato, S. Cell and random-field models. In Random Heterogeneous Materials. Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2002; Volume 16. [Google Scholar] [CrossRef]
- Voronoi, G. New applications of continuous parameters to the theory of quadratic forms.—First memoir—Some properties of perfect positive quadratic forms. Journal Fur Die Reine Und Angewandte Mathematik 1908, 133, 97–178. [Google Scholar] [CrossRef]
- Finney, J.L. Random packings and structure of simple liquids.1. Geometry of random close packing. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1970, 319, 479–493. [Google Scholar] [CrossRef]
- Tanemura, M.; Hiwatari, Y.; Matsuda, H.; Ogawa, T.; Ogita, N.; Ueda, A. Geometrical analysis of crystallization of soft-core model. Prog. Theor. Phys. 1977, 58, 1079–1095. [Google Scholar] [CrossRef]
- Anikeenko, A.V.; Medvedev, N.N.; Aste, T. Structural and entropic insights into the nature of the random-close-packing limit. Phys. Rev. E 2008, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackland, G.J.; Jones, A.P. Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef]
- Cohen, M.H.; Grest, G.S. Liquid-glass transition, a free-volume approach. Phys. Rev. B 1979, 20, 1077–1098. [Google Scholar] [CrossRef]
- Egami, T.; Maeda, K.; Vitek, V. Structural defects in amorphous solids—A computer-simulation study. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1980, 41, 883–901. [Google Scholar] [CrossRef]
- Ding, J.; Cheng, Y.Q.; Sheng, H.; Asta, M.; Ritchie, R.O.; Ma, E. Universal structural parameter to quantitatively predict metallic glass properties. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef]
- Malins, A.; Williams, S.R.; Eggers, J.; Royall, C.P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 2013, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 2012, 20. [Google Scholar] [CrossRef]
- Paret, J.; Jack, R.L.; Coslovich, D. Assessing the structural heterogeneity of supercooled liquids through community inference. J. Chem. Phys. 2020, 152. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. The characteristic crystallographic element norm: A descriptor of local structure in atomistic and particulate systems. J. Chem. Phys. 2009, 130. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Entropy-driven crystallization in dense systems of athermal chain molecules. Phys. Rev. Lett. 2009, 103. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Abrams, C.F.; Laso, M. Modeling of crystal nucleation and growth in athermal polymers: Self-assembly of layered nano-morphologies. Soft Matter 2010, 6, 2160–2173. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Spontaneous crystallization in athermal polymer packings. Int. J. Mol. Sci. 2013, 14, 332–358. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Jamming and crystallization in athermal polymer packings. Philos. Mag. 2013, 93, 4108–4131. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. The role of bond tangency and bond gap in hard sphere crystallization of chains. Soft Matter 2015, 11, 1688–1700. [Google Scholar] [CrossRef] [PubMed]
- Karayiannis, N.C.; Malshe, R.; de Pablo, J.J.; Laso, M. Fivefold symmetry as an inhibitor to hard-sphere crystallization. Phys. Rev. E 2011, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karayiannis, N.C.; Malshe, R.; Kroger, M.; de Pablo, J.J.; Laso, M. Evolution of fivefold local symmetry during crystal nucleation and growth in dense hard-sphere packings. Soft Matter 2012, 8, 844–858. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Twinning of polymer crystals suppressed by entropy. Symmetry 2014, 6, 758–780. [Google Scholar] [CrossRef] [Green Version]
- Hoy, R.S.; Karayiannis, N.C. Simple model for chain packing and crystallization of soft colloidal polymers. Phys. Rev. E 2013, 88. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Smith, T.B.; Hoy, R.S.; Karayiannis, N.C. Effect of chain stiffness on the competition between crystallization and glass-formation in model unentangled polymers. J. Chem. Phys. 2015, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Karayiannis, N.C.; Laso, M.; Qu, D.D.; Luo, Q.; Shen, J. A metric to gauge local distortion in metallic glasses and supercooled liquids. Acta Mater. 2014, 72, 229–238. [Google Scholar] [CrossRef]
- Herranz, M.; Santiago, M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Crystal, fivefold and glass formation in clusters of polymers interacting with the square well potential. Polymers 2020, 12, 1111. [Google Scholar] [CrossRef]
- Malgrange, C.; Ricolleau, C.; Schlenker, M. Symmetry and Physical Properties of Crystals; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford Science Publications: Oxford, UK, 2010. [Google Scholar]
- Laso, M.; Jimeno, N. Representation Surfaces for Physical Properties of Materials: A Visual Approach to Understanding Anisotropic Materials; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Giacovazzo, C.; Monaco, H.L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Gatti, M. Fundamentals of Crystallography; Oxford Science: Oxford, UK, 2005. [Google Scholar]
- Rycroft, C.H. Voro plus plus: A three-dimensional voronoi cell library in c plus. Chaos 2009, 19. [Google Scholar] [CrossRef] [Green Version]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. Acm Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Karayiannis, N.C.; Laso, M. Monte carlo scheme for generation and relaxation of dense and nearly jammed random structures of freely jointed hard-sphere chains. Macromolecules 2008, 41, 1537–1551. [Google Scholar] [CrossRef]
- Ramos, P.M.; Karayiannis, N.C.; Laso, M. Off-lattice simulation algorithms for athermal chain molecules under extreme confinement. J. Comput. Phys. 2018, 375, 918–934. [Google Scholar] [CrossRef]
- Laso, M.; Karayiannis, N.C.; Foteinopoulou, K.; Mansfield, M.L.; Kroger, M. Random packing of model polymers: Local structure, topological hindrance and universal scaling. Soft Matter 2009, 5, 1762–1770. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. The structure of random packings of freely jointed chains of tangent hard spheres. J. Chem. Phys. 2009, 130. [Google Scholar] [CrossRef]
- Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Contact network in nearly jammed disordered packings of hard-sphere chains. Phys. Rev. E 2009, 80. [Google Scholar] [CrossRef] [PubMed]
- Karayiannis, N.C.; Laso, M. Dense and nearly jammed random packings of freely jointed chains of tangent hard spheres. Phys. Rev. Lett. 2008, 100. [Google Scholar] [CrossRef]
- Lucarini, V. Three-dimensional random voronoi tessellations: From cubic crystal lattices to poisson point processes. J. Stat. Phys. 2009, 134, 185–206. [Google Scholar] [CrossRef]
- Schoenholz, S.S.; Cubuk, E.D.; Kaxiras, E.; Liu, A.J. Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc. Natl. Acad. Sci. USA 2017, 114, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Cubuk, E.D.; Ivancic, R.J.S.; Schoenholz, S.S.; Strickland, D.J.; Basu, A.; Davidson, Z.S.; Fontaine, J.; Hor, J.L.; Huang, Y.R.; Jiang, Y.; et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 2017, 358, 1033–1037. [Google Scholar] [CrossRef] [Green Version]
- Parreno, O.; Ramos, P.M.; Karayiannis, N.C.; Laso, M. Self-avoiding random walks as a model to study athermal linear polymers under extreme plate confinement. Polymers 2020, 12, 799. [Google Scholar] [CrossRef] [Green Version]
- Benito, J.; Karayiannis, N.C.; Laso, M. Confined polymers as self-avoiding random walks on restricted lattices. Polymers 2018, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
Reference Structure → Fingerprint ↓ | HCP | FCC | HEX | BCC | FIV |
---|---|---|---|---|---|
Ncoord(X) | 12 | 12 | 8 | 8 | 12 |
Nel(X) | 1 | 5 | 2 | 5 | 2 |
Geometric Symmetry Element k | (k = 1) Roto-inversion Axis | (k = 1,…,4) Roto-inversion Axes (k = 5) Inversion Center | (k = 1) Rotation Axis (k = 2) Inversion Center | (k = 1,…,4) Roto-inversion Axes (k = 5) Inversion Center | (k = 1) Rotation Axis (k = 2) Inversion Center |
Nact(k,X) | (k = 1) 5 | (k = 1,…,4) 5 (k = 5) 1 | (k = 1) 5 (k = 2) 1 | (k =1,…,4) 5 (k = 5) 1 | (k = 1) 4 (k = 2) 1 |
Symmetry Actions of Geometric Element k | (k = 1) , , , , | (k = 1,…,4) , , , , (k = 5) | (k = 1) , , , , (k = 2) | (k = 1,…,4) , , , , (k = 5) | (k = 1) , , , , (k = 2) |
Reference Structure → Fingerprint ↓ | TRI | SQU | HON | PEN |
---|---|---|---|---|
Ncoord(X) | 6 | 4 | 3 | 5 |
Nel(X) | 2 | 2 | 1 | 1 |
Geometric Symmetry Element k | (k = 1) Rotation Axis (k = 2) Inversion Center | (k = 1) Rotation Axis (k = 2) Inversion Center | (k = 1) Rotation Axis | (k = 1) Rotation Axis |
Nact(k,X) | (k = 1) 5 (k = 2) 1 | (k = 1) 3 (k = 2) 1 | (k = 1) 2 | (k = 1) 4 |
Symmetry Actions of Geometric Element k | (k = 1) , , , , (k = 2) | (k = 1) , , (k = 2) | (k = 1) , , | (k = 1) , , , |
εX → Reference Lattice ↓ | HCP | FCC | HEX | BCC | FIV |
---|---|---|---|---|---|
HCP | 0 | 0.257 | 0.290 | 0.412 | 0.228 |
FCC | 0.246 | 0.000244 | 0.377 | 0.518 | 0.229 |
HEX | 0.280 | 0.239 | 0 | 0.239 | 0.185 |
BCC | 0.284 | 0.165 | 0.246 | 0.000190 | 0.276 |
εX → Reference Lattice ↓ | TRI | SQU | HON | PEN |
---|---|---|---|---|
TRI | 0 | 0.275 | 0.699 | 0.397 |
SQU | 0.301 | 0 | 0.613 | 0.318 |
HON | 0.649 | 0.465 | 0 | 0.420 |
X | Ncoord(X) | F(X) | V(X) | E(X) | VVP(X) | AVP(X) | ρn(X) | φ(X) | Q(X) |
---|---|---|---|---|---|---|---|---|---|
HCP | 12 | 12 | 14 | 14 | 0.7071 | 4.243 | 1.414 | 0.7404 | 0.7405 |
FCC | 12 | 12 | 14 | 24 | 0.7071 | 4.243 | 1.414 | 0.7404 | 0.7405 |
HEX | 8 | 8 | 12 | 18 | 0.8660 | 5.196 | 1.155 | 0.6046 | 0.6045 |
BCC | 8 | 14 | 24 | 36 | 0.7698 | 4.464 | 1.299 | 0.6800 | 0.7534 |
X-like | Ncoord(X) | F(X) | V(X) | E(X) | VVP(X) | AVP(X) | ρn(X) | φ(X) | Q(X) |
---|---|---|---|---|---|---|---|---|---|
HCP | 12 | 13 | 22 | 33 | 0.7534 | 4.426 | 1.327 | 0.6950 | 0.7404 |
FCC | 12 | 13 | 22 | 33 | 0.7311 | 4.339 | 1.368 | 0.7162 | 0.7400 |
HEX | 8 | 15 | 26 | 39 | 1.038 | 5.806 | 0.9634 | 0.5044 | 0.6226 |
BCC | 8 | 14 | 24 | 36 | 0.9214 | 5.045 | 1.085 | 0.5683 | 0.7478 |
X | % VVP(X) | % AVP(X) | % Q(X) | X-CCE norm |
---|---|---|---|---|
HCP | 6.55 | 4.31 | 0.0135 | 0.0340 |
FCC | 3.39 | 2.26 | 0.0675 | 0.0223 |
HEX | 19.9 | 10.5 | 2.99 | 0.0466 |
BCC | 19.7 | 13.0 | 0.743 | 0.0536 |
X | Ncoord(X) | V(X) | E(X) | AVP(X) | PVP(X) | q(X) | ||
---|---|---|---|---|---|---|---|---|
TRI | 6 | 6 | 6 | 0.8660 | 3.464 | 1.155 | 0.907 | 0.907 |
SQU | 4 | 4 | 4 | 1.000 | 4.000 | 1.000 | 0.785 | 0.785 |
HON | 3 | 3 | 3 | 1.299 | 5.196 | 0.7698 | 0.604 | 0.604 |
εTRI | Ncoord(TRI) | V(TRI) | E(TRI) | AVP(TRI) | PVP(TRI) | q(TRI) | ||
---|---|---|---|---|---|---|---|---|
0.00 | 6 | 6 | 6 | 0.8660 | 3.464 | 1.155 | 0.907 | 0.907 |
0.05 | 6 | 6 | 6 | 0.9160 | 3.564 | 1.093 | 0.858 | 0.905 |
0.10 | 6 | 6 | 6 | 0.9420 | 3.620 | 1.062 | 0.834 | 0.903 |
0.20 | 6 | 6 | 6 | 1.006 | 3.766 | 0.9940 | 0.781 | 0.891 |
0.30 | 6 | 6 | 6 | 1.000 | 3.776 | 1.000 | 0.786 | 0.881 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, P.M.; Herranz, M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis. Crystals 2020, 10, 1008. https://doi.org/10.3390/cryst10111008
Ramos PM, Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis. Crystals. 2020; 10(11):1008. https://doi.org/10.3390/cryst10111008
Chicago/Turabian StyleRamos, Pablo Miguel, Miguel Herranz, Katerina Foteinopoulou, Nikos Ch. Karayiannis, and Manuel Laso. 2020. "Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis" Crystals 10, no. 11: 1008. https://doi.org/10.3390/cryst10111008
APA StyleRamos, P. M., Herranz, M., Foteinopoulou, K., Karayiannis, N. C., & Laso, M. (2020). Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis. Crystals, 10(11), 1008. https://doi.org/10.3390/cryst10111008